
Chapter 1
Precise Matter and Antimatter Tests
of the Standard Model with e−, e+, p, p and H

G. Gabrielse, S. Fogwell Hoogerheide, J. Dorr and E. Novitski

Abstract Extremely precise tests of the Standard Model of particle physics and
its CPT theorem come from low energy measurements of the electron, positron,
proton and antiproton magnetic moments and charge-to-mass ratios. Ground state
antihydrogen atoms are now available for measurements that could eventually reach
a higher precision, though no precise H measurements have yet been carried out.
After a brief summary of the results and status of such measurements, the focus is
upon themost preciselymeasured and precisely calculated property of an elementary
particle. The electron magnetic moment, measured to 3 parts in 1013, is a probe of
the interaction of the electron with the fluctuating vacuum described by quantum
electrodynamics (QED). It is also a probe for electron substructure not predicted by
the Standard Model. The measured magnetic moment, together with fine structure
constant determined by a different method, is the most stringent test of QED and
the Standard Model of particle physics. The measured magnetic moment and QED
theory together yield the most precise measured value of the fine structure constant.
The summary includes the antiproton magnetic moment that was recently measured
precisely for the first time. The 4 parts in 106 precision is much less than the electron
precision or the 9 parts in 1011 at which the antiproton and proton charge-to-mass
ratios have been compared, but very large increases in precision seem possible as
quantum methods are incorporated.

1.1 Overview Summary

Electron Magnetic Moment

The most precisely measured property of an elementary particle is the electron mag-
netic moment, measured in Bohr magnetons,
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Fig. 1.1 The electron magnetic moment in Bohr magnetons, μ/μB = −g/2, is the most precisely
measured property of an elementary particle. The good agreement of the measurement and the
prediction of the Standard Model of particle physics is a great triumph of the Standard Model and
QED

μ/μB = −g/2 = −1.001 159 652 180 73 (28) [0.28 ppt]. (1.1)

A negativeμ indicates that themagneticmomentμ points opposite to the spin S, with
μ = μŜ and Ŝ = S/(�/2). The distinguishing feature of our Harvard measurements
was using quantum jump spectroscopy of the lowest cyclotron states and spin states
of a single electron bound to a cylindrical Penning trap apparatus [1–3]. Cooling to
the lowest quantum states makes possible a much higher accuracy than realized in a
long history of applying new methods to measuring the electron magnetic moment
[4]. Our quantum measurements superseded the UW result that had stood for about
20 years [5], with an uncertainty 15 times lower and a measured value shifted by
1.7 standard deviations (Fig. 1.1). The new methods that made possible this large
increase in precision are summarized in following sections.

Triumph of the Standard Model

Calculations based upon the Standard Model of particle physics relate the electron
magnetic moment in Bohr magnetons to the fine structure constant α. Since the
electron magnetic moment was measured, there has been impressive progress in
the calculations [6] (reviewed in this volume by M. Hayakawa) and an improved
determinationofα that is independent of our electronmagneticmomentmeasurement
[7]. Together these predict a magnetic moment in Bohr magnetons,

μ/μB = −g/2 = −1.001 159 652 181 78 (77) [0.77 ppt], (1.2)

though the uncertainty in this “calculated” value is mostly from the uncertainty with
which the independent value of α is measured.

The more precisely measured electron moment, the improved standard model
calculations, and the more precise independently measured value of α present the
Standard Model with its most stringent test. The difference between the predicted
magnetic moment μ(SM) and the measured electron magnetic moment μ is
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Fig. 1.2 The most accurate determinations of α are determined from the measured electron g/2
and standard model theory. The best independently measured value relies on measurements of a Rb
atom recoil, the Rydberg constant, and several mass ratios

μ − μ(SM)

μ
= 0.000 000 000 001 05 (82) [0.82 ppt], (1.3)

= 1.1 (0.8) × 10−12 [0.8 ppt]. (1.4)

The measurement and the prediction agree to 1.4 standard deviations (Fig. 1.1). The
strikingly precise agreement to better than 12 significant figures is arguably the
greatest triumph of the Standard Model and QED.

Fine Structure Constant

The electron magnetic moment is measured much more precisely than the fine
structure constant. The result is that the fine structure constant is determined most
precisely from the measurement of the electron moment and the Standard Model
calculation (QED plus hadronic contributions) to be

α−1 = 137.035 999 173 (33) (8) [0.24 ppb] [0.06 ppb],
= 137.035 999 173 (34) [0.25 ppb], (1.5)

and is compared with all other precise measurements in Fig. 1.2. The total 0.25ppb
uncertainty is now mostly from the measurement (0.24ppb) rather than from the
Standard Model calculations (0.06ppb). (Until last year the theoretical uncertainty
was slightly larger than the experimental uncertainty.)

Antiproton Charge-to-Mass Ratio

The most precise test of the CPT theorem of the Standard Model made with a baryon
and an antibaryon is a comparison of the charge-to-mass ratios of the antiproton and
proton [8, 9],

q
m (p)
q
m (p)

= −0.999 999 999 839 (90) [90 ppt]. (1.6)

It is intriguing that this ratio is greater than the −1 predicted by the CPT theorem
by 161 (90)ppt, which is about 1.8 standard deviations. Does this suggest that the
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Fig. 1.3 Nine measurements of fractional differences in |q/m| for the p̄ and p, and their weighted
average

magnitude of the charge-to-mass ratios of the antiproton and proton differ? It would
be premature to make this conclusion insofar as the uncertainties were assigned to
represent a standard deviation, and thus there is a reasonable probability that the true
ratio could lie slightly outside the quoted uncertainty (Fig. 1.3).

A much more accurate measurement of q/m for the antiproton could certainly be
carried out. This is most evident in the series of measurements that went into the
final determination of q/m for the antiproton. An apparatus and technique improve-
ment made the last 1-day measurement to be much more accurate than the earlier 8
measurements. Before this new level of accuracy could be exploited, unfortunately,
LEAR closed down. Our ATRAP collaboration intends to make a more precise mea-
surement.

Antiproton Magnetic Moment

The first one-particle measurement of the antiproton magnetic moment in nuclear
magnetons,

μp/μN = −2.792 845 ± 0.000 012 [4.4 ppm]. (1.7)

has just been reported [10]. Again the negativeμ indicates that the magnetic moment
μ points opposite to the spin S, with μ = μŜ and Ŝ = S/(�/2). The uncertainty is
680 times smaller than for any previous measurement (Fig. 1.4). To this precision,
the measurement is consistent with the prediction of the StandardModel and its CPT
theorem that the antiproton and proton have exactly opposite magnetic moments—
equal in magnitude but opposite in sign.

This first precise antiproton magnetic moment measurement did not resolve indi-
vidual spin flips for quantum jump spectroscopy as was done for the electron mea-
surement. With a trapped proton, however, the possibility to resolve one-proton spin
flips was reported even more recently by our Harvard group [11] and by a group from
Mainz [12]. These demonstrations bode well for future increases in precision that
could eventually improve by a factor as large as 104. A participant in this latter effort,
S. Ulmer, discusses their proton measurements and their antiproton aspirations in a
chapter in this volume.

Better Electron and Positron Magnetic Moment Measurements

An entirely new apparatus has been constructed at Harvard for making a much
more precise comparison of the positron and electron magnetic moments, and for
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Fig. 1.4 Uncertainties inmeasurements of the pmagnetic moment measured in nuclear magnetons.
From [10]

more precise electronmagnetic moment measurements. Positrons have recently been
captured in this apparatus as preparation formeasuring the positronmagneticmoment
at the electron precision. It should be possible to thereby make a lepton CPT test that
compares positron and electron magnetic moments 15–20 times more precisely than
a previous comparison [5]. The positron magnetic measurement will be followed
with an attempt to measure the electron and positron magnetic moments at a much
higher precision since no uncertainty that would prevent a substantial increase in
precision has yet been identified.

Aspirations to Compare of Antihydrogen and Hydrogen

The possibility to use low energy antiprotons to make low energy antihydrogen cold
enough to be trapped for precise measurements was proposed long ago [13] just after
antiprotons were first captured in an ion trap [14]. The proposed goal was precise
comparisons of antihydrogen and hydrogen, made at a precision that exceeds other
precise tests of CPT invariance and the Standard Model with leptons and baryons.
Now three collaborations are using cold antiprotons to produce cold antihydrogen
to pursue this goal, and a fourth hopes to do so soon.

The nested Penning trap was invented to make possible the interaction of oppo-
sitely charged antiprotons and positrons that are trapped simultaneously during the
positron cooling of the antiprotons. Essentially all the antihydrogen produced so far
was produced using this device and method, by ATRAP [15, 16] and ATHENA [17]
in 2002, and then by ASACUSA in 2010 [18].

ATRAP has also demonstrated a second method for producing antihydrogen,
thoughmuch less antihydrogen has been produced so far. Lasers were used to control
resonant charge exchange [19, 20]. ATRAP recently greatly increased the number
of H atoms produced by this second method, and plans to attempt to trap atoms so
produced when CERN restarts antiproton production.

The proposal to trap cold antihydrogen in its ground state in a neutral particle trap
[13] has so far been realized by ALPHA [21] and ATRAP [22]. However, the largest
number of ground state H atoms trapped per trial so far (Fig. 1.5) is ATRAP’s 5 ± 1
atoms per trial [22]. More simultaneously trapped H atoms are clearly needed, and
no precise comparisons of antihydrogen and hydrogen have been made to date.
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Fig. 1.5 The largest number of simultaneously trapped, ground state H atoms is ATRAP’s 5 ± 1
atoms per trial. (a) Detector counts in 1 s intervals for 20 trials. The radial Ioffe trap field turns off
and releases trapped H between t = 0 and 1s. The counts in this interval above the average cosmic
ray counts (solid line) correspond to 105 trapped p for our detection efficiency. (b) Probability that
cosmic rays produce the observed counts or more. (c) Quenching the Ioffe trap generates no false
signals in 20 control trials

Antihydrogen experiments are mentioned here because of their promise for the
future. It is hoped that precise comparisons of the antihydrogen and hydrogen will
eventually reach a precision higher than the precise tests summarized above. J.Hangst
of the ALPHA collaboration has provided a chapter in this volume on antihydrogen
experiments.

1.2 Magnetic Moments

An electron with charge−e with mass m in a magnetic field Bẑ circles in a cyclotron
orbit with angular frequency eB/mẑ and a magnetic moment

μ = − e

2m
L = −μB

L
�

. (1.8)
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The Bohr magneton μB = e�/(2m) gives the scale of the magnetic moment insofar
as the orbital angular momentum L comes in units of � for a quantum system. The
magnetic moment for an antiproton cyclotron orbit is instead scaled by the nuclear
magneton, μN , which is about 2,000 times smaller than μB , by the ratio of the
electron and proton masses.

The magnetic moment from the electron spin S = 1
2�σ is often written in terms

of the dimensionless Pauli operator σ for a spin 1/2 particle. It is also often written
equivalently in terms of a dimensionless g value.

μ = μσ = −g
e

2m
S = −g

2
μBσ . (1.9)

The electron magnetic moment in Bohr magnetons is thus given by μ/μB = −g/2
which is the dimensionless size of the magnetic moment that must be measured and
calculated. For an antiproton, the analogous dimensionless constant to be measured
and calculated instead is the antiproton magnetic moment in nuclear magnetons,
μ p̄/μN ≡ −gp̄/2.

The electron magnetic moment in Bohr magnetons can be very precisely calcu-
lated within the Standard Model of particle physics. It has the form

g/2 = 1 + aQED(α) + ahadronic + aweak . (1.10)

The leading term g/2 = 1 is a prediction of the Standard Model insofar as it is the
Dirac equation prediction for a point particle. Quantum electrodynamics (QED) gives
the Standard Model prediction that vacuum fluctuations and polarization slightly
increase g/2 by the small “anomaly” aQE D(α) ≈ 10−3 that is a function of the fine
structure constant α. The hadronic addition calculated within the Standard Model is
much smaller, and the weak interaction addition is negligible at the current level of
precision. One intriguing question is whether electron substructure (or other devi-
ations from the Standard Model) could make g/2 deviate by the addition of some
anew from the Standard Model prediction to Eq.1.10, as quark-gluon substructure
does for an antiproton and proton.

Why measure the electron magnetic moment in Bohr magnetons, g/2? The
motivations include:

1. The magnetic moment in Bohr magnetons is the property that can be most accu-
rately measured for an electron—the important component of our universe that
is unusual in that no internal structure has been predicted or detected.

2. The most stringent test of QED comes from measuring g/2 and comparing to the
value g(α) calculated using an independently determined α in Eq.1.10.

3. Themost accurate determination of the fine structure constant comes from solving
Eq.1.10 for α in terms of the measured g/2. (No physics beyond the Standard
Model, i.e. anew = 0, is assumed.)

4. A search for physics beyond the Standard Model (e.g. electron substructure)
comes from using the best measurement of g/2 and the best independent α (with
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calculated values of ahadronic and aweak) in Eq.1.10 to set a limit on a possible
anew addition.

5. Comparing g/2 for an electron and a positron is the most stringent test of CPT
invariance with leptons.

Owing to the great importance of the dimensionless magnetic moment, there have
been many measurements of the electron g/2. A long list of measurements of this
fundamental quantity has been compiled [4]. Worthy of special mention is a long
series of measurements at the University of Michigan [23]. The spin precession
relative to the cyclotron rotation of keV electrons was measured. Also worthy of
specialmention is the series ofmeasurements at theUniversity ofWashington [5, 24].

Our measurements, like the UW measurements, made use of a single electron in
a Penning trap. We were able to measure the electron magnetic moment about 15
times more precisely, and show that the measured value was different by about 1.7
standard deviations (Fig. 1.1).

The unifying idea for the new methods is that of a one-electron quantum
cyclotron—with fully resolved cyclotron and spin energy levels, and a detection
sensitivity sufficient to detect one quantum transitions is achieved in our fully quan-
tum measurements [1, 2].

The substantially higher accuracy of the new measurements was the result of new
experimental methods, developed and demonstrated one thesis at a time over 20
years by a string of excellent Ph.D. students—C.H. Tseng, D. Enzer, J. Tan, S. Peil,
B. D’Urso, B. Odom and D. Hanneke. The new methods included:

1. A cylindrical Penning trap was used to suspend the electron. The cylindrical trap
was invented to form amicrowave cavity that could inhibit spontaneous emission.
The calculable cavity shape made it possible to understand and correct for cavity
shifts of the measured cyclotron frequency.

2. Cavity-inhibited spontaneous emission (by a factor of up to 250) narrowed mea-
sured linewidths and gave us the crucial averaging time that we needed to resolve
one-quantum changes in the electron’s cyclotron state.

3. The cavitywas cooled to 100mKrather than to 4.2K so that in thermal equilibrium
the electron’s cyclotron motion would be in its ground state.

4. Detectionwith good signal-to-noise ratio came from feeding back a signal derived
from the electron’s motion along the magnetic field to the electron to cancel the
damping due to the detection impedance. The “classical measurement system”
for the quantum cyclotron motion was this large self-excited motion of the elec-
tron, with a quantum nondemolition coupling between the classical and quantum
systems.

5. A silver trap cavity avoided the magnetic field variations due to temperature
fluctuations of the paramagnetism of conventional copper trap electrodes.

6. The measurement was entirely automated so that the best data could be taken at
night, when the electrical, magnetic and mechanical disturbances were lowest,
with no person present.

7. A parametric excitation of electrons suspended in the trap was used to measure
the radiation modes of the radiation field in the trap cavity.
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8. The damping rate of a single trapped electron was used as a second probe of the
radiation fields within the trap cavity.

1.3 One-Electron Quantum Cyclotron

1.3.1 A Homemade Atom

A one-electron quantum cyclotron is a single electron suspended within a magnetic
field, with the quantum structure in its cyclotron motion fully resolved. Accurate
measurements of the resonant frequencies of driven transitions between the energy
levels of this homemade atom—an electron bound to our trap—reveals the electron
magnetic moment in units of Bohr magnetons, g/2. The energy levels and what must
bemeasured to determine g/2 are presented in this section. The experimental devices
and methods needed to realize the one-electron quantum cyclotron are discussed in
following sections.

A nonrelativistic electron in a magnetic field has energy levels

E(n, ms) = g

2
hνcms + (n + 1

2 )hνc. (1.11)

These depend in a familiarway upon the electron’s cyclotron frequency νc and its spin
frequency νs ≡ (g/2)νc. The electron g/2 is thus specified by the two frequencies,

g

2
= νs

νc
= 1 + νs − νc

νc
= 1 + νa

νc
, (1.12)

or equivalently by their difference (the anomaly frequency νa ≡ νs − νc) and νc.
Because νs and νc differ by only a part-per-thousand, measuring νa and νc to a
precision of 1 part in 1010 gives g/2 to 1 part in 1013.

Although one electron suspended in a magnetic field will not remain in one place
long enough for a measurement, two features of determining g/2 by measuring νa

and νc are apparent in Eq.1.12.

1. Nothing in physics can be measured more accurately than a frequency (the art of
time keeping being so highly developed) except for a ratio of frequencies.

2. Although both of these frequencies depend upon the magnetic field, the field
dependence drops out of the ratio. The magnetic field thus needs to be stable only
on the time scale on which both frequencies can be measured, and no absolute
calibration of the magnetic field is required.

To confine the electron for precisemeasurements, an ideal Penning trap includes an
electrostatic quadrupole potential V ∼ z2 − 1

2ρ
2 with a magnetic field Bẑ [25]. This

potential shifts the cyclotron frequency from the free-space value νc to ν̄c. The latter
frequency is also slightly shifted by the unavoidable leading imperfections of a real
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Fig. 1.6 Lowest cyclotron
and spin levels of an electron
in a Penning trap

laboratory trap—amisalignment of the symmetry axis of the electrostatic quadrupole
and the magnetic field, and quadratic distortions of the electrostatic potential.

The lowest cyclotron energy levels (with quantum numbers n = 0, 1, . . .) and the
spin energy levels (with quantum numbers ms = ±1/2) are given by

E(n, ms) = g
2 hνcms + (n + 1

2 )hν̄c − 1
2hδ(n + 1

2 + ms)
2. (1.13)

The lowest cyclotron and spin energy levels are represented in Fig. 1.6.
Special relativity is important for even the lowest quantum levels. The third term

in Eq.1.13 is the leading relativistic correction [25] to the energy levels. Special
relativity makes the transition frequency between two cyclotron levels |n, ms〉 ↔
|n + 1, ms〉 decrease from ν̄c to ν̄c + Δν̄c, with the shift

Δν̄c = −δ(n + 1 + ms) (1.14)

depending upon the spin state and cyclotron state. This very small shift, with

δ/νc ≡ hνc/(mc2) ≈ 10−9, (1.15)

is nonetheless significant at our precision. An important new feature of our measure-
ment is that special relativity adds no uncertainty to our measurements. Quantum
transitions between identified energy levels with a precisely known relativistic con-
tribution to the energy levels are resolved. When the average cyclotron frequency
of an unknown distribution of cyclotron states was all that could be measured [5],
figuring out the size of the relativistic frequency shift was difficult.

We have seen how g/2 is determined by the anomaly frequency νa and the free-
space cyclotron frequency νc = eB/(2πm). However, neither of these frequencies
is an eigenfrequency of the trapped electron. We actually measure the transition
frequencies

f̄c ≡ ν̄c − 3

2
δ (1.16)

ν̄a ≡ g

2
νc − ν̄c (1.17)
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represented by the arrows in Fig. 1.6 for an electron initially prepared in the state
|n = 0, ms = 1/2〉.

The needed νc = eB/(2πm) is deduced from the three observable eigenfrequen-
cies of an electron bound in the trap by the Brown-Gabrielse invariance theorem
[26],

(νc)
2 = (ν̄c)

2 + (ν̄z)
2 + (ν̄m)2. (1.18)

The three measurable eigenfrequencies on the right include the cyclotron frequency
ν̄c for the quantumcyclotronmotionwehavebeendiscussing.The secondmeasurable
eigenfrequency is the axial oscillation frequency ν̄z for the nearly-harmonic, classical
electron motion along the direction of the magnetic field. The third measurable
eigenfrequency is the magnetron oscillation frequency for the classical magnetron
motion along the circular orbit for which the electric field of the trap and themotional
electric field exactly cancel.

The invariance theorem applies for a perfect Penning trap, but also in the presence
of the mentioned imperfection shifts of the eigenfrequencies for an electron in a trap.
This theorem, together with the well-defined hierarchy of trap eigenfrequencies,
ν̄c � ν̄z � ν̄m � δ, yields an approximate expression that is sufficient at our
accuracy. We thus determine the electron g/2 using

g

2
= ν̄c + ν̄a

νc
� 1 + ν̄a − ν̄2z /(2 f̄c)

f̄c + 3δ/2 + ν̄2z /(2 f̄c)
+ Δgcav

2
. (1.19)

The cavity shift Δgcav/2 that arises from the interaction of the cyclotron motion and
the trap cavity is presently discussed in detail.

1.3.2 Cylindrical Penning Trap Cavity

Acylindrical Penning trap (Fig. 1.7) is the key device thatmakes thesemeasurements
possible. It was invented [27] and demonstrated [28] to provide boundary conditions
that produce a controllable and understandable radiation field within the trap cavity,
along with the needed electrostatic quadrupole potential. Spontaneous emission can
be significantly inhibited at the same time as corresponding shifts of the electron’s
oscillation frequencies are avoided.We shall see that this is critical to the newHarvard
measurements in several ways (Table1.1).

A necessary function of the trap electrodes is to produce a very good approx-
imation to an electrostatic quadrupole potential. This is possible with cylindrical
electrodes but only if the relative geometry of the electrodes is carefully chosen [27].
The electrodes of the cylindrical trap are symmetric under rotations about the center
axis (ẑ), which is parallel to the spatially uniform magnetic field (Bẑ). The potential
(about 100V) applied between the endcap electrodes and the ring electrode provides
the basic trapping potential and sets the axial frequency ν̄z of the nearly harmonic
oscillation of the electron parallel to the magnetic field. The potential applied to the
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Fig. 1.7 Cylindrical Penning trap cavity used to confine a single electron and inhibit spontaneous
emission

Table 1.1 Properties of the
trapped electron

Cyclotron frequency ωc/(2π) 150GHz

Trap-modified cyc. freq. ω+/(2π) 150GHz
Axial frequency ωz/(2π) 200MHz
Magnetron frequency ω−/(2π) 133kHz
Cyclotron damping (free space) τ+ 0.09 s
Axial damping τz 200ms
Magnetron damping τ− 109 yr

compensation electrodes is adjusted to tune the shape of the potential, to make the
oscillation as harmonic as possible. The tuning does not change ν̄z very much owing
to an orthogonalization [27, 29] that arises from the geometry choice.What we found
was that one electron could be observed within a cylindrical Penning trap with as
good or better signal-to-noise ratio than was realized in hyperbolic Penning traps.

The principle motivation for the cylindrical Penning trap is to form a microwave
cavity whose radiation properties are well understood and controlled—the best pos-
sible approximation to a perfect cylindrical trap cavity. (Our calculation attempts
with a hyperbolic trap cavity were much less successful [30].) The modes of the
electromagnetic radiation field that are consistent with this boundary condition are
the well known transverse electric TEmnp and transverse magnetic TEmnp modes
(see e.g. [31, Sect. 8.7]).

For a right circular cylinder of diameter 2ρ0 and height 2z0 the TE and TMmodes
have characteristic resonance frequencies,

TE : ωmnp = c

√(
x ′

mn

ρ0

)2

+
(

pπ

2z0

)2

(1.20a)

TM : ωmnp = c

√(
xmn

ρ0

)2

+
(

pπ

2z0

)2

. (1.20b)

http://dx.doi.org/10.1007/978-3-642-45201-7_8
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They are indexed with integers

m = 0, 1, 2, . . . (1.21)

n = 1, 2, 3, . . . (1.22)

p = 1, 2, 3, . . . , (1.23)

and are functions of the nth zeros of Bessel functions and their derivatives

Jm(xmn) = 0 (1.24)

J ′
m(x ′

mn) = 0 (1.25)

The zeros force the boundary conditions at the cylindrical wall. All but the m = 0
modes are doubly degenerate.

Of primary interest is the magnitude of the cavity electric fields that couple to the
cyclotron motion of an electron suspended in the center of the trap. For both TE and
TM modes, the transverse components of E are proportional to

sin( pπ
2 ( z

z0
+ 1)) =

{
(−1)p/2 sin( pπ z

2z0
) for even p,

(−1)(p−1)/2 cos( pπ z
2z0

) for odd p.
(1.26)

For an electron close to the cavity center, (z ≈ 0), only modes with odd p thus have
any appreciable coupling.

The transverse components of the electric fields are also proportional to either
the order-m Bessel function times m/ρ for the TE modes, or to the derivative of the
order-m Bessel function for the TM modes. Close to the cavity center (ρ ≈ 0),

m

ρ
Jm(x (′)

mn
ρ
ρ0

) ∼

⎧⎪⎨
⎪⎩

ρm−1

(m − 1)!

(
x (′)

mn

2ρ0

)m

for m > 0

0 for m = 0

(1.27a)

x (′)
mn

ρ0
J ′

m(x (′)
mn

ρ
ρ0

) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρm−1

(m − 1)!

(
x (′)

mn

2ρ0

)m

for m > 0

− x (′)2
0n

2ρ2
0

ρ for m = 0.

(1.27b)

In the limit ρ → 0, all but the m = 1 modes vanish.
For a perfect cylindrical cavity the only radiation modes that couple to an electron

perfectly centered in the cavity are TE1n(odd) and TE1n(odd). If the electron is moved
slightly off center axially it will begin to couple to radiation modes with mnp =
1n(even). If the electron is moved slightly off-center radially it similarly begins to
couple to modes with m �= 1.
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In the real trap cavity, the perturbation caused by the small space between the
electrodes is minimized by the use of “choke flanges”—small channels that tend to
reflect the radiation leaking out of the trap back to cancel itself, and thus to minimize
the losses from the trap. The measured radiation modes, discussed later, are close
enough to the calculated frequencies for a perfect cylindrical cavity that we have
been able to identify more than 100 different radiation modes for such trap cavities
[32–34]. The spatial properties of the electric and magnetic field for the radiation
that builds up within the cavity are thus quite well understood. Some of the modes
couple to cyclotron motion of an electron centered in the cavity, others couple to the
spin of a centered electron, and still others have the symmetry that we hope will one
day allow us to sideband-cool the axial motion.

1.3.3 100mK and 5 T

Detecting transitions between energy levels of the quantum cyclotron requires that
the electron-bound-to-the-trap system be prepared in a definite quantum state. Two
key elements are a high magnetic field, and a low temperature for the trap cavity.
A high field makes the spacing of the cyclotron energy levels to be large. A high field
and low temperature make a very large Boltzmann probability to be in the lowest
cyclotron state, P ∝ exp[−hν̄c/(kT )], which is negligibly different from unity.

The trap cavity is cooled to 0.1K or below via a thermal contact with the mixing
chamber of an Oxford Instruments Kelvinox 300 dilution refrigerator (Fig. 1.8). The
electrodes of this trap cavity are housed within a separate vacuum enclosure that is
entirely at the base temperature. Measurements on an apparatus with a similar design
but at 4.2K found the vacuum in the enclosure to be better than 5× 10−17 torr [35].
Our much lower temperature make our background gas pressure much lower. We are
able to keep one electron suspended in our apparatus for as long as desired—regularly
months at a time. Substantial reservoirs for liquid helium and liquid nitrogen make
it possible to keep the trap cold for five to seven days before the disruption of adding
more liquid helium or nitrogen is required.

The trap and its vacuum container are located within a superconducting solenoid
(Fig. 1.8) that makes a very homogeneous magnetic field over the interior volume
of the trap cavity. A large dewar sitting on top of the solenoid dewar provides the
helium needed around the dilution refrigerator below. The superconducting solenoid
is entirely self-contained, with a bore that can operate from room temperature down
to 77K. It possesses shim coils capable of creating a field homogeneity better than a
part in 108 over a 1 cm diameter sphere and has a passive “shield” coil that reduces
fluctuations in the ambient magnetic field [36, 37]. When properly energized (and
after the steps described in the next section have been taken) it achieves field stability
better than a part in 109 per hour. We regularly observe drifts below 10−9 per night.
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Fig. 1.8 The apparatus includes a trap electrodes near the central axis, surrounded by a supercon-
ducting solenoid. The trap is suspended from a dilution refrigerator

1.3.4 Stabilizing the Energy Levels

Measuring the electron g/2 with a precision of parts in 1013 requires that the energy
levels of our homemade atom, an electron bound to a Penning trap, be exceptionally
stable. The energy levels depend upon the magnetic field and upon the the potential
that we apply to the trap electrodes. The magnetic field must be stable at least on the
time scale that is required to measure the two frequencies, f̄c and ν̄a , that are both
proportional to the magnetic field.

One defense against external field fluctuations is a highmagnetic field. Thismakes
it so that field fluctuations due to outside sources are relatively smaller. The largest
source of ambient magnetic noise is a subway that produces 50nT (0.5mG, 10ppb)
fluctuations in our lab and that would limit us to four hours of data taking per day
(when the subway stops running) if we did not shield the electron from them. Eddy
currents in the high-conductivity aluminum and copper cylinders of the dewars and
the magnet bore shield high-frequency fluctuations [38]. For slower fluctuations, the
aforementioned self-shielding solenoid [36] has the correct geometry to make the
central field always equal to the average field over the solenoid cross-section.
This translates flux conservation into central-field conservation, shielding external
fluctuations by more than a factor of 150 [37].
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Stabilizing the field produced by the solenoid requires that care is taken when the
field value is changed, since changing the current in the solenoid alters the forces
between windings. Resulting stresses can take months to stabilize if the coil is not
pre-stressed by “over-currenting” the magnet. Our recipe is to overshoot the target
value by a few percent of the change, undershoot by a similar amount, and then move
to the desired field.

The apparatus in Fig. 1.8 evolved historically rather than being designed for max-
imum magnetic field stability in the final configuration. Because the solenoid and
the trap electrodes are suspended from widely separated support points, tempera-
ture and pressure changes can cause the electrodes to move relative to the solenoid.
Apparatus vibrations can do the same insofar as the magnetic field is not perfectly
homogeneous, despite careful adjusting of the persistent currents in ten supercon-
ducting shim coils. Any relative motion of the electron and solenoid changes the
field seen by the electron.

To counteract this, we regulate the five He and N2 pressures in the cryostats to
maintain the temperature of both the bath and the solenoid itself [39, 40]. Recently
we also relocated the dilution refrigerator vacuum pumps to an isolated room at the
end of a 12m pipe run. This reduced vibration by more than an order of magni-
tude at frequencies related to the pump motion and reduced the noise level for the
experimenters but did not obviously improve the g/2 data.

Because some of the structure establishing the relative location of the trap elec-
trodes and the solenoid is at room temperature, changes in room temperature can
move the electron in the magnetic field. The lab temperature routinely cycles 1–2K
daily, so we house the apparatus in a large, insulated enclosure within which we
actively regulate the air temperature to 0.1K. A refrigerated circulating bath (Ther-
moNeslab RTE-17) pumps water into the regulated zone and through an automobile
transmission fluid radiator, heating and cooling the water to maintain constant air
temperature. Fans couple the water and air temperatures and keep a uniform air
temperature throughout.

The choice of materials for the trap electrodes and its vacuum container is also
crucial to attaining high field stability [1, 41]. Copper trap electrodes, for example,
have a nuclear paramagnetism at 100mK that makes the electron see a magnetic field
that changes at an unacceptable level with very small changes in trap temperature.
We thus use only low-Curie-constant materials such as silver, quartz, titanium, and
molybdenumat the refrigerator base temperature andwe regulate themixing chamber
temperature to 1mK or better.

A stable axial frequency is also extremely important since small changes in the
measured axial frequency reveal one-quantum transitions of the cyclotron and spin
energy (as will be discussed in Sect. 1.4.1). A trapping potential without thermal
fluctuations is provided by a charged capacitor (10µF) that has a very low leakage
resistance at low temperature. We add to or subtract from the charge on the capacitor
using 50ms current pulses sent to the capacitor through a 100 M
 resistor as needed
to keep the measured axial frequency constant. Because of the orthogonalized trap
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design [27] already discussed, the potential applied to the compensation electrodes
(to make the electron see as close to a pure electrostatic quadrupole potential as
possible) has little effect upon the axial frequency.

1.3.5 Motions and Damping of the Suspended Electron

We load a single electron using an electron beam from a sharp tungsten field emission
tip. A hole in the bottom endcap electrode admits the beam, which hits the top endcap
electrode and releases gas atoms cryopumped on the surface. Collisions between the
beam and gas atoms eventually cause an electron to fall into the trap. Adjusting the
beam energy and the time it is on determines the number of electrons loaded.

The electron has three motions in the Penning trap formed by the B = 5.4 T
magnetic field, and the electrostatic quadrupole potential. The cyclotron motion in
the trap has a cyclotron frequency ν̄c ≈ 150GHz. The axial frequency, for the har-
monic oscillator parallel to the magnetic field direction, is ν̄z ≈ 200MHz. A circular
magnetron motion, perpendicular to B, has an oscillation frequency, ν̄m ≈ 133kHz.
The spin precession frequency, which we do not measure directly, is slightly higher
than the cyclotron frequency. The frequency difference is the anomaly frequency,
ν̄a ≈ 174MHz, which we do measure directly.

The undamped spin motion is essentially uncoupled from its environment [25].
The cyclotronmotion is onlyweakly damped. By controlling the cyclotron frequency
relative to that of the cavity radiation modes, we alter the density of radiation states
and inhibit the spontaneous emission of synchrotron radiation [25, 42] by 10–50
times the (90ms)−1 free-space rate. Blackbody photons that could excite from the
cyclotron ground state are eliminated because the trap cavity is cooled by the dilution
refrigerator to 100mK [43]. The axial motion is cooled by a resonant circuit at a rate
γz ≈ (0.2 s)−1 to as low as 230mK (from 5K) when the detection amplifier is off.
The magnetron radius is minimized with axial sideband cooling [25].

1.4 Non-destructive Detection of One-Quantum Transitions

1.4.1 QND Detection

Quantum nondemolition (QND) detection has the property that repeated measure-
ments of the energy eigenstate of the quantum system do not change the state of the
quantum system [44, 45]. This is crucial for detecting one-quantum transitions in the
cyclotron motion insofar as it avoids transitions produced by the detection system.
In this section we discuss the QND coupling, and in the next section the self-excited
oscillator readout system.

Detecting a single 150GHz photon from the decay of one cyclotron energy level
to the level below would be very difficult—because the frequency is so high and
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because it is difficult to cover the solid angle into which the photon could be emitted.
Instead we get the one-quantum sensitivity by coupling the cyclotron motion to the
orthogonal axial motion at 200MHz, a frequency at which we are able to make
sensitive detection electronics [46]. The QND detection keeps the thermally driven
axial motion of the electron from changing the state of the cyclotron motion.

We use a magnetic bottle gradient that is familiar from plasma physics and from
earlier electron measurements [5, 47],

ΔB = B2

[(
z2 − ρ2/2

)
ẑ − zρρ̂

]
(1.28)

with B2 = 1540 T/m2. This is the lowest order gradient that is symmetric under
reflections z → −z and is cylindrically symmetric about ẑ. The gradient arises from a
pair of thin nickel rings (Fig. 1.7) that are completely saturated in the strong field from
the superconducting solenoid. To lowest order the rings modify B by ≈ −0.7%—
merely changing the magnetic field that the electron experiences without affecting
our measurement.

The formal requirement for a QND measurement is that the Hamiltonian of the
quantum system (i.e. the cyclotron Hamiltonian) and the Hamiltonian describing
the interaction of the quantum system and the classical measurement system must
commute. The Hamiltonian that couples the quantum cyclotron and spin motions to
the axial motion does so. It has the form −μB, where μ is the magnetic moment
associated with the cyclotron motion or the spin. The coupling Hamiltonian thus has
a term that goes as μz2. This term has the same spatial symmetry as does the axial
Hamiltonian, H = 1

2m(2πν̄z)
2z2. A change in the magnetic moment that takes place

from a one-quantum change in the cyclotron or spin magnetic moment thus changes
the observed axial frequency of the suspended electron.

The result is that the frequency of the axial motion ν̄z shifts by

Δν̄z = δB(n + ms), (1.29)

in proportion to the cyclotron quantum number n and the spin quantum number ms .
Figure1.9 shows the Δν̄z = 4Hz shift in the 200MHz axial frequency that takes
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Fig. 1.9 Two quantum jumps: A cyclotron jump (a) and spin flip (b) measured via a QND coupling
to shifts in the axial frequency
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place for one-quantum changes in cyclotron (Fig. 1.9a) and spin energy (Fig. 1.9b).
The 20ppb shift is easy to observe with an averaging time of only 0.5 s. We typically
measure with an averaging time that is half this value.

1.4.2 One-Electron Self-Excited Oscillator

TheQND couplingmakes small changes in the electron’s axial oscillation frequency,
the signature of one-quantum cyclotron transitions and spin flips. Measuring these
small frequency changes is facilitated by a large axial oscillation amplitude. To this
end we use electrical feedback which we demonstrated could be used effectively to
either cool the axial motion [48] or to make a large self-excited axial oscillation [49].
Cyclotron excitations and spin flips are generally induced while the detection system
is off, as will be discussed. After an attempt to excite the cyclotron motion or to flip
the spin has been made, the detection system is then turned on. The self-excited
oscillator rapidly reaches steady state, and its oscillation frequency is then measured
by fourier transforming the signal.

The 200MHz axial frequency lies in the radio-frequency (rf) range which is
more experimentally accessible than the microwave range of the 150GHz cyclotron
and spin frequencies, as mentioned. Nevertheless, standard rf techniques must be
carefully tailored for our low-noise, cryogenic experiment. The electron axial oscil-
lation induces image currents in the trap electrodes that are proportional to the axial
velocity of the electron [25, 50]. An inductor (actually the inductance of a cryogenic
feedthrough) is placed in parallel with the capacitance between two trap electrodes
to cancel the reactance of the capacitor which would otherwise short out the induced
signal. The rf loss in the tuned circuit that is formed is an effective resistance that
damps the axial motion.

The voltage that the electron motion induces across this effective resistance is
amplified with two cryogenic detection amplifiers. The heart of each amplifier is a
single-gate high electron mobility transistor (Fujitsu FHX13LG).

The first amplifier is at the 100mK dilution refrigerator base temperature. Operat-
ing this amplifier without crashing the dilution refrigerator requires operating with a
power dissipation in the FET that is three orders of magnitude below the transistor’s
10mW design dissipation. The effective axial temperature for the electron while
current is flowing through the FET is about 5K, well above the ambient temperature.
Very careful heat sinking makes it possible for the effective axial temperature of
the electron to cool to below 230mK in several seconds after the amplifier is turned
off, taking the electron axial motion to this temperature. Cyclotron excitations and
spin flips are induced only when the axial motion is so cooled, with the detection
amplifiers off, since the electron is then making the smallest possible excursion in
the magnetic bottle gradient.

The second cryogenic amplifier is mounted on the nominally 600mK still of
the dilution refrigerator. This amplifier counteracts the attenuation of a thermally-
isolating but lossy stainless steel transmission line that carries the amplified signal
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out of the refrigerator. The second amplifier boosts the signal above the noise floor
of the first room-temperature amplifier.

Because the induced image-current signal is proportional to the electron’s axial
velocity, feeding this signal back to drive the electron alters the axial damping force,
a force that is also proportional to the electron velocity. Changing the feedback gain
thus changes the damping rate. As the gain increases, the damping rate decreases as
does the effective axial temperature of the electron, in accord with the fluctuation
dissipation theorem [51]. Feedback cooling of the one-electron oscillator from 5.2
to 850mK was demonstrated [48]. The invariant ratio of the separately measured
damping rate and the effective temperature was also demonstrated, showing that the
amplifier adds very little noise to the feedback.

Setting the feedback gain to make the feedback drive exactly cancel the damping
in the attached circuit could sustain a large axial oscillation amplitude, in principle.
However, since the gain cannot be perfectly adjusted, noise fluctuations will always
drive the axial oscillation exponentially away from equilibrium.We thus stabilize the
oscillation amplitude using a digital signal processor (DSP) that Fourier transforms
the signal in real time, and adjusts the feedback gain to keep the signal size at a fixed
value.

The one-particle self-excited oscillator is turned on after an attempt has been
made to excite the cyclotron energy up one level, or to flip the spin. The frequency of
the axial oscillation that rapidly stabilizes at a large and easily detected amplitude is
thenmeasured. Small shifts in this frequency reveal whether the cyclotronmotion has
been excited by one quantum or whether the spin has flipped, as illustrated in Fig. 1.9.

1.4.3 Inhibited Spontaneous Emission

The spontaneous emission of synchrotron radiation in free space would make the
damping time for an electron’s cyclotron motion to be less than 0.1 s. This is not
enough time to average down the noise in our detection system to the level that would
allow the resolution of one-quantum transitions between cyclotron states. Also, to
drive cyclotron transitions “in the dark”, with the detection system off, requires that
the cyclotron excitations persist long enough for the detection electronics to be turned
on. Cavity-inhibition of the spontaneous emission gives us the averaging time that
we need.

One of the early papers in what has come to be know as cavity QED was an
observation of inhibited spontaneous emission within a Penning trap [42]—the first
time that inhibited spontaneous emission was observed within a cavity and with only
one particle—as anticipated earlier [52, 53]. As already mentioned, the cylindrical
Penning trap [27] was invented to provide understandable boundary conditions
to control the spontaneous emission rate with only predictable cavity shifts of the
electron’s cyclotron frequency.

The spontaneous emission rate is measured directly, by making a histogram of the
time the electron spends in the first excited state after being excited by a microwave
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Fig. 1.10 A histogram of the time that the electron spends in the first excited state that is fit
to an exponential reveals the substantial inhibition of the spontaneous emission of synchrotron
radiation. The decay time, 0.41s in this example, depends on how close the cyclotron frequency is
to neighboring radiation modes of the trap cavity. Lifetimes as long as 16s have been observed

drive injected into the trap cavitywith the detector left on. Figure1.10 shows a sample
histogram which fits well to an exponential (solid curve) with a lifetime of 0.41 s in
this example.

Stimulated emission is avoided bymaking these observations onlywhen the cavity
is at low temperature so that effectively no blackbody photons are present. The
detector causes thermal fluctuations of the axial oscillation amplitude, and these in
turnmake the cyclotron frequency fluctuate. For measuring the cyclotron decay time,
however, this does not matter as long as the fluctuations in axial amplitude are small
compared to the 2mm wavelength of the radiation that excites the cyclotron motion.

The spontaneous emission rate into free space is [25]

γ+ = 4

3

re

c
(ωc)

2 ≈ 1

0.89 ms
. (1.30)

Themeasured rate in this example is thus suppressed by a factor of 4.5. The density of
states within the cylindrical trap cavity is not that of free space. Instead the density of
states for the radiation is peaked at the resonance frequencies of the radiation modes
of the cavity, and falls to very low values between the radiation modes. We attain
the inhibited spontaneous emission by tuning the magnetic field so that the cyclotron
frequency is as far as possible from resonance with the cavity radiation modes. With
the right choice of magnetic field we have increased the lifetime to 16s, which is a
cavity suppression of spontaneous emission by a factor of 180.

In a following section we report on using the direct measurements of the radiation
rate for electron cyclotron motion to probe the radiation modes of the cavity, with
the radiation rate increasing sharply at frequencies that approach a resonant mode of
the cavity.
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1.5 Elements of a Electron g/2 Measurement

1.5.1 Quantum Jump Spectroscopy

We determine the cyclotron and anomaly frequencies using quantum jump spec-
troscopy, in which a near resonance drive attempts to either excite the cyclotron
motion or flip the spin. After each attempt we check whether a one-quantum transi-
tion has taken place, and build up a histogram of transitions per attempt. Figure1.11
shows the observed quantum jump lineshapes upon which our 2008 measurement is
based.

A typical data run consists of alternating scans of the cyclotron and anomaly lines.
The runs occur at night, with daytime runs only possible on Sundays and holidays
when the ambient magnetic field noise is lower. Interleaved every three hours among
these scans are periods of magnetic field monitoring to track long-term drifts using
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Fig. 1.11 Quantum-jump spectroscopy lineshapes for cyclotron (left) and anomaly (right) tran-
sitions with maximum-likelihood fits to broadened lineshape models (solid) and inset resolution
functions (solid) and edge-tracking data (histogram). Vertical lines show the 1−σ uncertainties for
extracted resonance frequencies. Corresponding unbroadened lineshapes are dashed. Gray bands
indicate 1 − σ confidence limits for distributions about broadened fits. All plots share the same
relative frequency scale
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the electron itself as the magnetometer. In addition, we continuously monitor over
fifty environmental parameters such as refrigerator temperatures, cryogen pressures
and flows, and the ambient magnetic field in the lab so that we may screen data for
abnormal conditions and troubleshoot problems.

Cyclotron transitions are driven by injecting microwaves into the trap cavity. The
microwaves originate as a 15GHz drive from a signal generator (Agilent E8251A)
whose low-phase-noise, 10MHzoven-controlled crystal oscillator serves as the time-
base for all frequencies in the experiment. After passing through a waveguide that
removes all subharmonics, the signal enters a microwave circuit that includes an
impact ionization avalanche transit-time (IMPATT) diode, which multiplies the fre-
quency by ten and outputs the f̄c drive at a power of 2mW. Voltage-controlled
attenuators reduce the strength of the drive, which is broadcast from a room temper-
ature horn through teflon lenses to a horn at 100mK (Fig. 1.8) and enters the trap
cavity through an inlet waveguide (Fig. 1.7).

Anomaly transitions are driven by potentials, oscillating near ν̄a , applied to
electrodes to drive off-resonant axial motion through the magnetic bottle gradient
(Eq.1.28). The gradient’s zρρ̂ termmixes the driven oscillation of z at ν̄a with that of
ρ at f̄c to produce an oscillating magnetic field perpendicular to B as needed to flip
the spin. The axial amplitude required to produce the desired transition probability
is too small to affect the lineshape (Sect. 1.5.4); nevertheless, we apply a detuned
drive of the same strength during cyclotron attempts so the electron samples the same
magnetic gradient.

Quantum jump spectroscopy of each resonance follows the same procedure. With
the electron prepared in the spin-up ground state

∣∣0, 1
2

〉
, the magnetron radius is

reduced with 1.5 s of strong sideband cooling at ν̄z + ν̄m with the SEO turned off
immediately and the detection amplifiers turned off after 0.5 s. After an additional
1 s to allow the axial motion to thermalize with the tuned circuit, we apply a 2 s
pulse of either a cyclotron drive near f̄c or an anomaly drive near ν̄z with the other
drive applied simultaneously but detuned far from resonance. The detection elec-
tronics and SEO are turned back on; after waiting 1 s to build a steady-state axial
amplitude, we measure ν̄z and look for a 20ppb shift up (from a cyclotron transition)
or down (from an anomaly transition followed by a spontaneous decay to

∣∣0,− 1
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〉
)

in frequency. Cavity-inhibited spontaneous emission provides the time needed to
observe cyclotron transitions before decay. The several-cyclotron-lifetimes wait for
a spontaneous decay after an anomaly attempt is the rate-limiting step in the spec-
troscopy. After a successful anomaly transition and decay, simultaneous cyclotron
and anomaly drives pump the electron back to

∣∣0, 1
2

〉
. All timing is done in hardware.

We probe each resonance line with discrete excitation attempts spaced in frequency
by approximately 10% of the linewidth. We step through each drive frequency on
the f̄c line, then each on the ν̄a line, and repeat.
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1.5.2 The Electron as Magnetometer

Slow drifts of the magnetic field are corrected using the electron itself as a magne-
tometer. Accounting for these drifts allows the combination of data taken over many
days, giving a lineshape signal-to-noise that allows the systematic investigation of
lineshape uncertainties at each field. For a half-hour at the beginning and end of a run
and again every three hours throughout, we alter our cyclotron spectroscopy routine
by applying a stronger drive at a frequency below f̄c. Using the same timing as above
but a ten-times-finer frequency step, we increase the drive frequency until observing
a successful transition. We then jump back 60 steps and begin again.

We model the magnetic field drift by fitting a polynomial to these “edge” points
(so-called because the ideal cyclotron lineshape has a sharp low-frequency edge).
Since we time-stamp every cyclotron and anomaly attempt, we use the smooth curve
to remove any field drift. This edge-tracking adds a 20% overhead, but allows the
use of data from nights with a larger than usual field drift, and the combination of
data from different nights.

1.5.3 Measuring the Axial Frequency

In addition to f̄c and ν̄a , measuring g/2 requires a determination of the axial
frequency ν̄z (Eq. 1.19). To keep the relative uncertainty in g/2 from ν̄z below 0.1ppt,
we must know ν̄z to better than 50ppb (10Hz). This is easily accomplished. We rou-
tinely measure ν̄z when determining the cyclotron and spin states. However, the large
self-excited oscillation amplitude in the slightly anharmonic axial potential typically
results in a 10ppb shift, compared to the ν̄z for the thermally-excited amplitude
during the cyclotron and anomaly pulses. We cannot directly measure the axial fre-
quency under the pulse conditions because the amplifiers are off. We come close
when measuring ν̄z with the amplifiers on and all axial drives off. This thermal axial
resonance appears as a dip on the amplifier noise resonance [50], and we use it as
our measurement. The difference in ν̄z with the amplifiers on and off is negligible.
A second shift comes from the interaction between the axial motion and the amplifier,
which both damps the motion and shifts ν̄z . The maximum shift of ν̄z is 1/4 of the
damping rate, which at ≈1ppb is negligible at our current precision. A third shift of
ν̄z comes from the anomaly drive, which induces both a frequency-pulling from the
off-resonant axial force and a Paul-trap shift from the change in effective trapping
potential [54]; based on extrapolation from measured shifts at higher powers, we
estimate these shifts combine to 1 ppb at the highest anomaly power used for the
measurement—too small to affect g/2.
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1.5.4 Frequencies from Lineshapes

The cyclotron frequency f̄c and anomaly frequency ν̄a (Fig. 1.6) must be deter-
mined from their respective quantum jump spectroscopy lineshapes (Fig. 1.11). The
observed lineshapes are much broader than the natural linewidth that arises because
the excited cyclotron state decays by the cavity-inhibited spontaneous emission of
synchrotron radiation. The shape arises because the electron experiences a magnetic
field that varies during the course of a measurement. Variations arise because of
the electron’s thermal axial motion within the magnetic bottle gradient, for exam-
ple. Other possible variations could arise because the magnetic field for the Penning
trap fluctuates in time, or because of a distribution of magnetron orbit sizes for the
quantum jump trials.

Once the slow drift of the magnetic field (p. 24) has been removed, there is no
reason for the electron to sample a different distribution of magnetic field values
while the anomaly frequency is being measured compared to when the trap-modified
cyclotron frequency is being measured. Each resonance shape converts the distrib-
ution of sampled magnetic fields values into the corresponding distribution of fre-
quency values. Dividing the quantum jump lineshapes into frequency bins, we obtain
average cyclotron and anomaly frequencies by weighting the frequency of each bin
by the number of quantum jumps in the bin, and use these average frequencies in
Eq.1.19.

Using the weighted average frequencies will remove shifts to g/2 caused by the
thermal axial motion of the electron within the magnetic bottle gradient, the largest
source of the observed linewidth. The use of weighted average frequencies should
also account for temporal fluctuations in the magnetic field of the Penning trap on the
measurement time scale for the frequencies. If there is a distribution of magnetron
radii for the quantum jump trials, the weighted average method should account for
the resulting distribution of magnetic field values as well.

To verify the weighted averages method, and to assign safe uncertainties to the
average frequencies that we deduce using it, we also analyze our measured line-
shapes in a very different way. We start with an analytic calculation of the lineshape
for thermalBrownianmotion of the axialmotion for a given axial temperature Tz [55].
We then fit the measured cyclotron and anomaly lineshapes (Fig. 1.11) to the ideal
lineshape convolved with a Gaussian broadening function to take into account other
sources of the magnetic field distribution. The analytically calculated lineshapes are
the dashed curves in Fig. 1.11, the maximum-likelihood fits to the broadened line-
shapes are solid curves, and the gray bands indicate where we would expect 68% of
the measured points to lie. The insets to Fig. 1.11 show the best-fit resolution func-
tions.We assign a lineshape uncertainty that is the size of the differences between the
g/2 value determined from the fitting and our preferred weighted averages method.

The linewidths are wider for two of the four measurements in Fig. 1.11, and they
remained reproducible over the weeks required to take each data point. A wider
cyclotron linewidth indicates a higher axial temperature. We know of no reason that
the axial temperatures should bedifferent for different values of thePenning trapfield;
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this is one reason that we assign the larger uncertainties that reflect the difference
between the two methods. The narrower lineshapes have better agreement between
the weighted average method and the fit method, and hence the assigned lineshape
uncertainties are smaller. Not surprisingly, the narrower lines better determine the
corresponding frequencies.

For the 2008 measurement the lineshape uncertainty is larger than any other.
Future efforts will focus upon understanding and reducing the lineshape broadening
and uncertainty.

1.5.5 Cavity Shifts

Despite the precision reached in this measurement, only one correction to the directly
measured g/2 value is required, the Δgcav/2 included in Eq.1.19. The correction is
a cavity shift correction that depends upon interaction of the electron with nearby
cavity radiation modes. The trap cavity modifies the density of states of the radiation
modes of free space, though not enough to significantly affect QED calculations of g
[56]. Since the cavity shift correction depends upon the electron cyclotron frequency,
we measure g/2 at four different cyclotron frequencies to make sure that the same
g/2 is deduced when cavity shifts of different sizes are applied.

The cavity-inhibited spontaneous emission narrows the cyclotron resonance line,
giving the time in the excited state that is needed to turn on the self-excited oscillator,
and to average its signal long enough determine the cyclotron state. Cavity shifts are
the unfortunate downside of the cavity, arising because the cyclotron oscillator has
its frequency pulled by its coupling to nearby radiation modes of the cavity.

The cylindrical Penning trap was invented to make a microwave cavity with a
calculable geometry. Section1.3.2 describes a perfect cylindrical trap cavity and the
radiation fields that it can support. However, the trap is not perfectly machined, it
changes its size as it cools from room temperature down to 0.1K, and it has small
slits that make it possible to bias sections to form a Penning trap.

The shape of the radiation fields near the center of the trap cavity are not greatly
altered for the real cavity, but the resonant frequencies of the modes are slightly
shifted. The frequency shifts are not enough to keep us from identifying most modes
by comparing to calculated frequencies, but are large enough that we must measure
the mode frequencies if we are to characterize the interaction of the cavity and an
electron. The mode quality factors (resonant frequencies divided by energy damping
rates) must also be determined. The decay of the radiation field within the cavity
depends upon power dissipated by currents (induced in the electrodes and modified
by the slits), and upon the loss of microwave power that escapes the trap despite the
choke flanges in the slits.

We developed two methods to learn the resonant frequencies of the radiation
modes of real trap cavity.
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1. A cloud of electrons near the center of the trap is heated using a parametric driving
force. The electrons cool via synchrotron radiation with a rate that is highest when
their cyclotron frequency is resonant with a cavity radiationmode, and that is very
small far from resonance [32–34, 57]. Figure1.12a shows the peaks in the signal
from the electrons that correspond to resonance with cavity radiation modes that
are labeled as described earlier.

2. The measured spontaneous emission rate for a single electron near the center of
the trap cavity (Fig. 1.12b), and the dependence of this rate upon the amplitude of
the axial oscillation of the electron (Fig. 1.12c), both depend upon the proximity
of the electron cyclotron frequency to cavity radiation modes that couple to a
nearly centered electron. Figure1.13 illustrates how the one-electron damping
rate and dependence upon axial oscillation amplitude are measured.

From the cavity spectra in Fig. 1.12a–c we deduce the mode frequencies and
uncertainties represented by the gray bands in these figures. Our identification of the
modes is aided by several features of the spectra. Modes that are strongly coupled
to the electrons (the coupling increases with electron number) can split into two
normal modes. A large axial oscillation during measurements of the cavity spectrum
produces sidebands at the axial frequency formodeswith a node at the trap center, and
at twice the sidband frequency for radiation modes with an antinode at the center.
Modes which would not couple to a perfectly centered electron will couple more
strongly to the electrons as their number is increased so that they occupy a larger
volume. From 2006 to 2008 our understanding of the cavity improved when we
became aware of and were able to measure a small displacement of the electrostatic
center of the trap (where the electron resides), and the center for the cavity radiation
modes.

So far we have used the calculable cylindrical trap geometry to know which
radiation modes can couple to an electron near the center of the trap, and we have
recognized these modes in measured cavity spectra by comparing their measured
frequencies to what is calculated for a perfect cavity. Next we use the measured
radiation mode frequencies and quality factors as input to a calculation of the cavity
shift of the electron cyclotron frequency as a function of the electron cyclotron
frequency (Fig. 1.12d).

A calculation of the shifts [55, 58] must carefully distinguish and remove the elec-
tron self-energy from the electron-cavity interaction. The uncertainty in themeasured
inputs give a cavity shift uncertainty (Fig. 1.12e) that is small between the resonance
frequencies of modes that couple strongly to a centered electron, and then increases
strongly closer to the resonant frequencies of these modes. The diamonds at the
top of the figure show how in our four measurements of g/2 we avoid the electron
cyclotron frequencies for which the uncertainty is the largest. Figure1.14 shows the
good agreement attained between the four measurements when the cavity shifts are
applied.
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1.6 Results and Applications

1.6.1 Most Accurate Electron g/2

The measured values, shifts, and uncertainties for the four separate measurements of
g/2 are inTable1.2. The uncertainties are lower formeasurementswith smaller cavity
shifts and smaller linewidths, as might be expected. Uncertainties for variations of
the power of the ν̄a and f̄c drives are estimated to be too small to show up in the table.
Aweighted average of the fourmeasurements,with uncorrelated and correlated errors
combined appropriately, gives the electron magnetic moment in Bohr magnetons,
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Table 1.2 Measurements and shifts with uncertainties multiplied by 1012

f̄c 147.5GHz 149.2GHz 150.3GHz 151.3GHz

g/2 raw −5.24(0.39) 0.31 (0.17) 2.17 (0.17) 5.70 (0.24)
Cav. shift 4.36(0.13) −0.16 (0.06) −2.25 (0.07) −6.02 (0.28)
Lineshape
correlated (0.24) (0.24) (0.24) (0.24)
uncorrelated (0.56) (0.00) (0.15) (0.30)

g/2 −0.88(0.73) 0.15 (0.30) −0.08 (0.34) −0.32 (0.53)

The cavity-shifted “g/2 raw” and corrected “g/2” are offset from our result in Eq.1.1

μ/μB = −g/2 = −1.001 159 652 180 73 (28) [0.28 ppt]. (1.1)

The uncertainty is 2.7 and 15 times smaller than the 2006 and 1987 measurements,
and 2,300 times smaller than has been achieved for the heavier muon lepton [59].

1.6.2 Most Accurate Determination of α

The new measurement determines the fine structure constant, α = e2/(4πε0�c),
much more accurately than does any other method. The fine structure constant is
the fundamental measure of the strength of the electromagnetic interaction in the
low energy limit, and it is also a crucial ingredient of our system of fundamental
constants [60]. Only the bare essentials of what is needed to determine α from g/2
are summarized here.

The standard model relates g and α by

g

2
= 1 + C2

(α

π

)
+ C4

(α

π

)2 + C6

(α

π

)3 + C8

(α

π

)4
+ C10

(α

π

)5 + · · · + ahadronic + aweak, (1.31)

with the asymptotic series and the values of the Ck coming from QED. Very small
hadronic and weak contributions are included, along with the assumption that there
is no significant modification from electron substructure or other physics beyond the
standard model (Fig. 1.15).

QED calculations give the constants Ck ,

C2 = 0.500 000 000 000 00 (exact) (1.32)

C4 = −0.328 478 444 002 55 (33) (1.33)

C6 = 1.181 234 016 816 (10) (1.34)

C8 = −1.909 7 (20) (1.35)

C10 = 9.16 (0.57). (1.36)
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The QED theory for C2 [61], C4 [62–64], and C6 [65] is exact, with no uncertainty,
except for an essentially negligible uncertainty in C4 and C6 that comes from a weak
functional dependence upon the lepton mass ratios, mμ/me and mτ /me. Numerical
QED calculations give the value and uncertainty for C8 and C10 [6]. The first evalu-
ation of C10 is the most significant theoretical advance since the electron magnetic
moment was measured. A remarkable 12,672 Feynman diagrams are involved.

The hadronic anomaly ahadronic, calculated within the context of the Standard
Model,

ahadronic
e = 1.678(15) × 10−12 , (1.37)

contributes at the level of several times the current experimental uncertainty, but the
calculation uncertainty in the hadronic anomaly is not important [66–69]. The weak
anomaly is negligible for the current experimental precision.

The most accurately determined fine structure constant is given by

α−1 = 137.035 999 173 (33) (8) [0.24 ppb] [0.06 ppb],
= 137.035 999 173 (34) [0.25 ppb]. (1.38)

The first line shows that the 0.24ppb experimental uncertainty (33) is larger than the
0.06ppb theoretical uncertainty (8) now that C10 has been calculated. The theory
uncertainty contribution to α is divided as (7) and (5) for C8 and C10. The uncertain-
ties from the experiment and theory are represented in Fig. 1.16. The dashes show
the uncertainties before the recent theoretical advances.

The total 0.25ppb uncertainty in α is nearly three times smaller than the 0.66ppm
uncertainty for the next most precise determination [7] (Fig. 1.2). The so-called atom
recoil determination that is used actually requires measurements of the Rydberg
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uncertainty in the α that is determined from the measured electron g/2. The dashes present the
uncertainties before the very recent theoretical advances

constant [70, 71], transition frequencies [7, 72], mass ratios [73–75], and either a
Rb [7] or Cs [76] recoil velocity measured in an atom interferometer.

1.6.3 Testing the Standard Model and QED

The dimensionless electron magnetic moment g that is measured can be compared
to the g(α) that is predicted by the Standard Model of particle physics. The input
needed to calculate g(α) is the measured fine structure constant α (that is determined
without the use of the electron magnetic moment). The most accurately measured
and calculated values of g/2 are currently given by

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt], (1.39)

g(α)/2 = 1.001 159 652 181 78 (77) [0.77 ppt]. (1.40)

The measurement is our one-electron quantum cyclotron measurement [2]. The cal-
culated value g(α)/2 comes from using themost precise Rb value ofα [7] in Eq.1.31.
The uncertainty in this “calculated” value actually comes almost entirely from the
uncertainty in the Rb α. The Standard Model prediction is thus tested and verified to
0.8ppt. The smaller 0.3ppt uncertainty in the measured g/2, along with the compa-
rable uncertainty in the QED calculation, would allow a better test of QED if a more
precise, independent value of α could be measured.

About 1 part per thousand of the electron g/2 comes from the unavoidable inter-
action of the electron with the virtual particles of “empty space”, as described by
quantum electrodynamics (QED) and represented in Fig. 1.17.Where testing QED is
the primary focus, measured and calculated values of the so-called anomalous mag-
netic moment of the electron (defined by a = g/2− 1 so that the Dirac contribution
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Fig. 1.17 Comparisons of precise tests of QED. The arrows represent the fractional accuracy to
which the QED contribution to the measured g values and frequencies that are measured

is subtracted out) are often compared. The measured and calculated values of a that
correspond to the g/2 values above are

a = 0.001 159 652 180 73 ( 28) [0.24 ppb], (1.41)

a(α) = 0.001 159 652 181 78 ( 77) [0.66 ppb], (1.42)

At the one standard deviation level, the difference of the measured and calculated
values is

δa = a − a(α) (1.43)

= g/2 − g(α)/2 (1.44)

= 1.05(0.82) × 10−12. (1.45)

The possible difference between the measurement and calculation is thus bounded
by
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|δa| < 1.9 × 10−12, (1.46)

at the one standard deviation level, with this bound arising almost entirely from the
uncertainty in the measurement of α from Rb.

Some of the most precise tests of bound-state QED are compared in Fig. 1.18 with
the electron g/2. The QED test based upon the measurements [74] and calculation
[77] of g/2 for an electron bound in an ion tests QED less precisely. In fact, the
calculated value of the bound g values depends upon themass of the electron strongly
enough that this measurement is now being used to determine the electron mass in
amu, much as we determine α from our measurements of the magnetic moment of
the free electron. The n = 2 Lamb shift in hydrogen is essentially entirely due to
QED. However, the measurements are much less precise so that QED is again tested
less precisely.

The last example in the figure is a QED test based upon a number ofmeasurements
of hydrogen and deuterium transition frequencies—the QED contribution to which
are typically at the ppm level. Theoretical calculations that depend upon the Rydberg
constant, thefine structure constant, the ratio of the electron andprotonmasses and the
size of the nucleus are fit to a number of accurately measured transition frequencies
for hydrogen and deuterium. The fit determines values for the mentioned constants.
The QED test come from removing one of the measured lines from the fit, and
using the best fit to predict the value of the transition frequency that was omitted.
This process tests the Standard Model prediction at a comparable precision to that
provided using the magnetic moment of the electron. However, it tests the size of the
QED contribution to a much lower fractional precision.

The QED tests described so far test QED predictions to the highest precision and
the highest order inα. There aremanyother tests ofQEDwith amuch lower precision.
Although these tests are outside of the scope of this work it is worth mentioning that
it is interesting to probe QED in other ways. For example, it seems interesting to
test QED for systems whose binding energy is very large, even comparable to the
electron rest mass energy as can be done in high Z systems. Another example is
probing the QED of positronium, the bound state of an electron and a positron,
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insofar as annihilation and exchange effects are quite different than what must be
calculated for normal atoms.

1.6.4 Probe for Electron Substructure

Comparing experiment and theory probes for possible electron substructure at an
energy scale one might only expect from a large accelerator. An electron whose
constituents would have mass m∗ � m has a natural size scale, R = �/(m∗c).
The simplest analysis of the resulting magnetic moment [78] gives δa ∼ m/m∗,
suggesting that m∗ > 260,000 TeV/c2 and R < 9 × 10−25 m. This would be an
incredible limit, since the largest e+e− collider (LEP) probed for a contact interaction
at an E = 10.3TeV [79], with R < (�c)/E = 2 × 10−20 m.

However, the simplest argument also implies that the first-order contribution to
the electron self-energy goes as m∗ [78]. Without heroic fine tuning (e.g., the bare
mass cancelling this contribution to produce the small electron mass) some internal
symmetry of the electronmodelmust suppress bothmass andmoment. For example, a
chirally invariantmodel [78], leads to δa ∼ (m/m∗)2. In this case,m∗ > 360GeV/c2

and R < 5×10−19 m. These are stringent limits to be set with an experiment carried
out at 100mK, although they are not yet at the LEP limits. With a more precise
measurement of α, so this was limited only by the experimental uncertainty in a,
then we could set a limit m∗ > 1TeV and R < 2 × 10−19.

1.6.5 Comparison to the Muon g/2

The electron g/2 is measured about 2300 times more accurately than is g/2 for its
heavier muon sibling [2, 59]. Because the electron is stable there is time to isolate
one electron, cool it so that it occupies a very small volume within a magnetic field,
and to resolve the quantum structure in its cyclotron and spin motions. The short-
lived muon must be studied before it decays in a very small fraction of a second,
during which times it orbits in a very large orbit over which the same magnetic field
homogeneity realized with a nearly motionless electron cannot be maintained.

Why then measure the muon g/2? The compelling reason is that the muon g/2
is expected to be more sensitive to physics beyond the standard model by about a
factor of 4×104, which is the square of the ratio of the muon to the electron mass. In
terms of Eq.1.10 this means that anew is expected to be bigger for the muon than for
the electron by this large factor, making the muon a more attractive probe for new
physics.

Unfortunately, the other Standard Model contribution, ahadronic + aweak, is also
bigger by approximately the same large factor, rather than being essentially negli-
gible as in the electron case. Correctly calculating these terms is a significant chal-
lenge to detecting new physics. These large terms, and the much lower measurement
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precision, also make the muon an unattractive candidate (compared to the electron)
for determining the fine structure constant and for testing QED.

The measured electron g/2 makes two contributions to using the muon system
for probing for physics beyond the Standard Model. Both relate to determining the
muon QED anomaly aQED(α)

1. The electronmeasurement of g/2makes possible themost accurate determination
of the fine structure constant (discussed in the previous section) as is needed to
calculate aQED(α).

2. The electron measurement of g/2 and an independently measured value of α test
QED calculations of the very similar aQED(α) terms in the electron system.

The QED contribution must be accurately subtracted from the measured muon g −2
if the much smaller possible contribution from new physics is to be observed.

1.7 Prospects and Conclusion

In conclusion, our 2008 measurement of the electron g/2 is 15 times more accurate
than the 1987 measurement that provided g/2 and α for nearly 20 years, and 2.7
times more accurate than our 2006 measurement that superseded it.

With no uncertainty show-stoppers yet presenting themselves, an entirely new
solenoid, dewar, and trap apparatus has been designed and constructed. Figure1.18
shows the signals from positrons now being stored in the new apparatus. Achieving
the reported electron g/2 uncertainty with a positron to make the most stringent
lepton CPT test seems feasible.

We also intend to seek a much more precise measurement of the electron mag-
netic moment. Several experimental items warrant further study. First is the broad-
ening of the expected lineshapes which limits the splitting of the resonance lines.
Second, the variation in axial temperatures in the observed resonance lineshapes is
not understood, and a larger uncertainty comes from the wider lineshapes. Third,
cavity sideband cooling could cool the axial motion to near its quantum ground state
for a more controlled measurement. Fourth, the new apparatus should be much less
sensitive to vibration and other variations in the laboratory environment.

With QED and the assumption of no new physics beyond the standard model
of particle physics, the new measurement determines α nearly three times more
accurately than any independent method. Given the recent theoretical advance, a
better measurement of the electron g/2 will produce a more precise value of α.

The measured g/2 and an independently measured α test QED and probe for elec-
tron size at an unprecedented precision. Prospects are good that better measurements
will enable even more sensitive tests of the Standard Model.
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