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trapped particle, and the three oscillation frequencies that can be measured vary with the misalignment
and the harmonic distortion of the trap potential. Two methods to determine the cyclotron frequency are
discussed. First, when all three eigenfrequencies of a trapped particle can be measured, the true cyclotron
frequency is given by the prescription of the Brown-Gabrielse invariance theorem. This prescription makes

g’;‘ggh_ possible a surprising number of the most accurate measurements in particle, nuclear and atomic physics

21.10.Dr because it accounts exactly for the lowest order electrostatic imperfections and magnetic misalignments.

32.10.Bi Second, when less accuracy is required, as when the masses of unstable nuclei are measured, a single side-

82.80.0x band frequency is often measured instead—the frequency of a driving force that optimally couples two of

p i the motions of the ion in the trap. A missing theoretical justification for this alternate method is provided
eywordas:

using an expansion of the same invariance theorem. A remarkable suppression of systematic measure-
Penning trap ment errors is predicted, showing why these are not larger than reported measurement uncertainties,
Mass spectrometry despite the contrary indication of simple estimates. ' .

Radionuclides © 2008 Elsevier B.V. All rights reserved.

Invariance theorem

Quadrupolar excitation

1. Introduction Two different methods for determining cyclotron frequencies
are frequently employed.

A surprisingly large and varied number of the most precise mea-
surements, and the most precise tests of fundamental symmetries
(in particle, nuclear and atomic physics) are carried out with par-
ticles or ions in Penning traps. Many examples given below. These
precise measurements have in common the need to determine and
compare the cyclotron frequencies of charged particles suspended
in the traps. All such measurements face two substantial challenges.

The first challenge is that the true cyclotron frequency can never
be measured directly because it is not one of the three oscillation
frequencies of the particle orion in the trap. All such measurements
thus deduce the true cyclotron frequency from one or more of the
three oscillation frequencies that can be measured.

The second challenge is that each of the three oscillation
frequencies that can be measured directly depends upon a mis-

(1) For the most accurate measurements, all three of the oscil-
lation frequencies of a trapped particle are measured. The
prescription of the Brown-Gabrielse invariance theorem is
used directly to deduce the desired cyclotron frequency from
them.

(2) Where less accurate measurements suffice, as for the many
measurements of the masses of unstable nuclei, only one fre-
quency is typically measured. This single frequency is the sum
of two of the three oscillation frequencies of an ion in a Penning
trap. It is the frequency of the driving force that most efficiently
couples these two motions.

alignment angle and upon a distortion parameter. These are the _The second method is treated in more detail to correct some
unavoidable lowest order imperfections of a real Penning trap. misunderstandings, and to provide the missing theoretical justifi-
The misalignment is between the axis of the trap’s electrostatic ~ cationfor why acyclotron frequency can be reliably deduced by this
quadrupole potential and the magnetic field direction. The distor- method. Sllmple estimates suggest that substantial systematic fre-
tion is the leading deviation from the perfect harmonic potential quency shifts could be much larger than reported measurement
desired in a Penning trap. uncertainties. An expansion of the Brown-Gabrielse invariance

theorem predicts the remarkable suppression of such errors. This
explains why the lack of careful attention paid to such shifts has
not led to serious measurement errors, and why such errors have
E-mail address: gabrielse@physics.harvard.edu. not shown up in the limited number of cases where more accurately
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measured masses (e.g., made using the more accurate method listed
above) are available for comparison.

2. Basic challenge of mass spectrometry in a Penning trap

The basic idea of any mass spectrometry in a Penning trap is to
compare the cyclotron frequencies of charged particles or ions. In a
magnetic field B = BZ (with no electric field present) the nonrela-
tivistic, angular cyclotron frequency of a particle or ion with charge
g and mass M is

qB
=1 (1)
Ideally two masses would be compared by comparing their
respective cyclotron frequencies, ensuring that either the magnetic
field does not change during the measurement time or that mag-
netic field drift is accurately corrected. For a magnetic moment
measurement a cyclotron frequency is not compared to another
cyclotron frequency, but to a spin precession frequency associated
with the same particle or ion.

A significant challenge is that w, is not one of the oscillation
eigenfrequencies of a charged particle suspended within a Penning
trap. The electric and magnetic field of the Penning trap result in
three oscillation eigenfrequencies [1],

Wc

trap — modified cyc. frequency :  @; = @, [0, ¢, €] (2a)
axial frequency : @, = @,[0, ¢, €] (2b)
magnetron frequency : @_ = @_[6, ¢, €], (2¢)

none of which is the desired w.. The true cyclotron frequency, wc,
thus cannot be measured directly with a particle or ion in a Penning
trap. It can only be deduced from one or more of the oscillation
frequencies that can be measured directly, or from measurable
combinations of these frequencies. Furthermore, the three oscil-
lation frequencies that can be directly measured are unavoidably
functions of two misalignment angles (6 and ¢) and a harmonic
distortion factor (€), all of which are difficult to control or tune out.

The electrostatic potential at position r = (x, y, z) within the
Penning trap is a function of € already in the lowest order of an
expansion in r/d,

= o [ - 202+ - g )]+ 3)
The trap constant Vy/d? is a ratio of a trapping voltage divided
by the square of a characteristic trap dimension. The first three
terms describe the desired quadrupole. The right two terms are an
unwanted and unavoidable harmonic distortion, described by the
single parameter € if a properly chosen principal axis coordinate
system is used [2]. With respect to this principle axis coordinate
system, the components

Bx = Bsinfcos ¢ (4a)
By = Bsinfsing (4b)
B, = Bcos#, (4c)

describe a spatially uniform magnetic field in terms of 6 and ¢.
There are significant shifts in the oscillation frequencies caused
by the misalignment and distortion since 6, ¢ and € are present
already in the lowest order of a potential expansion in r/d. It is
natural to expect that these leading terms will have a bigger effect
upon measured oscillation frequencies than will potential terms of
higher order in r/d (that are not written out explicitly in Eq. (3)).
Potential terms of higher order in r/d will make the oscillation
frequencies of trapped particles or ions depend upon the oscillation
amplitudes [1]. These anharmonicity terms will become important

only if the imperfection factors 6 and ¢ can be made extremely
small, or their effect upon the measured frequencies is remarkably
suppressed in some unexpected way. The electrode potentials can
then be tuned to minimize the higher order shifts, and the particle
oscillation amplitudes can be varied to make sure that measured
frequencies are independent of amplitude and trap tuning.

What are typical sizes for the misalignment angle, 6, and the
harmonic distortion parameter, €? These will differ, of course, for
different traps, depending upon how the trap is constructed, and
how well it is aligned with respect to the magnetic field. Patch
potentials upon the inner electrode surfaces, and charges intro-
duced from outside the trap (e.g., as part of a loading process) that
accumulate upon undesired insulating films on the electrodes, can
be important, as may be changing liquid helium and nitrogen lev-
els upon which the relative position of the solenoid and trap may
depend.

When the three oscillation frequencies of a trapped particle or
ion can be measured it is possible to measure and minimize the
alignment and distortion as this is measured in situ, as discussed in
Section 5 . Typically |0] ~ |€| ~ 10~3 or slightly better is achieved.

No in situ measurement methods are available when only one
measured sideband frequency is used for mass spectrometry. In the
absence of reported values for 6 and € for this method, we use the
estimate & ~ 10~2 and € ~ 10~2 [3]. This is consistent with what we
have measured in my lab in situ before in situ optimization. It may
be possible to do an order of magnitude better in 8 by very carefully
aligning with an electron beam, but the case will be much more con-
vincing if an in situ measurement is carried out. Such a procedure
will not reduce €, of course. This would require segmenting elec-
trodes and applying slightly different potentials to each electrodes,
doing an in situ measurement to make the optimization.

In the following two sections we examine in more detail the
two very different methods of dealing with the fact that the true
cyclotron frequency cannot be measured directly in a Penning trap,
and with the fact that the three oscillation frequencies that can
be measured (and hence combinations of these frequencies) all
depend on misalignment angles 6 and ¢, and upon a harmonic
distortion factor €.

3. When all three oscillation frequencies can be measured

The most accurate mass spectrometry and magnetic moment
measurements are carried out by measuring the oscillation fre-
quencies of one particle or ion confined in a Penning trap [1]
(examples below). Sometimes a second ion is stored in the same
trap but far enough away to avoid a reduction in the accuracy of
the measurement [4,5], and sometimes with two ions in a coupled
magnetron orbit [6].

When all three eigenfrequencies of a particle or ion in a Penning
trap can be measured, the Brown-Gabrielse invariance theorem [2]

(@) = (@410, ¢, €])* + (@216, ¢, €1)* + (@_[6, ¢, €])*. (5)

gives the prescription that makes possible the most precise mea-
surements of masses (to parts in 10! and a bit better) and magnetic
moments (to parts in 10'3). The theorem was derived by solving for
the eigenfrequencies of the motion of a particle or ion in the mag-
netic and electric fields given in Egs. (4) and (3). The true cyclotron
frequency is thereby accurately determined, not only in the case
of perfect trap, but also for all reasonable values of 6, ¢ and €—the
parameters that describe the leading and unavoidable distortions
of a real Penning trap. For two particles in a trap, the invariance
theorem also takes out the lowest order effects of particle-particle
interactions [5].
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For low-mass particles there is typically a hierarchy of oscillation
frequencies

@1 > 07> O, (6)

In this limit, two measured oscillation frequencies will some-
times suffice to determine the true cyclotron frequency, using a
prescription that comes from an expansion of the invariance theo-
rem in powers essentially of @, /@,

(@216, ¢, €])°
2@4—[95 ¢7 6]

(See Eq. (14) of Ref. [2].) This approach suffices for the measure-
ments of the magnetic moment of the free electron [7-9], for
example, though small relativistic corrections that depend upon
the resolved quantum state must be included as well for the most
accurate measurements [8,9], owing to the extremely small uncer-
tainties that are achieved. (See Eq. (2) of Ref. [9].)

The wide applicability of the Brown-Gabrielse invariance theo-
rem is illustrated by a list of some the measurements that use its
prescription directly:

we = @10, ¢, €] + T (7)

(1) The most accurate measurements of the magnetic moment of
the free electron—both the measurement that stood for 20 years
[7] and the recent 15 times more precise value with a precision
of 3 parts in 103 that supplanted it [8,9].

(2) The most accurate determination of the fine structure constant
a, now determined to 3 parts in 1010 (about 20 times more
precise than achieved by any other method) [9,10].

(3) The most precise measurement and comparison of the antipro-
ton and proton charge-to-mass ratios to 9 parts in 10! [4]—the
most stringent test of CPT invariance with a baryon system.

(4) The most precise comparison of the positron and electron mag-
netic moments to 2 parts in 1012 [7]—the most stringent test of
CPT invariance with a lepton system.

(5) The most precise measurements of the magnetic moment of
bound electrons [11,12].

(6) The most precise determinations of the electron mass (in
amu)—from measurements of the bound electron magnetic
moments [13], and also from direct measurements alternating
between one proton and one electron [14].

(7) The most accurate measurements of masses in atomic mass
units, deduced from mass ratios measured with a precision as
high as 7 ppt [6], where ppt stands for a part in 10'2. Examples

include:

p (140 ppt) [15] D (71 ppt) [16] 4He (15 ppt) [17]
13C(77 ppt) [18] 14N (86 ppt) [18] 15N (73 ppt) [18]
160 (11 ppt) [16] 20Ne (120 ppt) [18] 28Si (21 ppt) [5]

31p (29 ppt) [5] 40Ar (82 ppt) [18] 136Xe (80 ppt) [19].
(8) Measurements of the dipole moments of CO*[20] and PH*[5]
molecules.

4. When only one sideband frequency is measured

A very different measurement method determines the true
cyclotron frequency w. from a measurement of a single sideband
frequency for a trapped ion [21,22]. Since one frequency can be
measured more rapidly than three, this so-called “quadrupolar
excitation” method is used to measure the mass of ions with unsta-
ble nuclei. In this section we examine the one-frequency method,
estimate the systematic uncertainties that might be expected, and
then use an expansion of the Brown-Gabrielse invariance theo-
rem to evaluate the systematic frequency shifts that arise. We
show that the one-frequency measurements could not achieve
the uncertainties that have been reported without a remarkable
suppression of systematic frequency shifts that is described and

explained using the invariance theorem. Measurement examples
include:

(9) The most stringent test of the isobaric-multiplet mass equa-
tion [23].

(10) The most accurate comparison of the 3He and tritium masses
[24] as needed for measurements of the electron antineutrino
mass.

(11) Precise mass measurements of >°Mn and >#Co to make the
most precise determination of the CKM matrix element |V,4|,
contributing to a demonstration that one row of the CKM
matrix is consistent with unitarity to 1 part in 103 [25].

(12) Precise mass measurements of Hg isotopes [26] and “Li [27].

(13) Many measurements of the masses of unstable nuclei, mea-
sured to probe the boundaries of the nuclear valley of stability
(see reviews in [28-30]).

The one frequency that is measured is the sum of two oscil-
lation frequencies, @, [0, ¢, €]+ @_[6, ¢, €], which we shall call
cl0, ¢, €]:

@clO, ¢, €]l = w0, ¢, €]+ @_[6, ¢, €]. (8)

This measured sideband frequency is the frequency at which a
driving force with a radial quadrupole symmetry most efficiently
couples the cyclotron and magnetron motions of the trapped ion
[21,22]. The cyclotron motion is excited as the magnetron motion
is cooled. The excitation takes place quickly, just what is needed to
do measurements before an unstable nucleus decays. There is no
need for resonant detectors which can detect the motion of image
charges in the trap electrodes that are caused by ion motions. Some-
times the drive is applied using a Ramsey time sequence [35-37].
Here we neglect power broadening or other shifts that could arises
from the application of the quadrupolar drive, etc. (See the treat-
ment of such mode coupling in [38].)

The frequency needed for mass measurements is the true
cyclotron frequency w. of Eq. (1), not the measured sideband fre-
quency @¢|6, ¢, €] of Eq. (8). Confusion arises insofar as most of the
measurement papers (e.g., [23-27]) implicitly assume, with no the-
oretical justification, that these two frequencies are equal. In fact,
they differ by a frequency shift Aw.[6, ¢, €] that explicitly depends
upon the misalignments and distortion, 8, ¢ and €:

@clb, ¢, €] = wc + Awc[0, ¢, €]. (9)

The assumption is made implicitly, without discussion, typically by
quoting the formula

We=wy +w_. (10)

This formula is only correct when the w, and w_ are taken to be
the unmeasurable frequencies @, [0, 0, 0] and @_[0, 0, 0]. Surpris-
ingly, most of the measurement papers incorrectly take w, and w_
in Eq. (10) to be the actual oscillation frequencies @, [6, ¢, €] and
w-16, @, €]. This is an implicit assumption that Awc[0, ¢, €] =0 in
Eq. (9).

How bad could this implicit assumption be? In other words, how
big might we reasonably expect the frequency shift A®.[6, ¢, €] to
be? We would expect that Adc[60, ¢, €]/w. be at least suppressed
by the small parameters 6 and € since the systematic shift must
vanish in the unattainable limit of perfect alignment (6 = 0) and
no distortion (€ = 0). However, a suppression by the small-angle
factor @ ~ € ~ 10~2 is not nearly enough to account for measure-
ment uncertainties reported to be as small as 10~7 to 10~°. We can
strengthen the argument by adding a symmetry requirement of
invariance under § — —6 and € — —¢€. This suppresses the system-
atic shift by a factor 82 ~ €2 ~ 10~4, but the suppression factor is
still much less than needed to explain the reported uncertainties.
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If masses that are approximately equal are being compared we
would expect an additional suppression, but still not nearly enough
to justify the reported experimental uncertainties. The mass ratio
of two ions, one with mass M, atomic mass A, and charge q = ne,
and the second a reference ion (with Mef, Arer and npef), is

M (ref) — (ref)
Mo N @ =Lw(1+m. (11)
Mt Npef @c Neer  cl6, ¢, €]
The systematic error that arises is
~ — (ref)
Ro AP A® (12)

¢ C—D(Cref)

If reported measurement uncertainties of 10~7 to 102 are to be
believed, R must be smaller than these factors. Some cancellation
between the opposite sign terms in Eq. (12) can be expected, in
addition to the suppressions estimated in the previous paragraph.
Without a model it is hard to say how much, but there should be
more cancellation for ions with similar sideband frequencies. How-
ever, a large additional factor of 10~3 to 107 is still required if the
claimed measurement uncertainties are to be correct.

How then can much smaller experimental uncertainties be
claimed, given that no plausible explanation is offered in the mea-
surement papers? The only answer so far is that the one-frequency
method seems to give the right answer in the cases where it can be
checked. “Calibrations” of the one-frequency method are possible in
some cases by remeasuring the masses of ions that have been more
accurately determined by measuring all three oscillation frequen-
cies,and using the invariance theorem to eliminate any dependence
upon 6, ¢ and €. Different charge states of the same ions [31] can
sometimes be measured to check the one-frequency method, and
sometimes cluster ions that differ in the number of building block
nuclei in the ion [32,33,39] can be used. There are also compar-
isons of one-frequency mass measurements and reaction based
measurements [40].

Successful calibrations, where these are possible, are encour-
aging for one-frequency mass spectrometry in a Penning trap.
However, as long as the remarkable suppression of the misalign-
ment and distortion shifts is not understood it is not possible
to identify and prevent the circumstances that could change the
suppression of these shifts. Moreover, some measurements which
reported high accuracy were carried out in apparatus for which
no calibration at all was done. Even for apparatus where a careful
calibration was once carried out, there is still cause for concern in
the absence of an understanding of why the method works. When-
ever the apparatus is adjusted or repaired it seems possible that the
small values of 6, ¢ and € might well change, requiring a new set of
calibration measurements. Also, as the level of liquid nitrogen and
liquid helium change in the dewar for the superconducting solenoid
that typically provides the magnetic field for the trap, it is certainly
possible that the alignment between the magnetic field and the trap
will change, requiring that calibration measurements be done as a
function of cryogen levels. Finally, calibrations generally cannot be
carried out for exactly the masses that are being measured. An inter-
polation of the calibration is required, and a sensible interpolation
requires a justified model of the shifts being interpolated.

Fortunately, an expansion of the Brown-Gabrielse invariance
theorem predicts the needed suppression of the systematic fre-
quency shift errors, and thus provides the missing explanation and
justification. The normal hierarchy of frequencies for an ion in a
Penning trap is used, Eq. (6), along with a small-angle expansion
(0] < 1 and |€] « 1), to obtain

2
Wc _ 1( @16, ¢, €]
5)+[97¢’a€]_1+2<&)+[9,¢,e]) te. (13)

- _ (@0, ¢, €D’ (1 9, 1,
w,[e,q),e]_m(HZe ie)+--- (14)
(See Egs. (16) and (17) of Ref. [2].)

The key result comes from substituting these two expressions
into Eq. (9) to determine the systematic offset of the measured
sideband frequency from we,

A6, ¢ €]~ @ (%92 _ %e ) . (15)

The shiftis of order of the magnetron frequency, itself the shift of the
cyclotron frequency caused by the addition of a perfect quadrupole
potential. The systematic shift is thus very small compared to the
cyclotron frequency, given the hierarchy in Eq. (6). Itis also indepen-
dent of charge and mass to lowest order. The systematic frequency
shift is quadratic in 6 and €, as anticipated. The resulting systematic
shift of a measured mass ratio is

9 1 MyefA -
R=(7927762)( ref 71)7+... 16a
4 "2 NAref &) (163)
- (ref) _ - -
_ (%92_%62) (w+ _ CU+> _C;)r;f) 4. (16b)
W w+

with the second line giving a useful alternate version of the second
factor.

This prediction of the fractional shift error in a mass ratio
measurement is thus the product of three factors. The first factor
describes how R is suppressed for small alignment and distortion
angles, by a factor of perhaps 10~ as we have seen. The second
factor predicts that R depends linearly upon A with a slope that
is also predicted. Equivalently, the second factor is a suppression
by the difference in cyclotron frequencies divided by the cyclotron
frequency of the first ion. The third factor, the small ratio @_ /@,
suppresses the frequency offset error by additional orders of mag-
nitude.

All three factors are required to explain why the lowest order
alignment and distortion shifts are smaller than the reported mea-
surement uncertainties. This is even true when ions of the same
mass number are compared, as illustrated in the recent determina-
tion of a CKM matrix element [25]. The second factor is 104 in this
example, much smaller than usual. Nonetheless, the suppression
of the systematic shift that is the product of the first two factors
is only 10-8, not enough to reduce the systematic shift below the
2 x 1079 uncertainty that was reported. Fortunately the expanded
invariance theorem has been playing the role of an unrecognized
guardian angel. The three factors together make R smaller than
the reported uncertainty for this example measurement, for the
other measurements listed above, and for the sideband mass spec-
troscopy of unstable and stable nuclei in Penning traps in general.

An unusual situation arises for a large suppression of the align-
ment and distortion shifts, from order (r/d )2 terms in the potential.
These low order shifts can then be much smaller than anharmonic-
ity shifts that arise from the higher order, (r/d)4 terms in the
potential, making the latter the limit to the measurement accu-
racy that can be attained. These anharmonicity shifts, along with
shifts from contaminant ions in the trap, etc., must be carefully
studied and minimized, of course; the invariance theorem provides
no protection from them.

The calibrations, where these have been possible, can be
regarded as confirming the prediction of the remarkable suppres-
sion of the alignment and distortion shifts, though no calibration
has yet been carried out accurately enough, and with other sys-
tematic errors minimized enough, to confirm the functional form
and size predicted in Eq. (16). Still, without the invariance theorem
explaining the very substantial suppression of shifts there would be
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lingering questions about how well the calibrations should extrap-
olate to masses for which no test mass is available, whether the
systematic shifts might be larger for some masses and charge states,
how sensitively the systematic shifts depends upon the alignment
and distortion, etc.

The role of the Brown-Gabrielse invariance theorem for explain-
ing why one-frequency sideband mass spectrometry is possible
has not been appreciated, so far. The measurement papers (e.g.,
examples above) never mention the theorem. When the theorem is
briefly referred to in nuclear mass review papers (e.g.,[28-30]), and
in discussions of accuracy (e.g., [22,3,31-34]), it is treated as essen-
tially irrelevant because it predicts shifts smaller than reported
measurement uncertainties. In fact, the invariance theorem is cru-
cial for justifying and explaining why this method can work at
current measurement accuracies, just because it predicts that such
systematic shifts should be orders of magnitude smaller than what
might be expected or otherwise explained. Except for this remark-
able suppression of leading order alignment and distortion shifts,
the one-frequency mass spectrometry of an ion or particle in a
Penning trap would not be possible at the current level of precision.

5. In situ measurements of the alignment and the
harmonic distortion

The frequency shift between the measured sideband frequency
and the desired cyclotron frequency is predicted to be mostly inde-
pendent of charge and mass, since the magnetron frequency is
independent of both to lowest order. The invariance theorem thus
offers a way to use stable ions to measure the alignment and dis-
tortion shifts that pertain when unstable nuclei are studied within
the same trap with the same alignment. Rearranging Eq. (14) gives
the prescription

9 1 20_[6, ¢, €], [0, ¢, €]
792 _ 22 1
2" 7a¢ (@16, ¢, €])*

Just the needed combination of alignment and distortion angles
for a particular trap, solenoid and alignment can be determined
and minimized if all three eigenfrequencies can be measured with
a stable particle or ion (or with an unstable ion if this becomes
possible). In addition,

(17)

cb§o<1_%92+..., (18)

comes from Eq. (15) of Ref. [2]. Maximizing the observed axial fre-
quency by adjusting 0 is thus an in situ way to locate 6 = 0. There
is no report of using these methods to calibrate Penning traps for
sideband mass spectrometry, on radionuclides, for example. How-
ever, this has been done for high precision measurements on stable
particle and ions in a number of labs, including ours. For example,
the prescription of Eq. (18) and mechanical adjustments produced
18] < 1073, and Eq. (17) revealed a persistent negative contribution
that indicated |€| < 103 for several high precision hyperbolic traps
(Van Dyck, private communication).

6. Conclusions

In conclusion, precise measurement of masses and magnetic
moments can be carried out with particles and ions in a Penning
trap if their true cyclotron frequency can be determined. Because
this frequency is not an oscillation frequency of the trapped par-
ticles and ions that can be measured directly, two very different
methods are used to determine its value. First, the most accurate
mass spectroscopy and measurements of magnetic moments takes
place when the three oscillation frequencies for a stable particle
or ion in a trap are all measured. The Brown-Gabrielse invariance

theorem provides the measurement prescription that determines
the true cyclotron frequency from the three eigenfrequencies, inde-
pendent of most important and unavoidable misalignments and
distortion of the trapping potential. Second, the masses of many
unstable and stable nuclei are determined by measuring a single
cyclotron sideband frequency of ions in Penning traps—actually
the frequency of a driving force that most effectively couples the
magnetron and cyclotron motion of ions in the trap. Systematic
shifts must be smaller than the measurement uncertainties that
are reported. An expansion of the Brown-Gabrielse invariance the-
orem supplies the missing explanation of why this is possible, by
describing the remarkable suppression of the lowest order system-
atic frequency shifts that is needed.
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