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Abstract

A simple, self-calibrating, rotating-waveplate polarimeter is largely insensitive to light intensity fluc-
tuations and is shown to be useful for determining the Stokes parameters of light. This study shows
how to minimize the in situ self-calibration time, the measurement time and the measurement uncer-
tainty. The suggested methods are applied to measurements of spatial variations in the linear and circular
polarizations of laser light passing through glass plates with a laser intensity dependent birefringence.
These are crucial measurements for the ACME electron electric dipole measurements, requiring accu-
racies in circular and linear polarization fraction of about 0.1% and 0.4%, with laser intensities up to
100 mW/mm2 incident into the polarimeter.

1 Introduction

Light polarimetry [1] is extremely important in physics [1, 2], plasma physics [3] and astronomy [4, 5, 6].
The application that triggered this study was the ACME (Advanced Cold Molecule Electron electric dipole
moment experiment) collaboration’s need to understand the systematic uncertainties in electron electric
dipole measurements from polarization gradients imprinted on laser beam that pass through glass under
mechanical or thermal strain [7, 8]. The simple polarimeter studied here is easy to construct with commonly
available optical elements. Incident light travels through a linearly polarizing beam splitter followed by a
quarter wave plate. Typically, one or the other of these is rotated, and the relative advantages of both
options has been studied [9, 10]. In our polarimeter, both the linear polarizer and the waveplate can be
separately rotated about their axis. In addition to a detector that measures the intensity of the light that
makes it through optical elements as a function of their rotation angles, a detector that rotates with the
linear polarizer greatly reduces the sensitivity to fluctuations in the incident light intensity.

The use of a rotating waveplate polarization analyzer is not new [11], and the basic principles (reviewed
in the Appendix) are well established. What we sought to clarify is what calibrations and measurement
methods are required in a practical device to simultaneously and accurately measure linear and circular
polarization fractions in a time-efficient way. The precise location of the transmission axis of the linear
polarizer and also the fast axis of the waveplate are typically not known initially, nor is the precise relative
phase delay for the fast and slow axes of the waveplate. This work describes the calibration parameters
needed for accurate polarimetry, the minimal set of measurements that are required to do these calibrations,
and the most time-efficient method for accurately measuring the polarization state of incident light. The self-
calibration methods devised and characterized using primarily a linearly polarized calibration light source
are entirely in situ. We avoid removing, inserting or reversing optical elements as is sometimes done [12].
There is no need to modify the assembled polarimeter in any way for calibration. We demonstrate measuring
the circular polarization fraction to an accuracy of about 0.1 %, and linear polarization fractions to about
0.4 %.

A description of the Stokes parameters that fully characterize the information stored in light polarization
is presented in Section 2, along with the concept of the simple polarimeter that is used to measure them.
Details are reviewed and summarized in the Appendix (Sec. 9), along with equivalent conventions for naming
the Stokes parameters. Section 3 discusses what is needed to extract Stokes parameters from the intensity
of the light that makes it through the polarimeter as the optical linear polarizer and waveplate are rotated.
Section 4 describes a laboratory realization of a simple polarimeter that uses two detectors to reduce the
sensitivity to fluctuations in light intensity. Section 5 presents optimized, in situ calibration techniques. An
analysis of the calibration uncertainties and the resulting polarization measurement uncertainties follows in
Section 6. We illustrate the usefulness of the polarimeter with an ellipticity gradient measurement in Section
7 and end with a conclusion in Section 8.

2 Simple Polarimeter

The goal is to characterize the polarization state of partially polarized light that is incident on the
polarimeter. The 4 Stokes parameters [13, 14] (using the naming convention from [11]),

I = I(0◦) + I(90◦) = I(45◦) + I(−45◦) = IRHC + ILHC, (1a)
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M = I(0◦)− I(90◦), (1b)

C = I(45◦)− I(−45◦), (1c)

S = IRHC − ILHC, (1d)

fully characterize the properties of the light. The total intensity I, and the two linear polarizations M
and C, are defined in terms of intensities I(α) measured after the light passes through a perfect linear
polarizer whose transmission axis is oriented at the indicated angles with respect to the polarization of the
incoming light. The circular polarization S is the difference between the intensity of right- and left-handed
circularly polarized light, IRHC and ILHC. Because they are independent of the light intensity, the normalized
Stokes parameters M/I, C/I, and S/I are generally more useful than the Stokes parameters themselves.
The relationships between the Stokes parameters and the electric field of the light are summarized in the
appendix. Alternatives to the labels (I,M,C,S) are (S0,S1,S2,S3) [14], (I,Q,U,V) [15], and (A,B,C,D) [13].

Figure 1: Polarimeter composed of a rotating waveplate followed by a linear polarizer and a detector. The
axes of the optical elements are specified with respect to a reference plane.

The Stokes parameters can be determined using simple optical elements that are readily available and
can be set up in most any laboratory, following Stokes [13] and an early experimental realization [11]. The
light to be analyzed is sent through a waveplate with retardance δ followed by a coaxial linear polarizer
(Fig. 1), along the axis perpendicular to the center of both elements. It is crucial that both of these
optical elements can be rotated in situ for calibration and to fully characterize partially polarized light that
travels through the polarizer to an intensity detector. The fast axis of the retarder is specified by an angle
β = β̃ + β0 with respect to a reference plane. The angle β̃ is read out from an encoder attached to the
retarder plate, and angle β0 is an initially unknown offset. Similarly, the transmission axis of the linear
polarizer is specified by α = α̃ + α0, where α̃ is read from an encoder attached to the polarizer, and α0 is
an initially unknown offset angle. Typically these mentioned axes are indicated on the optical elements. If
so, it is advantageous to assemble the polarimeter so that the magnitude of both α0 and β0 are smaller than
π/4. In situ calibrations can then establish these offset angles more precisely when this is needed. The linear
polarizer has an extinction ratio r, the factor by which the intensity of linearly polarized light is reduced
when its polarization axis is perpendicular to the polarizer transmission axis. This work describes which
calibrations are needed for which measurements, how these can be done efficiently, and how these affect that
accuracy of polarization measurements.

For incident light with a Stokes vector (I,M,C, S), the light intensity detected after the polarimeter
varies in intensity as a function of the encoder angles α̃ and β̃,

Iout(α̃, β̃) = 1
2I(1 + r) + 1

2S(1− r) sin δ sin(2α0 + 2α̃− 2β0 − 2β̃)

+ 1
2C(1− r)[cos δ sin(2α0 + 2α̃− 2β0 − 2β̃) cos(2β0 + 2β̃)

+ cos(2α0 + 2α̃− 2β0 − 2β̃) sin(2β0 + 2β̃)]

+ 1
2M(1− r)[− cos δ sin(2α0 + 2α̃− 2β0 − 2β̃) sin(2β0 + 2β̃)

+ cos(2α0 + 2α̃− 2β0 − 2β̃) cos(2β0 + 2β̃)]. (2)

For an ideal linear polarizer with r = 0, this expression agrees with Stokes [13] for β0 = 0 and with [11, 12],
though β0 is defined with an opposite sign in [11]. An appendix reviews how this expression is derived, and
corrects a typo in [11].

The detected intensity Iout(α̃, β̃) depends upon the parameters δ, r, α0, and β0, as well as upon the
Stokes parameters and upon the angles α̃ and β̃ that are read out from the encoders. These parameters, or
some combinations of them, must be known to determine the incident Stokes parameters from the variations
of the detected intensity as a function of α̃ and β̃. The frequency-dependent relative phase delay δ = π/2 + ε
between the fast and slow axis of the waveplate is always needed. The phase is π/2 for a quarter waveplate,
and ε is typically small. (The optimal value of δ for statistics-limited measurements with low light levels may
differ from π/2 [16], but we do not consider this case.) An in situ calibration procedure for ε is presented.
Calibration procedures are also presented for the combinations of the small offset angles α0 and β0 that are
needed for some measurements, and for α0 and β0 individually.

To emphasize how the detected intensity varies as the waveplate is rotated, Eq. 2 can be written as a
Fourier series in terms of the waveplate encoder angle β̃ as

Iout(α̃, β̃) = C0(α̃) + C2(α̃) cos(2β̃) + S2(α̃) sin(2β̃) + C4(α̃) cos(4β̃) + S4(α̃) sin(4β̃). (3)
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The corresponding Fourier coefficients for a given linear polarizer encoder angle α̃ are

C0(α̃) = 1
2I(1 + r) +

(1− r)[1− sin(ε)]

4
[M cos(2α0 + 2α̃) + C sin(2α0 + 2α̃)] , (4a)

C2(α̃) = 1
2S(1− r) cos(ε) sin(2α0 + 2α̃− 2β0), (4b)

S2(α̃) = − 1
2S(1− r) cos(ε) cos(2α0 + 2α̃− 2β0), (4c)

C4(α̃) =
(1− r)[1 + sin(ε)]

4
[M cos(2α0 + 2α̃− 4β0)− C sin(2α0 + 2α̃− 4β0)], (4d)

S4(α̃) =
(1− r)[1 + sin(ε)]

4
[M sin(2α0 + 2α̃− 4β0) + C cos(2α0 + 2α̃− 4β0)]. (4e)

These coefficients depend upon the offset angles α0 and β0, and the phase delay δ = π/2+ε for the waveplate.
The in situ calibration of these parameters will be discussed in Sec. 5. We note (and will shortly refer to)
the invariance of these equations under the simultaneous transformations β0 → β0 + π/2 and S → −S.

Changing the waveplate encoder angle from β̃ = 0 to β̃ = 2π rotates the waveplate by one complete
revolution. The detected intensity after the polarimeter I(α̃, β̃) varies as illustrated in Fig. 2. Components
that vary as 2β̃ and 4β̃ are clearly visible and the pattern repeats itself when β̃ changes by π because
Iout(α̃, β̃) = Iout(α̃, β̃ + π). For a particular choice of α̃, we typically determine these coefficients by Fourier
transforming (or fitting) the intensity measured as the encoder angle β̃ makes one revolution in 3◦ degree
steps. In principle, fewer points are sufficient to determine the Fourier coefficients. However, in our case we
are limited by the slow rotation speed of the rotation stages such that it does not take significantly more
time to record more measurements for each full revolution. And, the additional points allow us to look for
systematic distortions of the expected pattern.
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Figure 2: Illustration of how the light transmitted through the polarimeter varies with the angle of the
waveplate axis as predicted by Eq. 2.

3 Extracting the Stokes Parameters

What can be measured is the intensity of the light after the polarimeter that is described by Eq. 3 as
the waveplate is rotated (as illustrated in Fig. 2). A Fourier transform (or fit) of such variations determines
the Fourier coefficients C0(α̃), C2(α̃), S2(α̃), C4(α̃), and S4(α̃) for a particular linear polarizer orientation
(given by α̃). The objective is typically to determine the unknown relative Stokes parameters M/I, C/I,
and S/I that characterize the incident light.

Inverting Eqs. 4a-e gives the Stokes parameters for the incident light as a function of the Fourier coeffi-
cients.

I =
2

1 + r

(
C0(α̃)− 1− sin(ε)

1 + sin(ε)
[C4(α̃) cos(4α0 + 4α̃− 4β0) + S4(α̃) sin(4α0 + 4α̃− 4β0)]

)
, (5a)

M =
4

(1− r)[1 + sin(ε)]
[C4(α̃) cos(2α0 + 2α̃− 4β0) + S4(α̃) sin(2α0 + 2α̃− 4β0)], (5b)

C =
4

(1− r)[1 + sin(ε)]
[S4(α̃) cos(2α0 + 2α̃− 4β0)− C4(α̃) sin(2α0 + 2α̃− 4β0)], (5c)

S =
2

(1− r) cos(ε)

C2(α̃)

sin(2α0 + 2α̃− 2β0)
(5d)

= − 2

(1− r) cos(ε)

S2(α̃)

cos(2α0 + 2α̃− 2β0)
. (5e)

The relative Stokes parameters can thus be calculated from a set of Fourier components determined at a
single linear polarizer orientation α̃. Needed in addition are the offset angles α0 and β0, the waveplate delay
ε, and the extinction ratio r, all calibrated to the needed accuracy.

The linear polarization Stokes parameters, M and C, are determined by S4(α̃) and C4(α̃). No angle
calibration is required to determine the intrinsically positive linear polarization intensity L ≡

√
M2 + C2

3



using

L =
4

1− r

√
C4(α̃)2 + S4(α̃)2

1 + sin(ε)
. (6)

The required calibration of the waveplate delay, ε, is discussed in Section 5.3. Distinguishing M and C
requires in addition the cosine and sine of 2α0 − 4β0, the calibration of which is discussed in Section 5.4.
Normalizing to the Stokes parameter I in Eq. 5a requires C0(α̃) in addition, as well as the cosine and the
sine of 4α0 − 4β0, the calibration of which is discussed in Section 5.6.

An attractive normalization alternative determines I with no knowledge of either 4α0−4β0 or ε. Because
both cos(2α0 + 2α̃) and sin(2α0 + 2α̃) change sign when α̃ → α̃ + π/2, the angle dependent parts in Eq. 4
cancel in

I =
1

1 + r
[C0(α̃) + C0(α̃+ π/2)]. (7)

All dependence upon offset angles and waveplate delay is eliminated by measuring at two polarizer angles
that differ by π/2.

The circular polarization intensity S is determined by S2(α̃) and C2(α̃). The magnitude can be deter-
mined with no knowledge of the offsets α0 and β0 using

|S| = 2

1− r

√
C2(α̃)2 + S2(α̃)2

| cos(ε)|
(8)

for any linear polarizer orientation, α̃. The efficient determination of the sign of S is discussed in Sec. 5.5.
For our demonstration measurements, the extinction ratio r was small enough to be neglected (r . 10−5),

though this is not always true. In our case the estimated systematic uncertainty arising from finite r is more
than an order of magnitude smaller than other uncertainties (see Table 1). The contribution of r is discussed
in more detail in the Appendix (Sec. 9).

4 Laboratory Realization with Reduced Sensitivity to Intensity
Fluctuations

Our simple laboratory realization of a rotating-waveplate polarimeter is presented to scale in Fig. 3(a).
The light to be analyzed enters from left through an aperture. It passes through a waveplate (labeled
“QWP” because it is nearly a quarter wave plate) that is mounted on a rotation stage. The light then
enters apparatus mounted on a second rotation stage. What rotates together is a Glan-Laser polarizer
that transmits one linear light polarization along the light axis, through an aperture (Iris 2) to an intensity
detector PD1 (Thorlabs PDA100A). The transverse polarization is diverted to the side of the polarizing beam
splitter, through an aperture (Iris 3) to a nominally identical intensity detector (PD2) that also rotates as
part of this package. Fig. 3(b) is an expanded view of the polarizer.

(a) (b)

Figure 3: (a) Scale representation of polarimeter with variable apertures, a waveplate on a rotating stage,
and a linear polarizer and two detectors that rotate on a second stage. QWP: quarter waveplate, PD1
and PD2: photodetectors. (b) A Glan-laser polarizing beam splitter divides the light into transmitted and
refracted beams which can be used to monitor the total intensity and correct for amplitude fluctuations
in the light source. Spurious reflections of the extraordinary ray need to be blocked (only the first order
reflection is drawn).

The apertures ensure that the light goes through the center of the optical elements. For apertures that
are too large, imperfections of optical elements (e.g. spatial inhomogeneity of the waveplate phase delay)
reduce the measurement accuracy. For apertures that are too small, there are errors due to diffraction. We
found that a diameter of 1± 0.25 mm for the first aperture (iris 1 in Fig. 3) minimized the uncertainties for
our measurements at the wavelength of 1090 nm. We aligned the polarimeter with a similarly small aperture
before the detector (iris 2 in Fig. 3), and then opened it up during measurement to minimize diffraction
errors.

Being able to independently and accurately rotate both the waveplate and the linear polarizer is a distin-
guishing feature of our simple polarimeter for calibration and for measuring the relative Stokes parameters
M/I, C/I and S/I. The two identical precision rotation stages (Newport URS50BCC) are specified to have
a bi-directional repeatability of 0.002◦ and an absolute accuracy of 0.02◦. A computer controls the stepper
motors, reads the encoder angles α̃ for the linear polarizer and β̃ for the waveplate, along with the light
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Figure 4: When rotating the waveplate, the detected intensity varies significantly more for an achromatic
waveplate than a monochromatic waveplate.

intensity measured by both detectors as a function of these encoder angles. For a typical measurement, we
rotate the waveplate from α̃ = 0 to α̃ = 2π in 3◦ steps. The orientation of the linear polarizer, given by
the encoder angle α̃ was changed much less often, generally only between two angles, but these rotations
are very important for calibrating the polarimeter and for checking for possible systematic uncertainties.
Unfortunately, for reasons not understood, our polarization measurements showed that the two rotation
stages accumulated a phase error of about 0.0015◦ per revolution. Fortunately, this error was largely undone
by alternating 360◦ rotations in opposite directions.

Fluctuations in the incident light intensity cause detection variations that can be confused with the
variations caused by rotating the axes of the waveplate and linear polarizer. However, the sum of the two
detector signals should be proportional to the incident light intensity after relative gain and offset factors
are determined and applied to account for detector differences. The relative gain of the detectors can be
determined along with any polarization measurement by minimizing the waveplate-dependent variation of
the summed signal from both detectors [17]. The transmitted signal is then normalized to the sum of
the deflected and transmitted light intensities. The aperture before PD2 must block the reflections of the
transmitted extraordinary ray in the air gap of the Glan-Laser polarizer producing the spurious sideport
beams (Fig. 3(b)).

Hiqh quality optics at the wavelength of the light being analyzed is important. For the measurements
described below, a monochromatic zero-order waveplate (Thorlabs WPQ05M-1064) was used. The fast axis
is clearly marked, making it possible to easily assemble the polarimeter so that the waveplate fast axis had
an offset of β0 ∼ 20◦ or less. There are small variations in the transmitted light intensity from an unpolarized
source even after normalization, as illustrated by the blue points in Fig. 4. These residual variations typically
contribute an uncertainty of less than 0.01% in the normalized Fourier coefficients. This translates into an
error in S/I of smaller than 0.01%. These variations can be much worse. The orange points in Fig. 4 show
variations for an achromatic waveplate (Thorlabs AQWP05M-980). Similar variations [18, 19] have been
attributed to Fabry-Perot-type interference effects [20, 21].

A Glan-Laser calcite polarizing beam splitter was used (Thorlabs GL10-B). This polarizer was designed
to work at laser powers with a linear power density up to 2 kW/cm, without the damage to optical adhesives
that might take place in a Wollaston prism, for example. Its transmission axis is well marked, and it was
assembled such that its transmission axis had an offset from a desired reference axis of α0 = 2◦ or less. This
polarizer was guaranteed to have an extinction ratio (discussed in the Appendix) of r = 10−5 or less which,
we will see, suffices to keep the nonzero r from limiting the uncertainty of our measurements.

The waveplate and the polarizer that make up the polarimeter are ideally aligned so that their optical
surfaces are exactly perpendicular to the direction of propagation of the laser beam. Fig. 5 shows an example
of the systematic uncertainty that arises in measurements of S/I due to a global misalignment of the polarizer
with respect to the beam axis for the incident light. We routinely align the polarimeter to better than 0.05◦

which translates into uncertainties of 0.005% in S/I and 0.05% in L/I.
Light polarization can be measured in various ways [14]. Polarimeters similar to ours, but lacking the

internal calibration mechanism and immunity to intensity fluctuations, can handle up to several mW/mm2

[22, 23, 24] and attain uncertainties of ∼ 1% in the Stokes parameters; they have even been recommended
for student labs [9]. Lower precision is also typically attained using other measurement methods. Light is
sometimes split to travel along optical paths with differing optical elements, the polarization state being
deduced from the relative intensities transmitted along the paths [25, 26, 27, 28]. Alternatively, the light
can be analyzed using optical elements whose properties vary spatially, with the polarization revealed by the
spatially varying intensity [29, 30, 31].

5 Calibration

5.1 Overview

As the polarimeter is assembled, we assume that the transmission axis will be roughly aligned with the
desired reference angle – often the polarization direction of an external source of linearly polarized light.

5
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Figure 5: Misalignment of the polarimeter with respect to the light propagation axis cause systematic
uncertainties in S/I (orange) and L/I (blue). This data was taken with a fixed incoming polarization of
S/I = 16.3% and L/I = 98.4%.

When the encoder for the linear polarizer is set to α̃ = 0, this means that its transmission axis will be at
a small offset angle α0 that is initially unknown. Similarly, we assumed that the fast axis of the waveplate
is roughly aligned with respect to the same desired reference angle. When the waveplate encoder is set to
β̃ = 0, this means that its fast axis is set at a small offset angle β0, also initially unknown. Typically, the
fast axis is marked clearly so that the waveplate can be mounted in roughly the right orientation. If the fast
axis has not been clearly marked, then other methods can be used to locate and mark this axis [32].

What must be calibrated depends upon what polarization measurements are to be carried out with the
polarimeter.

1. All polarization measurements require a calibrated delay δ = π/2 + ε between the fast and slow axis
of the waveplate. This wavelength-dependent delay can be calibrated in situ if it is not known well
enough from the waveplate specification.

2. No calibration of offset angles are required to determine the Stokes parameter I needed to obtain the
normalized Stokes parameters M/I, C/I, S/I because Eq. 7 requires only measurements made at any
two polarizer orientations α̃ that differ by π/2,

3. If only the linear polarization L/I and the magnitude of the circular polarization |S| are to be measured,
no knowledge of α0 or β0 is required.

4. To measure M/I and C/I, a calibration measurement of the angle 2α0 − 4β0 is needed.

5. For small 2α0− 2β0, no calibration measurement of this angle is required to get the sign of S from Eq.
21.

6. Knowledge of the offset angle difference α0 − β0 makes it possible to determine I from Eq. 5a without
changing α̃.

A complete characterization of the light polarization does not require that the offset angles 2α0 and 4β0 be
known individually. However, a way to determine these in situ is provided so these angles can be used as a
diagnostic, if needed.

5.2 Linearly Polarized Light for Calibration

The calibration procedure starts with a high extinction ratio polarizer placed in a light beam before it
enters the polarimeter. The transmission axis of this polarizer is oriented along the desired reference direction
that we wish the polarimeter to use, so that the Stokes vector for the light incident to the polarimeter is
proportional to (1, 1, 0, 0)/2. The detected light intensity then simplifies to

Iout(α̃, β̃) = c0(α̃) + c4(α̃) cos(4β̃) + s4(α̃) sin(4β̃). (9)

The Fourier components are

c0(α̃) =
Ic
4

[
(1 + r)2 +

(1− r)2[1− sin(ε)]

2
cos(2α̃+ 2α0)

]
(10a)

c4(α̃) =
Ic
4

(1− r)2[1 + sin(ε)]

2
cos(2α̃+ 2α0 − 4β0) (10b)

s4(α̃) =
Ic
4

(1− r)2[1 + sin(ε)]

2
sin(2α̃+ 2α0 − 4β0), (10c)

with the constant Ic giving the calibration itensity. The factors (1± r)2 are squared because we assume that
linear polarizer used to make the linearly polarized calibration light is identical to what is in the polarimeter.
Despite the square, however, the extinction ratio correction can typically be neglected if a high quality linear
polarizer is used. The encoder angle α̃ for the linear polarizer is always known because it is directly read

6



out. The waveplate delay factor sin(ε) is prominent, so linearly polarized light can be used to calibrate just
the factor needed to extract the Stokes parameters for any incident light using Eqs. 5a-e.

Certain combinations of the offset angles α0 and β0 are also present and are accessible to calibrations
using linearly polarized light. In particular, the Fourier coefficient c0(α̃) depends upon cos(2α0) and sin(2α0).
The coefficients c4(α̃) and s4(α̃) depend upon cos(2α0 − 4β0) and sin(2α0 − 4β0). These equations and the
offset angle factors are invariant under the symmetry invariance of the linear polarizer (under α0 → α0 +π),
and the invariance of the waveplate (under β0 → β0 + π). Because these equations are also invariant under
the transformation β0 → β0 + π/2, the interchange of the fast and slow axes of the waveplate, the fast and
slow axis cannot be distinguished from each other using only linearly polarized light sent into the polarimeter.

The Ic that is proportional to the intensity of the linearly polarized calibration light can be deduced from
the Fourier coefficients in two ways,

c0(α̃) + c0(α̃+ π/2) = 1
2Ic(1 + r)2 (11)√

c4(α̃)2 + s4(α̃)2 = 1
8Ic(1− r)

2[1 + sin(ε)]. (12)

Both are independent of the orientations of the linear polarizer and the waveplate. The first of these requires
changing the linear polarizer orientation but is independent of the waveplate phase delay. The second does
not require changing the polarizer orientation but it does depend upon the waveplate delay.

5.3 Waveplate Calibration with Linearly Polarized Light

For completeness, and to emphasize the importance of a high quality linear polarizer, we explicitly display
the extinction ratio r in the Appendix and in the displayed equations so far. To simplify this calibration
section we assume that the extinction ratios for the linear polarizers are very small. For both the polarimeter,
and for the external calibration polarizer, we thus set r = 0.

The linearly polarized calibration light can be used to determine the sin(ε) that contains all that must
be known about the relative phase delay between the fast and slow axes of the waveplate, δ = π/2 + ε. Eqs.
11 - 12 together determine

sin(ε) =
4
√
c4(α̃)2 + s4(α̃)2

c0(α̃) + c0(α̃+ π/2)
− 1. (13)

There is no need to know the offsets α0 and β0, no need to assume that they are small, nor must we assume
that ε is small. This equation does not use the measured values of c4 and s4 for a linear polarizer axis at
α̃+ π/2. This is remedied in the more cumbersome expression

sin(ε) =
2
√
c4(α̃)2 + s4(α̃)2 + 2

√
c4(α̃+ π/2)2 + s4(α̃+ π/2)2

c0(α̃) + c0(α̃+ π/2)
− 1 (14)

that could give a lower uncertainty because it makes use of all of the measured values. Choosing α̃ = 0
allows the use of the same calibration data that determines 2α0 for the offset angle calibration (see Eq. 26
below). Choosing α̃ = −π/4 uses calibration measurements that also determine 2α0 in Eq. 25.

As an alternative, we can make use of either of two first order expansions for small ε and α0 to determine
ε rather than sin(ε). This first is

ε ≈ 1 + 2

√
c4(0)2 + s4(0)2 − c0(0)√
c4(0)2 + s4(0)2 + c0(0)

. (15)

The second is

ε ≈ 1

4

[
3− c0(0)√

c4(0)2 + s4(0)2
.

]
(16)

The advantage of this approach is that the phase delay can be determined from measurements at a single
linear polarizer orientation. The restriction is that this encoder angle used must be α̃ = 0. (The same set of
Fourier coefficients thus cannot be used to also determine 2α0 using Eq. 25.) A disadvantage of the above
expression is that it is the leading term of an expansion for small ε and α0. However, we nonetheless found
it useful because the corrections are very small, by factors of order ε and α2

0.
A potentially faster possibility that we have not studied so far is to skip the Fourier transform in favor

of measuring the detected intensity Iout(α̃, β̃) at 4 encoder positions, to determine the ratio

R(α̃, β̃) =
−Iout(α̃, β̃) + Iout(α̃+ π

2 , β̃)− Iout(α̃, β̃ + π
4 ) + Iout(α̃+ π

2 , β̃ + π
4 )

Iout(α̃, β̃) + Iout(α̃+ π
2 , β̃) + Iout(α̃, β̃ + π

4 ) + Iout(α̃+ π
2 , β̃ + π

4 )
. (17)

The waveplate delay is then determined by

sin(ε) = 1 +
2R(α̃, β̃)

cos(2α̃+ 2α0)
(18a)

≈ 1 + 2R(0, β̃). (18b)

The second expression is for a choice of α̃ = 0 and expansion for small α0, with corrections of order α2
0. It

has the attractive feature that it is independent of the angle offsets.
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5.4 Calibration of 2α0 − 4β0 with Linearly Polarized Light

The calibration angle 2α̃− 2α0− 4β0 is needed to extract linear polarization components M and C from
a measured set of Fourier components using Eqs. 5b-c. More precisely, since α̃ is an always known encoder
angle, we need two parameters, a ≡ cos(2α0 − 4β0) and b ≡ sin(2α0 − 4β0), in terms of which Eqs. 5b-c
become

M =
4

1 + sin(ε)

(
cos(2α̃)

[
aC4(α̃) + b S4(α̃)

]
+ sin(2α̃)

[
aS4(α̃)− bC4(α̃)

])
, (19a)

C =
4

1 + sin(ε)

(
cos(2α̃)

[
aS4(α̃)− bC4(α̃)

]
− sin(2α̃)

[
aC4(α̃) + bS4(α̃)

])
, (19b)

Both a and b have the invariance of the linear polarizer (under α0 → α0 + π) and of the waveplate (under
β0 → β0 + π). In addition, both of these factors are invariant under a transformation that swaps the fast
and slow axes of the waveplate, i.e. β0 → β0 + π/2. This means that it is not necessary to distinguish these
axes to measure M and C.

With linearly polarized calibration light, the two needed factors can be determined, independently of the
waveplate delay ε, from Eqs. 10b-c to be

a ≡ cos(2α0 − 4β0) =
c4(α̃) cos(2α̃) + s4(α̃) sin(2α̃)√

c4(α̃)2 + s4(α̃)2
(20a)

b ≡ sin(2α0 − 4β0) =
s4(α̃) cos(2α̃)− c4(α̃) sin(2α̃)√

c4(α̃)2 + s4(α̃)2
. (20b)

Both of these factors are determined uniquely even when we do not know if it is β0 or β0+π/2 that corresponds
to the fast axis of the waveplate. By computing these factors directly, rather than using inverse trig functions
to determine the angle 2α0− 4β0, we avoid any restrictions on either α0 or β0, or the requirement that they
be small.

A calibration measurements of a and b only requires one choice of α̃. A simple choice, α̃ = 0, gives
a = c4(0)/

√
c4(0)2 + s4(0)2 and b = s4(0)/

√
c4(0)2 + s4(0)2. A useful (but time consuming) check on the

alignment and robustness of the polarimeter is to verify that these measured factors for any particular α̃
agree with the values that come from averaging over a full polarizer rotation.

5.5 Calibration Needed to Determine the Sign of S

The most robust way to determine the magnitude of the circular polarization has already been given in
Eq. 8. Determining the sign of S is more difficult because the detected light is invariant under an interchange
of the fast and slow axis of the waveplate, given by β0 → β0 + π/2 and S → −S, as is evident in Eqs. 4a-c.
This means that a sign change for S and an interchange of the fast and slow axis of the waveplate cannot be
distinguished. No in situ method for distinguishing unknown locations of slow and fast axes of the waveplate
is therefore available with this simple polarimeter, what is needed to determine the sign of an unknown
circular polarization. We present two sign-calibration methods, one that makes use of a known fast axis for
a waveplate, and another that makes use of calibration light with a known sign of circular polarization.

If the waveplate fast axis is clearly and accurately marked, then we prefer to assemble the polarimeter
so that this axis approximately lines up with the transmission axis of the linear polarizer and the desired
reference axis for the polarimeter. This causes 2α0 − 2β0 to be small, whereupon Eq. 5e determines

sign(S) = −sign[S2(0) cos(ε)] (21)

without the need to know either α0 or β0 very precisely.
More generally, the circular polarization S is given by both of two expressions,

S =
2

cos(ε)

C2(α̃) sin(2α̃)− S2(2α̃) cos(2α̃)

cos(2α0 − 2β0)
(22)

S =
2

cos(ε)

C2(α̃) cos(2α̃) + S2(2α̃) sin(2α̃)

sin(2α0 − 2β0)
. (23)

A prudent choice of which equation to use avoids the complications of a vanishing denominator. Eq. 22 is
preferred over Eq. 23 for small 2α0 − 4β0, for example. The two factors needed to determine a general S
from measured Fourier coefficients C2(α̃) and S2(α̃) are given in terms of the known sign of the circular
polarization s of the calibration light as

cos(2α0 − 2β0) = sign(s) cos(ε)
C2(α̃) sin(2α̃)− S2(2α̃) cos(2α̃)√

C2(α̃)2 + S2(α̃)2
(24a)

sin(2α0 − 2β0) = sign(s) cos(ε)
C2(α̃) cos(2α̃) + S2(α̃) sin(2α̃)√

C2(α̃)2 + S2(α̃)2
. (24b)

If Eq. 8 is used to determine S, then only the signs of Eqs. 22 - 24b are needed to calibrate the sign of an
unknown S. A good test of the polarimeter comes from comparing the factors determined as a function
of the encoder angle of the polarimeter and the average over measurements that span a complete polarizer
rotation.

8



5.6 Useful Angles Not Strictly Needed to Measure Polarization

The offsets α0 and β0 do not need to be individually measured to completely characterize the unknown
polarization components of incident light, as we have seen. However, individual determinations of these offset
angles can be a useful diagnostic. Also, with an accurately measured difference 2α0 − 2β0, the polarimeter
can be used to deduce I from Eq. 5a (rather than Eq. 7) without rotating the polarizer.

The individual offsets can be determined using linearly polarized calibration light. This is simpler if
the polarizer is assembled to make the offsets α0 and β0 small, as has been recommended. There is no
need for these offsets to be exactly zero because the calibration methods presented here will allow a precise
measurement of the small offsets.

The offset 2α0 can be determined using linearly polarized light, without making an expansion in small
α0, β0 or ε. Applying Eq. 10a for α̃ = −π/4 and α̃ = π/4 gives

2α0 = arcsin

[
2

1− sin(ε)

c0(−π/4)− c0(π/4)

c0(−π/4) + c0(π/4)

]
(25)

which determines the sign and magnitude of a reasonably small 2α0. We assume that sin(ε) has already
been determined from Eq. 13.

A useful alternative requires no knowledge of the waveplate phase ε, and no expansion in small α0, but
we do assume 2α0 is small enough that its tangent is in its principle value region. This calibration also
requires measurements at linear polarizer orientations of α̃ = 0 and α̃ = π/4.

2α0 = 2 arctan

[
1−

√
2

√
s4(0)2 + c4(0)2 − c0(π/4)√
s4(0)2 + c4(0)2 − c0(0)

]
(26a)

≈ 1− 2

√
s4(0)2 + c4(0)2 − c0(π/4)√
s4(0)2 + c4(0)2 − c0(0)

. (26b)

Eq. 26b is an expansion to first order in small α0 that served well for the demonstration measurements.
The cosine, sine and hence the tangent of the small angle 2α0− 4β0 are given by Eqs. 20a-b. The arctan

of this angle determines this angle over the range of −π to π, which means that the polarimeter must be
assembled such that |β0| is smaller than π/4 to to make sure that β0 represents the location of the fast axis
of the waveplate. With 2α0 determined separately by one of the two methods of the previous section, the
result is

4β0 = 2α0 − arctan

[
s4(α̃) cos(2α̃)− c4(α̃) sin(2α̃)

c4(α̃) cos(2α̃) + s4(α̃) sin(2α̃)

]
. (27)

With α0 and β0 separately determined, the offset 2α0 − 2β0 (needed in Eqs. 5d-e to determine the circular
polarization) is also determined if it is separately known to be small. This angle can then be checked against
the value determined using calibration light that is partially circularly polarized (Eq. 24).

6 Uncertainties in Relative Stokes Parameters

6.1 Overview and Statistics

In Sec. 4 we discussed the systematic uncertainties that arise from waveplate imperfections, misalignment
of the incident light pointing relative to the measurement axis, and the finite extinction ratio of the polarizer.
These contributions to the uncertainty in the relative Stokes parameters in our demonstration measurement
are summarized later in Table 1.

For our demonstration measurements, the signals (e.g. from lasers) were large enough and our normal-
ization procedure is robust enough that more signal averaging time no longer reduces our uncertainty. At
this point, the statistical uncertainty contribution for mostly linearly polarized light is about σL/I = 0.05%
and σS/I = 0.01% (see Fig. 6). These values are very small compared to the calibration uncertainties that
are discussed next.

6.2 Uncertainty from the Calibration of the Waveplate ε

If the polarimeter is operated with two polarizer orientations such that I is determined from Eq. 7,
the uncertainties in the normalized Stokes parameters (M/I, C/I and S/I) that come from calibration
uncertainties can be simply estimated. Because all of the extracted Stokes parameters depend upon the
relative waveplate delay phase, δ = π/2 + ε, we start with the uncertainty in the Stokes parameters from the
uncertainty σε in ε. For a waveplate that is nearly a quarter wave plate, ε ≈ 0. The example measurements
make use of a waveplate for which ε ' 35 mrad = 2◦.

Calibration measurements that determine ε are described in Eqs. 13-15. The ε values measured in
our example measurements were typically reproducible to about 0.1◦. The limit seems to be the ambient
temperature variation as well as misalignments inside the polarimeter. For Eqs. 13 and 14 the accuracy with
which we can make a π/2 change in α̃ to determine I is a potential source of systematic uncertainty. The
encoders of our rotation stages contribute a much smaller uncertainty than observed, as has been discussed.

The extracted L/I is inversely proportional to 1 + sin(ε). The uncertainty σL/I caused by an uncertainty
σε in ε for small ε is

σL/I =
L

I
σε. (28)

A delay phase uncertainty σε = 0.1◦ thus determines the linear polarization fraction L/I with an uncertainty
σL/I ≤ 0.2%. This percentage is for light that is 100% linearly polarized; the uncertainty is proportionally
smaller for lower linearly polarization fractions.

9



−0.02 −0.01 0.00 0.01 0.02
deviation from the mean in S/I (%)

0

10

20

30

40

50

60

nu
m

be
r o

f o
cc

ur
re

nc
es

normal
distribution
fit

−0.10 −0.05 0.00 0.05 0.10
deviation from the mean in L/I (%)

0

10

20

30

40

50

nu
m

be
r o

f o
cc

ur
re

nc
es

normal
distribution
fit

Figure 6: Histograms of statistical fluctuation for 300 successive measurements of S/I (left) and L/I (right),
along with a Gaussian fit. This example is for a large linear polarization fraction L/I ' 99% and a small
circular polarization S/I ' 3%

The extracted S/I is inversely proportional to cos(ε). Thus

σS/I =
S

I
ε σε (29)

is smaller than for linear polarization by an additional factor of the small angle ε, which is a factor of 30
for our example waveplate. A delay phase uncertainty σε = 0.1◦ thus determines the circular polarization
fraction S/I with an uncertainty σS/I ≤ 0.006% for for 100% circular polarization. The uncertainty is
proportionally smaller for lower values of S/I.

If after calibration the polarimeter is operated with a single polarizer orientation such that I is determined
from Eq. 5a, the uncertainty propagation from the calibration of ε is more complicated since ε then enters
the equation for I and thus all normalized Stokes parameters. We found that then the uncertainties from
the calibration of ε to 0.1◦ are larger than the above case, up to 0.35% in L/I and up to 0.1% in S/I.
Similar to the above consideration the uncertainties depend on the measured values (though the dependence
is more complicated), e.g. for S/I < 30% the uncertainty contribution is < 0.05%. Though the uncertainties
are larger with the fixed polarizer operation of the polarimeter, for a given uncertainty goal this mode of
operation may be advantageous due to the reduced measurement time.

6.3 Avoiding and Minimizing Offset Angle Uncertainties

If the polarimeter is assembled such that 2α0 and 2β0 are small, as has been recommended, then the
circular polarization fraction S/I can be determined without the need to know anything more about the
offset angles. The magnitude of |S| is robustly determined using Eq. 8. Its sign is given by Eq. 21. The
normalization factor I from Eq. 7 requires only an accurate rotation of the linear polarizer by π/2. There is
thus no contribution to σS/I from uncertainties in the offset angles.

The linear polarization fraction L/I can be similarly determined without any knowledge of the offset
angles. The L can be determined from Eq. 6, and I from Eq. 7. No knowledge of the offset angles is
required, and there is thus no contribution to σL/I from uncertainty in the offset angles.

A complete analysis of the light polarization determines M/I and C/I in addition to L/I. Extracting
these from Eqs. 19a-b requires knowledge of a = cos γ and b = sin γ, where γ = 2α0 − 4β0. Eqs. 20a-b show
that the uncertainties σa and σb should not be very different. A simple estimate of the uncertainties can be
made assuming a small γ. Then σb = σγ from Eq. 20b. In our demonstration measurements we typically
found σb = σγ = 2 mrad, which corresponds to about 0.1◦ in the offset angles. Continuing the estimate for
α̃ = 0 makes it easy to propagate the uncertainty though Eq. 19. The simple estimate for the contribution
to the fractional Stokes parameters from the offset angle uncertainties is σM/I ≈ σC/I ≈ σb L/I. For the
angle offset uncertainty mentioned and L/I = 1, the resulting uncertainty in M/I and C/I is then about
0.2%.

7 Application: thermally-induced birefringence

To illustrate the use of our internally calibrated polarimeter we measure the circular polarization induced
in laser light intense enough to create thermal gradients in glass electric field plates coated with a conducting
layer of indium tin oxide used in the ACME measurement of the electric dipole moment of the electron. This
effect contributed to a systematic error mechanism that dominated the systematic uncertainty in a measure-
ment that was an order of magnitude more sensitive than previous measurements [7, 8]. The polarimeter
makes it possible to see whether improved electric field plates produced for a second-generation experiment
succeed in reducing the thermally-induced birefringence. The uncertainties realized for this example mea-
surement are summarized in Table 1 (the polarimeter was operated with the calibrated angle difference
α0 − β0 such that the Stokes vector can be normalized with a fixed polarizer orientation as described in
Sec. 5).
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Table 1: Summary of the systematic errors for S/I < 30% and L/I > 95%.

Error source (L/I)err [%] (S/I)err [%]
(α0−β0) calibration to ±0.1◦ < 0.03 < 0.005
δ calibration to ±0.1◦ < 0.35 < 0.05
Intensity normalization < 0.1 < 0.02
Alignment of polarimeter < 0.05 < 0.005
Imperfections of waveplate < 0.012 < 0.006
Finite extinction ratio < 0.002 < 0.002
Quadrature sum < 0.4 < 0.06
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Figure 7: The self-calibrated polarimeter has uncertainties low enough to compare circular polarization gra-
dients produced by thermal gradients in first and second-generation glass field plates used by the ACME
collaboration for the electron electric dipole moment experiment. Measurements were taken with an elon-
gated Gaussian laser beam at 1090 nm with waists wx = 1.4 mm� wy ' 30 mm and a total power of 2 W.
Error bars represent a quadrature sum of statistical and systematic uncertainties.

To measure the polarization induced by the field plate birefringence, we start with a collimated high-
power laser beam with the total power of 2 W, wavelength 1090 nm, and a circular Gaussian beam shape
with waists of wx ' wy ' 1.4 mm. The laser beam is first polarized with the Glan-laser polarizer and then
expanded in the y direction using two cylindrical lenses with focal lengths of f = 10 mm and f = 200 mm,
so that the beam shape is elongated with wx = 1.4 mm� wy ' 30 mm. The laser beam then passes through
the glass plate and enters the polarimeter. S/I is measured as the polarimeter is translated on a linear
translation stage in the x direction across the narrow illuminated area on the field plate.

We compare the spatial gradient in S/I for ACME’s first- and second-generation plates. The first-
generation plate was made of borosilicate glass with a thermal expansion coefficient of 3.25 · 10−6 1/K [33].
The indium tin oxide layer was 200 nm thick. The second-generation plate was designed to reduce the
thermally-induced birefringence. It is made of Corning 7980 glass with a lower thermal expansion coefficient
of 0.52 · 10−6 1/K [34]. To reduce absorption, the new indium tin oxide layer is thinner, at 20 nm.

The measured changes in S/I are shown in Fig. 7. The intensity profile of the laser beam in the x direction
is the upper gray curve. The spatial variation of S/I for the first-generation plate are the blue points, with
a smooth curve from a theoretical model [35, 36, 17] that is beyond the scope of this report. The much
smaller spatial gradient of the orange points was measured with the second-generation plate. The substantial
reduction, from S/I = 0.6% to S/I < 0.1%, helped to suppress the corresponding systematic error in the
ACME’s second-generation measurement [37]. The small uncertainties realized with the internally calibrated
polarimeter are essential for this demonstration.

Although circular polarization gradients are less than 0.1% over the diameter of the laser beam, this
small variation is superimposed upon a much larger S/I ≈ 8% offset. This offset can be reduced to be less
than 0.1% by aligning the intensity profile of the intense laser with the polarization axis. However, the offset
is a reminder that mechanical stress in optical windows and other optical elements will typically produce
birefringence.

The 8% offset in our experiment comes primarily from stress in the 5.5 x 3.5 inch vacuum windows that
are 0.75 inch thick, made from the same material as the field plates. With atmospheric pressure on both
sides of these windows, adjusting the tension in screws holding the windows to the vacuum chamber changed
S/I from about 8% to 6%. Pumping out the chamber to put a differential pressure of one atmosphere across
such a window typically changed S/I by up to 3%. Related measurements with the polarimeter showed that
optical elements such as a zero-order half-waveplate could produce residual circular polarization of up to 3%,
which shows that such imperfections of linear polarized light are common. We did not observe unexpected
linear polarization changes from the windows larger than the systematic uncertainties in the measurement.
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8 Conclusion

Optimized measurement and calibration methods are developed and demonstrated for measuring the
unknown linear and circular polarization fractions of light entering an easy-to-construct and easy-to-operate
polarimeter. The polarimeter has a relatively high power handling capability, a substantial immunity to
fluctuations in light intensity, and it can be calibrated internally and in situ, without the need for removing
or realigning any optical elements. In a demonstration measurement the circular polarization fraction S/I
is measured with an uncertainty below 0.1%, while the linear polarization fraction L/I uncertainty is below
0.4%. This determines the polarization gradients due to thermally-induced birefringence in a glass field plate
that were an important source of systematic error in the most precise measurement of the electron electric
dipole moment.

9 Appendix

9.1 Partially and Fully Polarized Light

Elliptical polarization is the most general state of a fully polarized plane wave traveling in the z direction
with frequency ω and wavenumber k. In cartesian coordinates, the electric field is

~E = x̂ E0x cos(ωt− kz + φ) + ŷ E0y cos(ωt− kz), (30)

where the real E0x and E0y give the strength of each of these orthogonal electric field components. The angle
φ is the phase difference between the two orthogonal components.

The Stokes vector [13] defined in Eq. 1 provides a useful alternative way to specify the general state of an
elliptically polarized light. They also make it possible to easily generalize to the case of partially polarized
and even unpolarized light, in which case the total intensity of the light going into a detector I = Iu + Ip,
where Iu is the intensity of the unpolarized components of the light, and Ip is the intensity of the elliptically
polarized light, Ip = E20x + E20y. The Stokes vector for light traveling in the ẑ direction is

~S =


I
M
C
S

 =


Iu + E20x + E20y
E20x − E20y

2 E0xE0y cosφ
2 E0xE0y sinφ

 . (31)

The M and C values quantify the light’s linear polarization with respect to two sets of axes rotated by 45
degrees. S is the circular polarization of the light. Often the polarization of the light is characterized by the
linear polarization fractions, M/I and C/I, along with the circular polarization fraction, S/I.

The square of the polarized intensity

I2p = M2 + C2 + S2 (32)

is the sum in quadrature of the three other Stokes parameter. The linear polarization fraction is

L/Ip =
√

(M/Ip)2 + (C/Ip)2 (33)

and the circular polarization fraction is S/Ip. Thus

(L/Ip)
2 + (S/Ip)

2 = 1. (34)

is a restatement of Eq. 32. Because the relative intensities are summed in quadrature, a plane wave with
nearly complete linear polarization (e.g. L/Ip = 99%) corresponds to a circular polarization that is still
substantial (e.g. S/Ip = 14%).

9.2 Detected Intensity

The intensity of the light at the polarimeter’s detector is given by Eq. 2. The incident Stokes vector,
~S = (I,M,C, S) is transformed to B(β) ~S as the light goes through the waveplate. The Mueller matrix
B(β) for a waveplate whose fast axis is oriented at an angle β with respect to a reference plane, and whose
orthogonal slow axis delays the light transmission by an angle δ is [14, 38, 15, 39, 40]

B(β) =


1 0 0 0
0 cos2 2β + cos δ sin2 2β cos 2β sin 2β(1− cos δ) − sin 2β sin δ
0 cos 2β sin 2β(1− cos δ) cos δ cos2 2β + sin2 2β cos 2β sin δ
0 sin 2β sin δ − cos 2β sin δ cos δ

 . (35)

Because B(β + π) = B(β), the waveplate for angles β = 0 to π has the same optical properties as for β = π
to 2π. This matrix can be derived by inserting the electric fields after the waveplate Eqs. 31. Unpolarized
light with I 6= 0 and M = C = S = 0 emerges as unpolarized light with the same intensity I. The waveplate
transforms M , C and S between themselves.

A Stokes vector ~S is transformed to A(α, r) ~S after it passes through a linear polarizer. The Mueller
matrix for a linear polarizer [14, 38, 15, 39, 40] with its transmission axis oriented at an angle α with respect
to the reference plane is

A(α, r) =


1+r
2

1−r
2 cos(2α) 1−r

2 sin(2α) 0
1−r
2 cos(2α) (1+

√
r)2

4 + (1−
√
r)2

4 cos(4α) (1−
√
r)2

4 sin(4α) 0
1−r
2 sin(2α) (1−

√
r)2

4 sin(4α) (1+
√
r)2

4 − (1−
√
r)2

4 cos(4α) 0
0 0 0

√
r

 . (36)
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An ideal linear polarizer has r = 0. A simple model of an imperfect polarizer is incorporated in this Mueller
matrix [39], namely that light is transmitted perfectly along the polarizer’s transmission axis, the transmitted
electric field along an orthogonal axis is reduced by a factor of the square root of the extinction ratio r. An
ideal polarizer has r = 0, but available polarizers have extinction ratios that range from 10−2 to 10−6. We
will include this factor in the equations of this paper to emphasize the important of using a high quality
polarizer, but will generally assume that we can neglect r with respect to 1 by using a good linear polarizer
with a high extinction ratio. The polarizer used in our example experiment has r . 10−5. The optical
properties for orientations α = 0 to π repeat for orientations α = π to 2π so A(α+ π) = A(α). This matrix
can be derived by inserting the electric fields after a linear polarizer in Eqs. 31.

A linear polarizer transforms unpolarized light with a Stokes vector (I0, 0, 0, 0) into partially linearly
polarized light with Stokes vector 1

2I0 [1 + r, (1− r) cos 2α, (1− r) sin 2α, 0]. If the transmission axis of the
linear polarizer is taken to be the desired reference axis, as we suggest for calibration, then the Stokes vector
for the calibration light is 1

2I0 [1+r, 1−r, 0, 0] with no circular polarization. However, typically stress-induced
birefringence, which has been neglected here, introduces a small residual circular polarization fraction. To
illustrate the robustness of such production of linearly polarized calibration light, in the worst case that
circularly polarized light is substituted for the unpolarized incident light the calibration light acquires only
a circular polarization intensity S = I0

√
r. For our polarizer, this is a very small contamination of the

calibration light, given than
√
r ≈ 10−3,

Returning to the general case, the intensity of the light arriving at the detector is the intensity component
of the Stokes vector for this light. To include the angle offsets in Fig. 1, we let α = α̃+ α0 and β = β̃ + β0
in the Mueller matrices. The detected intensity is then calculated from

~Sout(α̃, β̃, δ) = A(α̃+ α0, r) ·B(β̃ + β0, δ) ~S. (37)

Eq. 2 results from the first component of the above outgoing Stokes vector ~Sout when the matrices are
multiplied and the trigonometric functions are simplified. The corresponding expression in Eq. (16) of [11]
must be fixed by replacing 4β0 by 2β0, and sin2 δ with | sin(δ)|.
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