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The electron magnetic moment in Bohr magnetons, −µ/µB = 1.001 159 652 180 59 (13) [0.13 ppt],
is consistent with a 2008 measurement and is 2.2 times more precise. The most precisely measured
property of an elementary particle agrees with the most precise prediction of the Standard Model
(SM) to 1 part in 1012, the most precise confrontation of all theory and experiment. The SM test
will improve further when discrepant measurements of the fine structure constant α are resolved,
since the prediction is a function of α. The magnetic moment measurement and SM theory together
predict α−1 = 137.035 999 166 (15) [0.11 ppb]

The quest to find physics beyond the Standard Model
of Particle Physics (BSM) is well motivated because the
SM is incomplete. No CP violation mechanism is large
enough to keep matter and antimatter produced in the
Big Bang [1] from annihilating as the universe cooled [2],
dark matter [3, 4] has not been identified, and dark en-
ergy [5, 6] and inflation [7, 8] have no SM explanation.
Great BSM sensitivity is afforded by the most precise pre-
diction of the SM, the electron magnetic moment in Bohr
magnetons, −µ/µB = g/2. SM sectors involved include
the Dirac prediction [9], QED (quantum electrodynamics
[10–17]) with muon and tauon contributions [18], along
with hadronic [19–21] and weak interaction contributions
[22–25]. BSM particles and electron substructure could
make the measurement and prediction differ (like quark
substructure shifts the proton moment).
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FIG. 1. This Northwestern measurement (red) and our 2008
Harvard measurement (blue) [26]. SM predictions (solid and
open black points for slightly differing C10 [27, 28]) are func-
tions of discrepant α measurements [29, 30]. A ppt is 10−12.

The most precise determination of an elementary par-
ticle property, carried out blind of any prior measurement
or prediction, gives µ/µB 2.2 times more precisely, to 1.3
parts in 1013 (Fig. 1). Measured in a new apparatus, it
is consistent with the value that stood for 14 years [26].
In the most precise confrontation of theory and measure-
ment, the SM prediction agrees to 1 part in 1012. The
measurement precision allows a much better SM test if
discrepant measurements of the fine structure constant
α [29, 30] are resolved, given that the SM prediction of
µ/µB is a function of α.

The one-electron quantum cyclotron utilized is essen-
tially a single electron suspended in a magnetic field
B = Bẑ and cooled to its lowest quantum states [31].

The magnetic moment operator for a spin-1/2 electron,

µ = −g
2
µB

S

~/2
, (1)

is proportional to its spin S normalized to its spin eigen-
value ~/2. For electron charge −e and mass m, dimen-
sional analysis gives a Bohr magneton, µB = e~/(2m),
as its approximate magnitude. The energy levels are

E = hνsms + hνc(n+ 1
2 ), (2)

with h = 2π~, ms = ±1/2 and n = 0, 1, .... The cyclotron
frequency is νc = eB/(2πm), the spin frequency is νs =
(g/2)νc, and the anomaly frequency is νa ≡ νs− νc. The
electron serves as its own magnetometer insofar as

− µ

µB
=
g

2
= 1 +

νa
νc

(3)

is independent of B, which cancels out in νa/νc.
A stable magnetic field is nonetheless critical for νa and

νc not measured simultaneously. Field drift reduced by a
factor of 4 to 2×10−9/day [32] makes possible round-the-
clock measurements, improved statistical precision, and
a better investigation of uncertainties. The apparatus in
Fig. 2a achieves this by supporting a 50 mK electron trap
on a 4.2 K superconducting, self-shielding solenoid [33],
with a mixing chamber flexibly hanging from the rest of
a dilution refrigerator [34]. (Independently suspending
a trap and a normal rigid fridge makes B drift with lab
pressure and temperature as the electron moves in the
slight gradient of the solenoid field [35].) The He and N2

pressures in the cryostats are also regulated.
An electron in the field Bẑ is trapped by adding an

electrostatic quadrupole potential V ∝ z2 − ρ2/2, with
ρ = xx̂ + yŷ [36]. Cylindrical Penning trap electrodes
[37, 38] (Fig. 2b) are shaped so that properly biasing
produces such a potential. A centered electron then oscil-
lates nearly harmonically along ẑ at the axial frequency
ν̄z ≈ 114 MHz. For B = 5.3 T, the trap-modified cy-
clotron and anomaly frequencies are ν̄c ≈ 149 GHz and
ν̄a ≈ 173 MHz, while νs is unchanged. A circular mag-
netron motion at ν̄m = 43 kHz is cooled by axial side-
band cooling [36, 39] and not discussed further. Figure 2c
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FIG. 2. (a) Cryogenic system supports a 50 mK electron trap
upon a 4.2 K solenoid to provide a very stable B. (b) Silver
electrodes of a cylindrical Penning trap. (c) Quantum spin
and cyclotron energy levels used for measurement.

shows the lowest cyclotron and spin energy levels and the
frequency spacings. A relativistic mass shift δ is given by
δ/νc ≡ hνc/(mc2) ≈ 10−9 [36, 40].

The lowest cyclotron states for each spin are effectively
stable because the spin is so nearly uncoupled from its
environment [36]. With no trap, the excited cyclotron
state lifetime is 0.1 s. In the trap, the rate for sponta-
neous emission of synchrotron radiation is inhibited by a
factor of 50 to 70, when B is chosen so ν̄c is far from res-
onance with cavity radiation modes [41]. Seconds of av-
eraging time allows a cyclotron excitation to be detected
before it decays [35]. The cyclotron damping contributes
0.03 Hz to the cyclotron and anomaly linewidths (to be
discussed), a negligible 0.2 ppt and a very important 0.2
ppb, respectively. Blackbody photons that could excite
the electron from the cyclotron ground state are elimi-
nated for a trap cavity cooled below 100 mK [31].

The Brown-Gabrielse invariance theorem [42],

νc =
√
ν̄2c + ν̄2z + ν̄2m (4)

provides the νc and νa = νs − νc needed in Eq. (3) to
get µ/µB in terms of the trap-modified frequencies and
ν̄a ≡ νs − ν̄c. It is critical that Eq. (4) is invariant under
unavoidable misalignments of B and the axis of V , and
under elliptic distortions of V [42]. The hierarchy ν̄c �
ν̄z � ν̄m � δ allows an expansion of Eq. (4) that suffices
for our precision to be inserted in Eq. (3) to obtain

− µ

µB
=
g

2
' 1 +

ν̄a − ν̄2z/(2f̄c)
f̄c + 3δ/2 + ν̄2z/(2f̄c)

+
∆gcav

2
, (5)

with ν̄a and f̄c (defined in Fig. 2c) deduced with ν̄z from
measured line shapes (Fig. 3). The added cavity-shift

∆gcav/2 arises because couplings to radiation modes of
the trap cavity shift ν̄c [43, 44].

To measure the axial frequency ν̄z needed in Eq. (5), a
resonant circuit that is the input for a cryogenic HEMT
amplifier is attached to the trap electrodes. The dissi-
pation of current induced in the circuit by electron axial
motion damps it with a time constant γ−1z = 32 ms. The
amplifier heats the electron axial motion to Tz = 0.5 K.
The 1-minute Fourier transform of the amplifier output
in Fig. 3c shows the noise and electron signal canceling
to make a dip that reveals ν̄z [45].

Small shifts in ν̄z provide quantum nondemolition
(QND) detection of one-quantum spin and cyclotron
jumps, without the detection changing the cyclotron or
spin state. Saturated nickel rings (Fig. 2b) produce a
magnetic bottle gradient, ∆B = B2

[
(z2 − ρ2/2)ẑ − zρρ̂

]
with B2 = 300 T/m2. This couples spin and cyclotron
energies to ν̄z which then shifts by ∆ν̄z ≈ 1.3 (n+ms) Hz.
The B2 and ∆ν̄z are 5 and 3 times smaller than used pre-
viously [26]. To rapidly detect jumps after the cyclotron
and anomaly drives are turned off, the amplified signal
is immediately fed back to the electron. This self-excited
oscillator (SEO) [46] is resonantly and rapidly driven to a
large amplitude, even if ν̄z shifts with amplitude, where-
upon the gain is adjusted to maintain it. A Fourier trans-
form of the large signal reveals the small ∆ν̄z that signals
single cyclotron and spin quantum jumps.

Quantum jump spectroscopy produces anomaly and
cyclotron resonances (Fig. 3a-b) from which to extract
ν̄a and f̄c to use in Eq. (5). Cyclotron and anomaly
quantum jump trials are alternated. The magnetic field
drift of 0.2 ppb/hr in the new apparatus is slow enough
that we can correct the magnetic field using a quadratic
fit to the lowest cyclotron drive frequency that produced
an excitation. Each trial starts with the electron in the
spin-up ground state, |n = 0,ms = 1/2〉, and 5 s of axial
magnetron sideband cooling [36, 39].

To produce cyclotron quantum jumps, a 5 s microwave
drive is injected between trap electrodes (Fig. 2b) to pro-
duce quantum jumps to nc = 1 less than 20% of the trials,
to avoid saturation effects. An anomaly drive is also ap-
plied but is off resonance. Cavity-inhibited spontaneous
emission [41] allows the excitation to persist long enough
so that during the next 1 s we can switch on the self-
excitation feedback [46] and detect the 1.3 Hz shifts that
signal cyclotron quantum jumps.

To produce anomaly quantum jumps, an oscillatory
potential applied to trap electrodes for 30 s drives an
off-resonance axial oscillation of the electron through the
radial magnetic gradient B2zρ. (A cyclotron drive re-
mains applied but is off resonance). The electron sees an
oscillating magnetic field perpendicular to ẑ as needed to
flip its spin, with a radial gradient that allows a simulta-
neous cyclotron transition [36]. A spontaneous decay to
the spin-down ground state, |n = 0,ms = −1/2〉, would
be detected during the 60 s (more than 10 cyclotron decay
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times) after drives are turned off. A maximum quantum
jump rate of 40% suggests a slight power broadening, but
ν̄a is still determined far more precisely than f̄c.
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FIG. 3. Quantum jump cyclotron (a) and anomaly (b) line
shapes that are measured (points), predicted (dashed) and
fit (solid) vs fractional drive detunings from f̄c(1 + ε) and
ν̄a(1 + ε). (c) A dip in a noise resonance is fit to get ν̄z.

Asymmetric anomaly and cyclotron line shapes are
well understood [47], and the effect of cyclotron de-
cay can be added [35]. Thermal axial motion through
the gradient, B2z

2, gives both lines a fractional width,
ε = B2kBTz/(4π

2ν̄2zmB) with Boltzmann constant kB .
The anomaly width εν̄a corresponds to establishing ν̄a in
1.1 s, much longer than the γ−1z = 32 ms required for
axial energy changes. Averaging thus produces a much
narrower peak, nearly symmetric about the frequency
ν̄a(1 + ε) for the average field the electron sees. Of the
remaining observed 0.06 Hz (0.35 ppb) linewidth, half is
from cyclotron decay and half from the limited 30 s time
the anomaly drive is applied. The 1.3 ms cyclotron aver-
aging is much shorter than γ−1z = 32 ms so the cyclotron
line shape mostly reflects a Boltzmann distribution of
axial energies (dashed in Fig. 3a), with negligible broad-
ening from cyclotron decay and drive duration.

Magnetic field fluctuations from other sources would
also be averaged differently in the observed anomaly
and cyclotron line shapes. Such fluctuations, with a
200 Hz bandwidth, were observed with a superconduct-
ing solenoid being jostled by its environment [48]. The
anomaly line shape would average away such fluctuations
to yield a narrow linewidth as is observed (e.g. Fig. 3b).
The cyclotron line shape would not average away such
such fluctuations, which are thus a possible explanation
for the observed 0.5–0.8 ppb broadening (e.g. Fig. 3a).

Both ν̄a and f̄c are extracted from the line shapes.
Cyclotron line shapes are fit to the predicted line shape
(dashed in Fig. 3a), convoluted with a Gaussian function
to accommodate the broadening. Such a fit, illustrated
by the solid curve in Fig. 3a, typically gives a 2 ppb cy-
clotron linewidth, a Gaussian broadening width of about
0.5 ppb, a Tz = 0.55 ± 0.11 K, and a f̄c with an un-
certainty of about 0.08 ppb. The much more symmetric
anomaly line shapes (e.g. Fig. 3b) are fractionally nar-
rower by about a factor of 4. Since uncertainty in ν̄a
is thus not very significant for our final uncertainty, fit-
ting with or without Gaussian broadening makes little
difference (e.g. solid curve in Fig. 3b).
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FIG. 4. (a) Measured −µ/µB − g/2 after cavity-shift correc-
tion. (b) Measurements take place in valleys of the cyclotron
damping rate where spontaneous emission is inhibited.

The cavity-shift ∆gcav/2 in Eq. (5), the only correction
to what is directly measured, arises because ν̄c shifts be-
cause the cyclotron oscillator couples to radiation modes
of the trap cavity [43, 44]. It is the downside of the
cavity-inhibited spontaneous emission that desirably nar-
rows resonance lines, and makes it possible to observe
a cyclotron excitation before it decays. The cylindrical
trap was invented [37] to allow cavity modes and shifts
to be understood and calculated. Nonetheless, the mode
frequencies and Q values must still be measured because
the cavity is imperfectly machined, is slit to make cavity
sections into separately-biased trap electrodes, and its di-
mensions change as it cools below 100 mK from 300 K.
Three consistent methods are used: (1) parametrically-
pumped electrons [35, 49, 50], (2) measuring how long one
electron stays in its first excited cyclotron state [26, 35],
and (3) a new method of observing the decay time of an
electron exited to nc ≈ 10.

A renormalized calculation [43, 44] with added cy-
clotron damping [26, 35] avoids the infinite cavity shifts
that result from summing all mode contributions. This
calculation assumes the mode frequencies of a perfect
cylinder, one Q for TE modes, and another for TM
modes. We calculate with dimensions chosen to best
match observed frequencies and a single Q value for all
modes. After shifts from the 72 observed modes using the
ideal frequencies and the one Q value are subtracted out,
contributions for these modes using measured frequencies
and Q values are added back in. The leading contribution
to cavity shift uncertainties comes from modifications of
the field that an electron sees from imperfections and
misalignments of the trap cavity. Figure 4a shows the
consistency of µ/µB measurements at 11 different mag-
netic fields, after each receives a different cavity shift.

A weighted average of the 11 measurements gives

g

2
= 1.001 159 652 180 59 (13) [0.13 ppt], (6)

with 1σ uncertainty in the last two digits in parentheses.
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TABLE I. Largest uncertainties for g/2.

Source Uncertainty×1013

statistical 0.29
cyclotron broadening 0.94

cavity correction 0.90
nuclear paramagnetism 0.12

anomaly power shift 0.10
magnetic field drift 0.09

total 1.3

(This is a 3100 times higher precision than achieved with
muon moments [51]). Figure 1 shows the good agreement
of this 2022 measurement at Northwestern with our 2008
measurement at Harvard [26] and an uncertainty that is
improved by a factor of 2.2. Because similar measure-
ment methods were used, we do not recommend averag-
ing the two measurements because similar methods may
produce correlated uncertainties that are difficult to de-
termine. Table I lists uncertainty contributions to the
final result, with correlations taken into account. The
statistical uncertainty is from the fits that extract f̄c and
ν̄a. The two dominant uncertainties have been discussed
– cyclotron broadening and cavity shifts (treated as corre-
lated for nearby fields). The measured temperature vari-
ations of the silver electrodes determines the uncertainty
from their nuclear paramagnetism. The anomaly power
shift uncertainty comes from the measured frequency de-
pendence on drive strength. The field drift uncertainty
is from the fit to the slowly drifting field.

Several SM sectors together predict

g

2
= 1 +C2

(α
π

)
+ C4

(α
π

)2
+ C6

(α
π

)3
+ C8

(α
π

)4
+ C10

(α
π

)5
+ ...+ aµτ + ahadronic + aweak. (7)

The Dirac prediction [9] is first on the right. QED pro-
vides the asymptotic series in powers of the fine struc-
ture constant α, and the muon and tauon contribution
aµτ [27]. The constants C2 [10], C4 [11, 12], C6 [13, 14]
and C8 [15] are calculated exactly, but require measured
lepton mass ratios as input [18]. The measurements are
so precise that a numerically calculated tenth order C10

[16, 17] is required and tested. A second evaluation of
C10 [28] differs slightly for reasons not yet understood
and the open points in Figs. 1 and 5 use this alterna-
tive. Hadronic and weak interaction contributions are
ahadronic [19–21] and aweak [22–25]. The exact C8 and
the numerical C10 are remarkable advances that reduce
the calculation uncertainty well below the uncertainties
reported for the measured µ/µB and α.

The most precise α measurements [29, 30], needed for
the SM prediction of g/2 from Eq. (7), disagree by 5.5 σ,
nearly ten times our measurement uncertainty (Fig. 1).
Until the discrepancy is resolved, the best that can be
said is that the predicted and measured µ/µB agree to

about δ(g/2) = 0.7 × 10−12, half of the α discrepancy.
A generic chiral symmetry model [52] then suggests that
the electron radius is less than Re =

√
|δ(g/2)|~/(mc) =

3.2×10−19 m, and that the mass of possible electron con-
stituents must exceed m∗ = m/

√
|δ(g/2)| = 620 GeV/c2.

If the α discrepancy and uncertainty would be re-
duced so δ(g/2) equals our µ/µB measurement uncer-
tainty, then Re reduces to 1.4×10−19 m and m∗ increases
to 1.4 TeV/c2. A further reduction of δ(g/2) by only a
factor of 2.3 would bring us to the level of the current
discrepancy between the calculated and measured muon
magnetic moments [51, 53], presuming that it is due to
BSM physics that is smaller for the electron by a factor
of the square of the ratio of the two masses.
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910× - 137. 035 999 000) -1α(

Cs
Rb
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g/2(2022) with SM

1− 0.5− 0 0.5    ppb

FIG. 5. SM prediction of α using µ/µB from this Northwest-
ern measurement (red), and from our 2008 Harvard measure-
ment (blue), with solid and open points for slightly differing
C10 [27, 28]. The α measurements (black) made with Cs at
Berkeley [29] and Rb in Paris [30]. A ppb is 10−9.

The fine structure constant α is the fundamental mea-
sure of the strength of the electromagnetic interaction
in the low energy limit. For the SI system of units,
α = e2/(4πε0~c) is a measure of the vacuum permittivity
ε0, given that and e, ~ and the speed of light c are now
defined [54]. Our measured µ/µB and the SM give

α−1 = 137.035 999 166 (02) (15) [0.014 ppb] [0.11 ppb],

= 137.035 999 166 (15) [0.11 ppb], (8)

with theoretical and experimental uncertainties in the
first and second brackets. Figure 5 compares to the α
measurements (black) that disagree with each other by
5.5 σ. Our value differs by 2.1 standard deviations from
the Paris Rb determination of α [30] and by 3.9 standard
deviations from the Berkeley Cs determination [29]. The
C10 in [28] would change only “66” to “59” in Eq. (8).

For the future, a measurement is underway to realize
the new precision with a positron, to improve the test
the fundamental CPT symmetry invariance of the SM
by a factor of 40 [55]. Much larger improvements in the
precision of µ/µB now seem feasible given the demonstra-
tion of more stable apparatus, improved statistics, and
better understood uncertainties. Detectors being tested,
more harmonic and lower loss trap cavities, and detector
backaction circumvention methods [56, 57] should enable
much more precise measurements to come.

In conclusion, an electron magnetic moment measure-
ment is carried out blind to previous measurements and
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predictions. A PhD thesis [58] and a longer publication
in preparation give fuller accounts. In new apparatus
at a different university, the measured µ/µB is consis-
tent with our 2008 measurement, with a factor of 2.2 im-
proved precision. The most precise prediction of the SM
agrees with the most precise determination of a property
of an elementary particle to about 1 part in 1012. When
discrepant α measurements are resolved, the new mea-
surement uncertainty of 1.3 parts in 1013 is available for
a much more precise test for BSM physics
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