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a b s t r a c t

The true cyclotron frequency of a particle or ion, needed for mass spectrometry and other accurate mea-
surements in a Penning trap, cannot be measured directly. It is not one of the oscillation frequencies of the
trapped particle, and the three oscillation frequencies that can be measured vary with the misalignment
and the harmonic distortion of the trap potential. Two methods to determine the cyclotron frequency are
discussed. First, when all three eigenfrequencies of a trapped particle can be measured, the true cyclotron
frequency is given by the prescription of the Brown–Gabrielse invariance theorem. This prescription makes
possible a surprising number of the most accurate measurements in particle, nuclear and atomic physics
because it accounts exactly for the lowest order electrostatic imperfections and magnetic misalignments.
Second, when less accuracy is required, as when the masses of unstable nuclei are measured, a single side-
2.80.Qx

eywords:
nvariance theorem
enning trap

band frequency is often measured instead—the frequency of a driving force that optimally couples two of
the motions of the ion in the trap. A missing theoretical justification for this alternate method is provided
using an expansion of the same invariance theorem. A remarkable suppression of systematic measure-
ment errors is predicted, showing why these are not larger than reported measurement uncertainties,
despite the contrary indication of simple estimates.
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. Introduction

A surprisingly large and varied number of the most precise mea-
urements, and the most precise tests of fundamental symmetries
in particle, nuclear and atomic physics) are carried out with par-
icles or ions in Penning traps. Many examples given below. These
recise measurements have in common the need to determine and
ompare the cyclotron frequencies of charged particles suspended
n the traps. All such measurements face two substantial challenges.

The first challenge is that the true cyclotron frequency can never
e measured directly because it is not one of the three oscillation
requencies of the particle or ion in the trap. All such measurements
hus deduce the true cyclotron frequency from one or more of the
hree oscillation frequencies that can be measured.

The second challenge is that each of the three oscillation
requencies that can be measured directly depends upon a mis-
lignment angle and upon a distortion parameter. These are the
navoidable lowest order imperfections of a real Penning trap.

he misalignment is between the axis of the trap’s electrostatic
uadrupole potential and the magnetic field direction. The distor-
ion is the leading deviation from the perfect harmonic potential
esired in a Penning trap.
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Two different methods for determining cyclotron frequencies
re frequently employed.

1) For the most accurate measurements, all three of the oscil-
lation frequencies of a trapped particle are measured. The
prescription of the Brown–Gabrielse invariance theorem is
used directly to deduce the desired cyclotron frequency from
them.

2) Where less accurate measurements suffice, as for the many
measurements of the masses of unstable nuclei, only one fre-
quency is typically measured. This single frequency is the sum
of two of the three oscillation frequencies of an ion in a Penning
trap. It is the frequency of the driving force that most efficiently
couples these two motions.

The second method is treated in more detail to correct some
isunderstandings, and to provide the missing theoretical justifi-

ation for why a cyclotron frequency can be reliably deduced by this
ethod. Simple estimates suggest that substantial systematic fre-

uency shifts could be much larger than reported measurement

ncertainties. An expansion of the Brown–Gabrielse invariance
heorem predicts the remarkable suppression of such errors. This
xplains why the lack of careful attention paid to such shifts has
ot led to serious measurement errors, and why such errors have
ot shown up in the limited number of cases where more accurately

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
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easured masses (e.g., made using the more accurate method listed
bove) are available for comparison.

. Basic challenge of mass spectrometry in a Penning trap

The basic idea of any mass spectrometry in a Penning trap is to
ompare the cyclotron frequencies of charged particles or ions. In a
agnetic field B = Bẑ (with no electric field present) the nonrela-

ivistic, angular cyclotron frequency of a particle or ion with charge
and mass M is

c = qB

M
. (1)

Ideally two masses would be compared by comparing their
espective cyclotron frequencies, ensuring that either the magnetic
eld does not change during the measurement time or that mag-
etic field drift is accurately corrected. For a magnetic moment
easurement a cyclotron frequency is not compared to another

yclotron frequency, but to a spin precession frequency associated
ith the same particle or ion.

A significant challenge is that ωc is not one of the oscillation
igenfrequencies of a charged particle suspended within a Penning
rap. The electric and magnetic field of the Penning trap result in
hree oscillation eigenfrequencies [1],

rap − modified cyc. frequency : ω̄+ = ω̄+[�, �, �] (2a)

xial frequency : ω̄z = ω̄z[�, �, �] (2b)

agnetron frequency : ω̄− = ω̄−[�, �, �], (2c)

one of which is the desired ωc . The true cyclotron frequency, ωc ,
hus cannot be measured directly with a particle or ion in a Penning
rap. It can only be deduced from one or more of the oscillation
requencies that can be measured directly, or from measurable
ombinations of these frequencies. Furthermore, the three oscil-
ation frequencies that can be directly measured are unavoidably
unctions of two misalignment angles (� and �) and a harmonic
istortion factor (�), all of which are difficult to control or tune out.

The electrostatic potential at position r = (x, y, z) within the
enning trap is a function of � already in the lowest order of an
xpansion in r/d,

= V0

2d2

[
z2 − 1

2
(x2 + y2) − 1

2
�(x2 − y2)

]
+ · · · . (3)

he trap constant V0/d2 is a ratio of a trapping voltage divided
y the square of a characteristic trap dimension. The first three
erms describe the desired quadrupole. The right two terms are an
nwanted and unavoidable harmonic distortion, described by the
ingle parameter � if a properly chosen principal axis coordinate
ystem is used [2]. With respect to this principle axis coordinate
ystem, the components

x = B sin � cos � (4a)

y = B sin � sin � (4b)

z = B cos �, (4c)

escribe a spatially uniform magnetic field in terms of � and �.
There are significant shifts in the oscillation frequencies caused

y the misalignment and distortion since �, � and � are present
lready in the lowest order of a potential expansion in r/d. It is
atural to expect that these leading terms will have a bigger effect

pon measured oscillation frequencies than will potential terms of
igher order in r/d (that are not written out explicitly in Eq. (3)).

Potential terms of higher order in r/d will make the oscillation
requencies of trapped particles or ions depend upon the oscillation
mplitudes [1]. These anharmonicity terms will become important

o
p
o
t
i

s Spectrometry 279 (2009) 107–112

nly if the imperfection factors � and � can be made extremely
mall, or their effect upon the measured frequencies is remarkably
uppressed in some unexpected way. The electrode potentials can
hen be tuned to minimize the higher order shifts, and the particle
scillation amplitudes can be varied to make sure that measured
requencies are independent of amplitude and trap tuning.

What are typical sizes for the misalignment angle, �, and the
armonic distortion parameter, �? These will differ, of course, for
ifferent traps, depending upon how the trap is constructed, and
ow well it is aligned with respect to the magnetic field. Patch
otentials upon the inner electrode surfaces, and charges intro-
uced from outside the trap (e.g., as part of a loading process) that
ccumulate upon undesired insulating films on the electrodes, can
e important, as may be changing liquid helium and nitrogen lev-
ls upon which the relative position of the solenoid and trap may
epend.

When the three oscillation frequencies of a trapped particle or
on can be measured it is possible to measure and minimize the
lignment and distortion as this is measured in situ, as discussed in
ection 5 . Typically |�| ∼ |�| ∼ 10−3 or slightly better is achieved.

No in situ measurement methods are available when only one
easured sideband frequency is used for mass spectrometry. In the

bsence of reported values for � and � for this method, we use the
stimate � ∼ 10−2 and � ∼ 10−2 [3]. This is consistent with what we
ave measured in my lab in situ before in situ optimization. It may
e possible to do an order of magnitude better in � by very carefully
ligning with an electron beam, but the case will be much more con-
incing if an in situ measurement is carried out. Such a procedure
ill not reduce �, of course. This would require segmenting elec-

rodes and applying slightly different potentials to each electrodes,
oing an in situ measurement to make the optimization.

In the following two sections we examine in more detail the
wo very different methods of dealing with the fact that the true
yclotron frequency cannot be measured directly in a Penning trap,
nd with the fact that the three oscillation frequencies that can
e measured (and hence combinations of these frequencies) all
epend on misalignment angles � and �, and upon a harmonic
istortion factor �.

. When all three oscillation frequencies can be measured

The most accurate mass spectrometry and magnetic moment
easurements are carried out by measuring the oscillation fre-

uencies of one particle or ion confined in a Penning trap [1]
examples below). Sometimes a second ion is stored in the same
rap but far enough away to avoid a reduction in the accuracy of
he measurement [4,5], and sometimes with two ions in a coupled

agnetron orbit [6].
When all three eigenfrequencies of a particle or ion in a Penning

rap can be measured, the Brown–Gabrielse invariance theorem [2]

ωc)2 = (ω̄+[�, �, �])2 + (ω̄z[�, �, �])2 + (ω̄−[�, �, �])2. (5)

ives the prescription that makes possible the most precise mea-
urements of masses (to parts in 1011 and a bit better) and magnetic
oments (to parts in 1013). The theorem was derived by solving for

he eigenfrequencies of the motion of a particle or ion in the mag-
etic and electric fields given in Eqs. (4) and (3). The true cyclotron

requency is thereby accurately determined, not only in the case

f perfect trap, but also for all reasonable values of �, � and �—the
arameters that describe the leading and unavoidable distortions
f a real Penning trap. For two particles in a trap, the invariance
heorem also takes out the lowest order effects of particle–particle
nteractions [5].
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For low-mass particles there is typically a hierarchy of oscillation
requencies

¯ + � ω̄z � ω̄−. (6)

In this limit, two measured oscillation frequencies will some-
imes suffice to determine the true cyclotron frequency, using a
rescription that comes from an expansion of the invariance theo-
em in powers essentially of ω̄z/ω̄+,

c = ω̄+[�, �, �] + (ω̄z[�, �, �])2

2ω̄+[�, �, �]
+ · · · . (7)

See Eq. (14) of Ref. [2].) This approach suffices for the measure-
ents of the magnetic moment of the free electron [7–9], for

xample, though small relativistic corrections that depend upon
he resolved quantum state must be included as well for the most
ccurate measurements [8,9], owing to the extremely small uncer-
ainties that are achieved. (See Eq. (2) of Ref. [9].)

The wide applicability of the Brown–Gabrielse invariance theo-
em is illustrated by a list of some the measurements that use its
rescription directly:

1) The most accurate measurements of the magnetic moment of
the free electron—both the measurement that stood for 20 years
[7] and the recent 15 times more precise value with a precision
of 3 parts in 1013 that supplanted it [8,9].

2) The most accurate determination of the fine structure constant
˛, now determined to 3 parts in 1010 (about 20 times more
precise than achieved by any other method) [9,10].

3) The most precise measurement and comparison of the antipro-
ton and proton charge-to-mass ratios to 9 parts in 1011 [4]—the
most stringent test of CPT invariance with a baryon system.

4) The most precise comparison of the positron and electron mag-
netic moments to 2 parts in 1012 [7]—the most stringent test of
CPT invariance with a lepton system.

5) The most precise measurements of the magnetic moment of
bound electrons [11,12].

6) The most precise determinations of the electron mass (in
amu)—from measurements of the bound electron magnetic
moments [13], and also from direct measurements alternating
between one proton and one electron [14].

7) The most accurate measurements of masses in atomic mass
units, deduced from mass ratios measured with a precision as
high as 7 ppt [6], where ppt stands for a part in 1012. Examples
include:
p (140 ppt) [15] D (71 ppt) [16] 4He (15 ppt) [17]
13C (77 ppt) [18] 14N (86 ppt) [18] 15N (73 ppt) [18]
16O (11 ppt) [16] 20Ne (120 ppt) [18] 28Si (21 ppt) [5]
31P (29 ppt) [5] 40Ar (82 ppt) [18] 136Xe (80 ppt) [19].

8) Measurements of the dipole moments of CO+[20] and PH+[5]
molecules.

. When only one sideband frequency is measured

A very different measurement method determines the true
yclotron frequency ωc from a measurement of a single sideband
requency for a trapped ion [21,22]. Since one frequency can be

easured more rapidly than three, this so-called “quadrupolar
xcitation” method is used to measure the mass of ions with unsta-
le nuclei. In this section we examine the one-frequency method,
stimate the systematic uncertainties that might be expected, and

hen use an expansion of the Brown–Gabrielse invariance theo-
em to evaluate the systematic frequency shifts that arise. We
how that the one-frequency measurements could not achieve
he uncertainties that have been reported without a remarkable
uppression of systematic frequency shifts that is described and

m
s
i
a
s
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xplained using the invariance theorem. Measurement examples
nclude:

(9) The most stringent test of the isobaric-multiplet mass equa-
tion [23].

10) The most accurate comparison of the 3He and tritium masses
[24] as needed for measurements of the electron antineutrino
mass.

11) Precise mass measurements of 50Mn and 54Co to make the
most precise determination of the CKM matrix element |Vud|,
contributing to a demonstration that one row of the CKM
matrix is consistent with unitarity to 1 part in 103 [25].

12) Precise mass measurements of Hg isotopes [26] and 7Li [27].
13) Many measurements of the masses of unstable nuclei, mea-

sured to probe the boundaries of the nuclear valley of stability
(see reviews in [28–30]).

The one frequency that is measured is the sum of two oscil-
ation frequencies, ω̄+[�, �, �] + ω̄−[�, �, �], which we shall call
¯ c[�, �, �]:

¯ c[�, �, �] ≡ ω̄+[�, �, �] + ω̄−[�, �, �]. (8)

his measured sideband frequency is the frequency at which a
riving force with a radial quadrupole symmetry most efficiently
ouples the cyclotron and magnetron motions of the trapped ion
21,22]. The cyclotron motion is excited as the magnetron motion
s cooled. The excitation takes place quickly, just what is needed to
o measurements before an unstable nucleus decays. There is no
eed for resonant detectors which can detect the motion of image
harges in the trap electrodes that are caused by ion motions. Some-
imes the drive is applied using a Ramsey time sequence [35–37].
ere we neglect power broadening or other shifts that could arises

rom the application of the quadrupolar drive, etc. (See the treat-
ent of such mode coupling in [38].)
The frequency needed for mass measurements is the true

yclotron frequency ωc of Eq. (1), not the measured sideband fre-
uency ω̄c[�, �, �] of Eq. (8). Confusion arises insofar as most of the
easurement papers (e.g., [23–27]) implicitly assume, with no the-

retical justification, that these two frequencies are equal. In fact,
hey differ by a frequency shift �ω̄c[�, �, �] that explicitly depends
pon the misalignments and distortion, �, � and �:

¯ c[�, �, �] ≡ ωc + �ω̄c[�, �, �]. (9)

he assumption is made implicitly, without discussion, typically by
uoting the formula

c = ω+ + ω−. (10)

his formula is only correct when the ω+ and ω− are taken to be
he unmeasurable frequencies ω̄+[0, 0, 0] and ω̄−[0, 0, 0]. Surpris-
ngly, most of the measurement papers incorrectly take ω+ and ω−
n Eq. (10) to be the actual oscillation frequencies ω̄+[�, �, �] and
¯ −[�, �, �]. This is an implicit assumption that �ω̄c[�, �, �] = 0 in
q. (9).

How bad could this implicit assumption be? In other words, how
ig might we reasonably expect the frequency shift �ω̄c[�, �, �] to
e? We would expect that �ω̄c[�, �, �]/ωc be at least suppressed
y the small parameters � and � since the systematic shift must
anish in the unattainable limit of perfect alignment (� = 0) and
o distortion (� = 0). However, a suppression by the small-angle

actor � ∼ � ∼ 10−2 is not nearly enough to account for measure-

ent uncertainties reported to be as small as 10−7 to 10−9. We can

trengthen the argument by adding a symmetry requirement of
nvariance under � → −� and � → −�. This suppresses the system-
tic shift by a factor �2 ∼ �2 ∼ 10−4, but the suppression factor is
till much less than needed to explain the reported uncertainties.
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If masses that are approximately equal are being compared we
ould expect an additional suppression, but still not nearly enough

o justify the reported experimental uncertainties. The mass ratio
f two ions, one with mass M, atomic mass A, and charge q = ne,
nd the second a reference ion (with Mref, Aref and nref), is

M

Mref
= n

nref

ω(ref)
c

ωc
= n

nref

ω̄(ref)
c [�, �, �]
ω̄c[�, �, �]

(1 + R). (11)

The systematic error that arises is

= �ω̄c

ω̄c
− �ω̄(ref)

c

ω̄(ref)
c

+ · · · . (12)

f reported measurement uncertainties of 10−7 to 10−9 are to be
elieved, R must be smaller than these factors. Some cancellation
etween the opposite sign terms in Eq. (12) can be expected, in
ddition to the suppressions estimated in the previous paragraph.
ithout a model it is hard to say how much, but there should be
ore cancellation for ions with similar sideband frequencies. How-

ver, a large additional factor of 10−3 to 10−5 is still required if the
laimed measurement uncertainties are to be correct.

How then can much smaller experimental uncertainties be
laimed, given that no plausible explanation is offered in the mea-
urement papers? The only answer so far is that the one-frequency
ethod seems to give the right answer in the cases where it can be

hecked. “Calibrations” of the one-frequency method are possible in
ome cases by remeasuring the masses of ions that have been more
ccurately determined by measuring all three oscillation frequen-
ies, and using the invariance theorem to eliminate any dependence
pon �, � and �. Different charge states of the same ions [31] can
ometimes be measured to check the one-frequency method, and
ometimes cluster ions that differ in the number of building block
uclei in the ion [32,33,39] can be used. There are also compar-

sons of one-frequency mass measurements and reaction based
easurements [40].
Successful calibrations, where these are possible, are encour-

ging for one-frequency mass spectrometry in a Penning trap.
owever, as long as the remarkable suppression of the misalign-
ent and distortion shifts is not understood it is not possible

o identify and prevent the circumstances that could change the
uppression of these shifts. Moreover, some measurements which
eported high accuracy were carried out in apparatus for which
o calibration at all was done. Even for apparatus where a careful
alibration was once carried out, there is still cause for concern in
he absence of an understanding of why the method works. When-
ver the apparatus is adjusted or repaired it seems possible that the
mall values of �, � and � might well change, requiring a new set of
alibration measurements. Also, as the level of liquid nitrogen and
iquid helium change in the dewar for the superconducting solenoid
hat typically provides the magnetic field for the trap, it is certainly
ossible that the alignment between the magnetic field and the trap
ill change, requiring that calibration measurements be done as a

unction of cryogen levels. Finally, calibrations generally cannot be
arried out for exactly the masses that are being measured. An inter-
olation of the calibration is required, and a sensible interpolation
equires a justified model of the shifts being interpolated.

Fortunately, an expansion of the Brown–Gabrielse invariance
heorem predicts the needed suppression of the systematic fre-
uency shift errors, and thus provides the missing explanation and
ustification. The normal hierarchy of frequencies for an ion in a

enning trap is used, Eq. (6), along with a small-angle expansion
|�| � 1 and |�| � 1), to obtain

ωc

ω̄+[�, �, �]
= 1 + 1

2

(
ω̄z[�, �, �]
ω̄+[�, �, �]

)2

+ . . . (13)

s
h
t
a
e
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¯ −[�, �, �] = (ω̄z[�, �, �])2

2ω̄+[�, �, �]

(
1 + 9

4
�2 − 1

2
�2

)
+ · · · (14)

See Eqs. (16) and (17) of Ref. [2].)
The key result comes from substituting these two expressions

nto Eq. (9) to determine the systematic offset of the measured
ideband frequency from ωc ,

ω̄c[�, �, �] ≈ ω̄−
(

9
4

�2 − 1
2

�2
)

. (15)

he shift is of order of the magnetron frequency, itself the shift of the
yclotron frequency caused by the addition of a perfect quadrupole
otential. The systematic shift is thus very small compared to the
yclotron frequency, given the hierarchy in Eq. (6). It is also indepen-
ent of charge and mass to lowest order. The systematic frequency
hift is quadratic in � and �, as anticipated. The resulting systematic
hift of a measured mass ratio is

=
(

9
4

�2 − 1
2

�2
)(

nrefA

nAref
− 1

)
ω̄−

ω̄(ref )
+

+ · · · (16a)

=
(

9
4

�2 − 1
2

�2
)(

ω̄(ref )
+ − ω̄+

ω̄+

)
ω̄−

ω̄(ref )
+

+ · · · . (16b)

ith the second line giving a useful alternate version of the second
actor.

This prediction of the fractional shift error in a mass ratio
easurement is thus the product of three factors. The first factor

escribes how R is suppressed for small alignment and distortion
ngles, by a factor of perhaps 10−4 as we have seen. The second
actor predicts that R depends linearly upon A with a slope that
s also predicted. Equivalently, the second factor is a suppression
y the difference in cyclotron frequencies divided by the cyclotron
requency of the first ion. The third factor, the small ratio ω̄−/ω̄+,
uppresses the frequency offset error by additional orders of mag-
itude.

All three factors are required to explain why the lowest order
lignment and distortion shifts are smaller than the reported mea-
urement uncertainties. This is even true when ions of the same
ass number are compared, as illustrated in the recent determina-

ion of a CKM matrix element [25]. The second factor is 10−4 in this
xample, much smaller than usual. Nonetheless, the suppression
f the systematic shift that is the product of the first two factors
s only 10−8, not enough to reduce the systematic shift below the
× 10−9 uncertainty that was reported. Fortunately the expanded

nvariance theorem has been playing the role of an unrecognized
uardian angel. The three factors together make R smaller than
he reported uncertainty for this example measurement, for the
ther measurements listed above, and for the sideband mass spec-
roscopy of unstable and stable nuclei in Penning traps in general.

An unusual situation arises for a large suppression of the align-
ent and distortion shifts, from order (r/d)2 terms in the potential.

hese low order shifts can then be much smaller than anharmonic-
ty shifts that arise from the higher order, (r/d)4 terms in the
otential, making the latter the limit to the measurement accu-
acy that can be attained. These anharmonicity shifts, along with
hifts from contaminant ions in the trap, etc., must be carefully
tudied and minimized, of course; the invariance theorem provides
o protection from them.

The calibrations, where these have been possible, can be
egarded as confirming the prediction of the remarkable suppres-

ion of the alignment and distortion shifts, though no calibration
as yet been carried out accurately enough, and with other sys-
ematic errors minimized enough, to confirm the functional form
nd size predicted in Eq. (16). Still, without the invariance theorem
xplaining the very substantial suppression of shifts there would be
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ingering questions about how well the calibrations should extrap-
late to masses for which no test mass is available, whether the
ystematic shifts might be larger for some masses and charge states,
ow sensitively the systematic shifts depends upon the alignment
nd distortion, etc.

The role of the Brown–Gabrielse invariance theorem for explain-
ng why one-frequency sideband mass spectrometry is possible
as not been appreciated, so far. The measurement papers (e.g.,
xamples above) never mention the theorem. When the theorem is
riefly referred to in nuclear mass review papers (e.g., [28–30]), and

n discussions of accuracy (e.g., [22,3,31–34]), it is treated as essen-
ially irrelevant because it predicts shifts smaller than reported

easurement uncertainties. In fact, the invariance theorem is cru-
ial for justifying and explaining why this method can work at
urrent measurement accuracies, just because it predicts that such
ystematic shifts should be orders of magnitude smaller than what
ight be expected or otherwise explained. Except for this remark-

ble suppression of leading order alignment and distortion shifts,
he one-frequency mass spectrometry of an ion or particle in a
enning trap would not be possible at the current level of precision.

. In situ measurements of the alignment and the
armonic distortion

The frequency shift between the measured sideband frequency
nd the desired cyclotron frequency is predicted to be mostly inde-
endent of charge and mass, since the magnetron frequency is

ndependent of both to lowest order. The invariance theorem thus
ffers a way to use stable ions to measure the alignment and dis-
ortion shifts that pertain when unstable nuclei are studied within
he same trap with the same alignment. Rearranging Eq. (14) gives
he prescription

9
4

�2 − 1
2

�2 ≈ 2ω̄−[�, �, �]ω̄+[�, �, �]

(ω̄z[�, �, �])2
− 1. (17)

ust the needed combination of alignment and distortion angles
or a particular trap, solenoid and alignment can be determined
nd minimized if all three eigenfrequencies can be measured with
stable particle or ion (or with an unstable ion if this becomes

ossible). In addition,

¯ 2
z ∝ 1 − 3

2
�2 + · · · , (18)

omes from Eq. (15) of Ref. [2]. Maximizing the observed axial fre-
uency by adjusting � is thus an in situ way to locate � = 0. There
s no report of using these methods to calibrate Penning traps for
ideband mass spectrometry, on radionuclides, for example. How-
ver, this has been done for high precision measurements on stable
article and ions in a number of labs, including ours. For example,
he prescription of Eq. (18) and mechanical adjustments produced
�| < 10−3, and Eq. (17) revealed a persistent negative contribution
hat indicated |�| ≤ 10−3 for several high precision hyperbolic traps
Van Dyck, private communication).

. Conclusions

In conclusion, precise measurement of masses and magnetic
oments can be carried out with particles and ions in a Penning

rap if their true cyclotron frequency can be determined. Because
his frequency is not an oscillation frequency of the trapped par-

icles and ions that can be measured directly, two very different

ethods are used to determine its value. First, the most accurate
ass spectroscopy and measurements of magnetic moments takes

lace when the three oscillation frequencies for a stable particle
r ion in a trap are all measured. The Brown–Gabrielse invariance

[
[
[

[
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heorem provides the measurement prescription that determines
he true cyclotron frequency from the three eigenfrequencies, inde-
endent of most important and unavoidable misalignments and
istortion of the trapping potential. Second, the masses of many
nstable and stable nuclei are determined by measuring a single
yclotron sideband frequency of ions in Penning traps—actually
he frequency of a driving force that most effectively couples the

agnetron and cyclotron motion of ions in the trap. Systematic
hifts must be smaller than the measurement uncertainties that
re reported. An expansion of the Brown–Gabrielse invariance the-
rem supplies the missing explanation of why this is possible, by
escribing the remarkable suppression of the lowest order system-
tic frequency shifts that is needed.
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