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Parametrically pumped electron oscillators synchronize abruptly when the pump power exceeds
a threshold and the oscillators are radiatively cooled in a cylindrical Penning trap. The collisionally
coupled electron oscillators are under precise experimental control and exhibit a rich and varied
nonlinear dynamics, with abrupt thresholds, hysteresis, abrupt transitions between bistable response
phases, etc. Synchronized electrons are an ideal probe of the radiation field of a trap cavity, opening
the way to a new generation of electron magnetic-moment measurements and to sideband cooling of

an electron motion to millikelvin temperatures.
PACS number(s): 32.80.Pj, 05.40.+j, 12.20.—m

I. INTRODUCTION

In a recent Letter, we reported the discovery of self-
organized collective motion of collisionally coupled elec-
tron oscillators which are parametrically pumped [1].
The oscillators are electrons suspended in a cylindrical
Penning trap [2, 3] and their internal energy is controlled
by varying their coupling to the radiation modes of the
trap cavity. The use of the self-organized motion as a
probe of the radiation field within the trap cavity, open-
ing the way to a new generation of measurements of the
magnetic moment of the electron and positron, is dis-
cussed separately in more detail [4]. Here we emphasize
the simple observed features related to the cooperative
behavior and nonlinear dynamics in coupled, paramet-
ric electron oscillators. Some of these can be understood
with a simple model wherein the electrons oscillate rigidly
together. Many others, however, are not yet understood
despite the striking regularity in observed features which
suggests an underlying simplicity. A more detailed de-
scription is available [5].

Related systems of coupled oscillators have been stud-
ied in recent efforts to characterize large dynamical sys-
tems which are far from equilibrium. Studies of the
laser, for example, revealed that concepts and techniques
of phase-transition theory can be generalized to this
nonequilibrium system, providing a fruitful analogy to
critical phenomena in a ferromagnet [6, 7]. Also, mod-
est size arrays of Josephson-junction oscillators synchro-
nize when they produce high-frequency microwaves, be-
ing coupled via a common load of passive circuit ele-
ments [8]. Large systems of well-characterized coupled
oscillators are difficult to realize under good control in
the laboratory. No unified theoretical approach has yet
emerged for collective behavior far from thermal equi-
librium. Nonetheless, an increasing number of studies
with a few model systems of coupled limit-cycle oscil-
lators are revealing recognizable cooperative phenomena
such as oscillator synchronization, “clustering,” and “at-
tractor crowding” [9]. Examples include Van der Pol os-
cillators [10] and an “active rotator” model [11], which
are theoretically studied using numerical solutions of cou-
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pled differential equations [10,12,13], using coupled itera-
tive maps [14, 9], using generalized mean-field approaches
[11], as well as using renormalization-group analysis [15].

Parametrically pumped electron oscillators are far
from thermal equilibrium insofar as they are strongly
driven and they continuously dissipate energy into a mi-
crowave cavity. A unique feature is that the oscillators
synchronize to produce an observable, coherent motion
of their center of mass (c.m.) at half the frequency of the
pump. Time translation symmetry requires that any co-
herent response be bistable in phase relative to a subhar-
monic of the parametric pump. The collective motion is
self-organized insofar as the choice between the bistable
phases depends upon the internal motions of the elec-
trons (not upon the external pumping field) and charac-
teristically requires energy dissipation [16]. Transitions
between the bistable phase states depend upon the in-
ternal energy of the oscillators (relative to their c.m.),
reminiscent of a two-state system coupled to a thermal
bath. This internal energy is varied by tuning the radia-
tive dissipation to the cold trap cavity.

An important experimental feature of the electron os-
cillators in a cylindrical Penning trap is that numbers of
electron oscillators, system nonlinearity, damping, etc.,
can be accurately controlled and varied. With a single-
electron oscillator, the conditions can be so simplified
that a most stringent test of QED can be made. With
more oscillators, there is sufficient complexity to provide
interesting and nontrivial nonlinear dynamics with fea-
tures such as hysteresis, bistability, phase jumps, and
thresholds. The precisely controlled system of electron
oscillators remains manageable, nonetheless, offering the
possibility to study in detail an activated barrier cross-
ing in the collective motion of the parametrically pumped
electron oscillators, for example.

The cylindrical trap cavity and the trapped electron
oscillators are introduced in Sec. II. Parametric reso-
nance of these oscillators is discussed in Sec. III, for the
special case that internal electron motions are strongly
cooled via a resonant coupling of electron cyclotron mo-
tion and a resonant radiation mode of the trap cavity.
When the cyclotron frequency of the electrons is swept
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through resonance with radiation modes of the trap cav-
ity (Sec. IV), Lorentzian resonance line shapes are ob-
served which make it possible to identify the standing-
wave field configurations of the cylindrical cavity. Side-
bands are observed due to the motion of the localized
electrons through the standing waves and strong coupling
(Sec. V) between the electrons and cavity also modifies
the observed line shapes. Transistions between bistable
phase responses are discussed in Sec. VI, and Sec. VII
discusses the importance of fluctuations for the system
of parametrically pumped electron oscillators. Through-
out this work, we will switch between frequencies v and
the corresponding angular frequencies w = 27v as is con-
venient.

II. ELECTRONS IN A CYLINDRICAL
PENNING TRAP CAVITY

This study of the collective behavior of parametrically
pumped electron oscillators is made possible by the cylin-
drical Penning trap in Fig. 1, which is constructed to be
the best possible approximation to an ideal microwave
cavity. The cavity walls are split so that sections form
the electrodes of a Penning trap in which only one elec-
tron or more than 10% electrons can be suspended and
studied. Radiation modes of the trap cavity are clearly
observed with resonant frequencies that correspond very
well to the familiar eigenfrequencies of an ideal cylinder,
as we shall see in Sec. IV. We will thus identify and clas-
sify the electromagnetic standing-wave fields in a familiar
way as either transverse magnetic or transverse electric
modes. Trapped electrons are thereby localized within
well-characterized standing wave fields so that the inter-
action of the electrons with the surrounding radiation
field is under precise control.

The familiar eigenfrequencies for a cylindrical mi-
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FIG. 1. Orthogonalized cylindrical trap cavity [to scale

with zo = 0.3838(6) cm and po = 0.4559(6) cm at 4 K|. A
spatially uniform magnetic field (AB/B < 10~° over z0/10)
is along the vertical axis.

crowave cavity of height 2z9 and radius po (Fig. 2) are
given by [17]

2 2

Wmnp = c\/( PO ) + (2zo> ’ (1)
where c is the speed of light. Transverse magnetic modes
are designated by TM,,np With Xmn the nth zero of the
mth-order Bessel function J,,(z), and p = 0,1,2,... in-
dicates the number of standing-wave nodes along the z
axis. Transverse electric modes are designated by TE,.»;
with Xmn the nth zero of the Bessel function derivative
J! (z), and p = 1,2,... . In both cases, m = 0,1,... and
n = 1,2,... . The standing-wave fields are simple ana-
lytic functions which are readily available [17] so we do
not display them here. With these analytic functions it
is possible to calculate the interaction of particular cav-
ity radiation modes with electrons localized in the trap
cavity.

Standing-wave modes which couple to electron cy-
clotron motion (perpendicular to the axis of the cylinder)
are of particular interest. An electric field perpendicular
to the cylinder axis is required and is provided by both
TE1np or TMy,, standing-wave modes. Such modes with
odd p have a maximum transverse electric field (anti-
node) at the center of the trap. Similar modes, except
with even p, instead have a vanishing transverse electric
field (node) at the center of the trap and hence do not
couple to centered electrons. However, spatially displac-
ing the electrons from antinode to node provides a way
to rapidly couple and uncouple the electron and cavity,
turning the cyclotron damping from on to off (Sec. IV).
Moreover, the spatial gradients near the nodes are suited
for sideband cooling thermal motions of electrons along
the cavity axis (Sec. IV).

Anywhere from 1 to 10° or more electrons can be cap-
tured and localized within the cylindrical Penning trap
cavity. The most stringent requirement upon the electro-
static potential V' within the Penning trap is for the study
of one trapped electron. An electrostatic quadrupole is
required to produce a harmonic oscillation of the trapped
particle, along the magnetic field direction z, at a well-
defined and precisely measureable frequency w, which is
independent of small amplitude variations. The potential

FIG. 2. Ideal cylindrical cavity.
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can be written as
22 _ % 02
2d?

where Vj is the voltage applied to the electrodes, d is an
appropriate trap dimension, C; is a dimensionless con-
stant which depends upon the electrode geometry [2],
and AV represents crucial corrections we shall discuss.
The axial dimension z is the distance from the center of
the trap and p is the corresponding radial coordinate. A
particle of charge ¢ and mass m oscillates at axial fre-
quency w, given by
\%

wfzsb—d%(l—i—Cz). (3)
This axial oscillation frequency, at w,/2m = 63 MHz, is
precisely monitored, with small shifts in this frequency
used to derive information about the cyclotron motion of
the trapped electrons, for example.

Traditionally, an electrostatic quadrupole was pro-
duced wusing Penning traps with metal electrodes
painstakingly shaped along the hyperbolic contours
which are the equipotentials of the desired electrostatic
quadrupole. We instead employ the cylindrical geometry
so we can understand and control the radiation field in
the trap cavity, but this is a much less straightforward
way to produce a high-quality electrostatic quadrupole
potential [a small AV in Eq. (2)]. The trap cavity has
its vertical axis z along the axis of a 6-T magnetic field
from a superconducting solenoid. Small slits (0.015 cm)
which incorporate choke flanges (A/4 at 164 GHz) di-
vide oxygen-free high-conductivity copper cavity walls
into two end-cap electrodes (at zo above and below the
trap center), a ring electrode (with radius po), and two
compensation electrodes. The voltage applied to these
compensation electrodes changes AV, with little change
in the electrostatic quadrupole (i.e., in C3) due to a judi-
cious choice of the ratio pg/z¢, which yields this crucial
orthogonalization property [2]. The leading contributions
to AV are given by

V=V (1+Cy) + AV (2)

1 2t —322p2 4 3p*
AV = ~CyVi 8
9 4Vv0 d4
1 26 _ 15,42 4524 5 6
+5Cep 2 F g2 P 1l (g

with C4 tunable between +10~!, while Cg remains rel-
atively constant at Cg =~ —10~!. We are able to tune
| C4 |< 1075 thereby making the axial oscillation of a
single electron sufficiently harmonic so that the driven
axial resonance in Fig. 3 is observed [3] with a signal-to-
noise ratio fully as good as in hyperbolic Penning traps.

Once the potential is tuned optimally, the particle mo-
tions and particle detection of a trapped electron at the
center of the trap is much the same in a cylindrical trap
as in a traditional hyperbolic trap. Three familiar mo-
tions [18] include a cyclotron orbit around a magnetic
field line (at frequency w./2m < 166 GHz), the harmonic
axial oscillation along the magnetic-field direction % (at
frequency w,/2m = 63 MHz), and a circular magnetron
motion (at a much lower 12 kHz frequency) which is not
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FIG. 3. Directly forced axial resonance of a single electron
in a cylindrical Penning trap [3)].

important for our purposes here. A tuned circuit at-
tached to the trap electrodes damps and detects the ax-
ial motion of one electron, or the c.m. motion of more
trapped electrons [20]. The circuit is kept near 4.2 K,
as is the trap, by thermal contact to liquid helium. We
learn about the collective motions of the trapped elec-
trons from this signal.

The driven axial resonance for a single electron in
Fig. 3 is only 4 Hz wide. The width is the damping rate
v, for a single electon. This rate is (30 ms)~! at maxi-
mum, but can be reduced by detuning the axial oscilla-
tion frequency from the resonant frequency of the tuned
circuit. For the c.m. motion of N > 1 trapped electrons,
the damping rate is Nv,. Thus N is determined by the
linewidth of the driven axial resonance (e.g., Fig. 4) di-
vided by the corresponding linewidth for one electron
(Fig. 3).

III. PARAMETRIC RESONANCE

Trapped electrons are driven parametrically by mod-
ulating the otherwise static voltage V, in Eq. (2) at fre-
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FIG. 4. Typical driven axial resonances of the center of
mass of N = 10® electrons.
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quency wgq = 2w,. The spring “constant” for the axial
restoring force becomes modulated

mw? — mw? [1 + hcos(wat)] . (5)

Both the strength of the parametric drive h and its fre-
quency wg are varied as part of these studies. The re-
sponse of the center of mass of the trapped electrons, at
frequencies near w,, is observed in much the same way
[20, 21] as the driven signals in Figs. 3 and 4.

Figure 5 gives a simplified model. Trapped electrons
are represented as oscillators on springs whose modulated
spring constant has just been displayed. Trap electrodes
are represented by the parallel conducting plates. We
observe the current induced through the resistor R (rep-
resenting a resonant tuned circuit) connected across the
plates. Power dissipated in the resistor is responsible for
the axial damping of the c.m., at rate N+,, which has
been mentioned. The oscillatory voltage induced across
R, proportional to the axial velocity of the c.m., is ampli-
fied and electronically processed to give the c.m. energy
and the phase of the c.m. motion relative to the paramet-
ric pump. Because the pump is at twice the response fre-
quency, time translation symmetry requires that any co-
herent, steady-state response of the electron’s c.m. must
have either of bistable phases that differ by 180°.

Throughout the rest of this section we confine our at-
tention to the case where the cyclotron motion of the
trapped electrons is coupled to a radiation mode of the
trap cavity with which it is resonant. (Observed cavity
modes are discussed presently in Sec. IV, in which case
this restriction will be lifted.) Figure 6(a) shows that the
energy in the axial c.m. motion abruptly increases by
orders of magnitude as the strength h of the parametric
pump is increased by less than 0.5 dB across a nonlinear
threshold at h = hr. Below this threshold, the axial c.m.
motion is not detectably coherent with the subharmonic
of the drive at wy/2. (The coherence time is less than 1
ms.) Above threshold, however, the motion is phase co-
herent with the subharmonic of the drive. The coherence
time is greater than 1000 s for N > 2000 electrons.

The pump strength at the sharp threshold hr is mea-
sured to be proportional to the axial damping rate N+,
as shown in Fig. 6(b). The damping rate was varied by
detuning the axial frequency w, from resonance with the
tuned circuit that detects and damps the axial motion.
The threshold ht is separately proportional to the num-
ber of trapped electrons between N = 60 and 18000 as
shown in Fig. 6(c). By carefully measuring the strength
of the pump voltage applied to the trap electrodes, we
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FIG. 5. Simplified detection diagram.
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FIG. 6. (a) Observation of abrupt transition from weak,

disordered motions to large, coherent c.m. oscillation at a
pump strength threshold. Measured threshold varies linearly
(b) with axial damping rate ., and (c) with the number of
electrons N.

find that

hp = N2 (6)
wz
with the proportionality constant established to within
40%.

The measured threshold for the onset of parametrically
excited motion in Eq. (6) is just the threshold which
would be expected if the axial c.m. motion were the
rigid motion of the N electrons. Such rigid motion is
described by the differential equation

Z 4+ (Nv.)Z + w?[ 1+ hcos(wat) |1Z
+AZ3 + 024 =0. (7)

Here Z = ), z;/(INd) is a dimensionless c.m. coordinate,
with z;/d the axial position of the ith electron scaled by
the suitable trap dimension. The nonlinear terms, with
strengths Ay = 2C4/(14C3) and A¢ = 3Cs/(1+C>), arise
from additions to a pure electrostatic quadrupole poten-
tial as has been discussed. For one electron (N = 1)
exactly on the z axis, this equation would be exact. As
the drive strength h is increased through threshold in
Eq. (6), solving this equation shows (in Fig. 7) that Z
initially increases exponentially from Z = 0. The nonlin-
earities are not important near Z = 0 and hence do not
influence the threshold strength hy. However, as Z in-
creases, the nonlinearities arrest the exponential growth
and, together with the damping, establish a steady state
amplitude for Z.

For small oscillations about Z = 0, before the onset of
a large parametric oscillation, the rigid motion equation
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is just Mathieu’s equation with damping. It is well known 106[ h7?
[22] that the Z = 0 solution to this equation is unstable in
aregion in wy vs h space which is bounded by a hyperbola FIG. 9. Observed frequency range of instability (a) in-

(Fig. 8) and given by

_\/hz—h% < wq — 2w, < \/hz—h% . (8)

2 w, 2

Any small fluctation triggers an excitation to large Z. As
damping is reduced, the hyperbola approaches the dotted
rays in the figure. For wy = 2w, exactly, the figure shows
that the threshold is at A = ht as already described.

By increasing the drive frequency, for a fixed drive
strength A > hr and an initial condition Z = 0, we can
further test this rigid model. Figure 9(a) shows observed
line shapes in which parametric excitation is observed
between frequencies w_ and w,. Figure 9(b) shows the
corresponding paths in wg vs h space. In Fig. 9(c) we
plot the square of this excitation range (wy — w_)?% vs
h2. The straight line we observe indicates the hyperbolic
boundary of the instability region anticipated in Eq. (8)
above.

The line shapes for parametric excitation, unlike the
frequency range of instability just discussed, depend
upon the nonlinearities (upon the particular values of
A4 and Ag). Figure 10 shows observed line shapes. The

Pump Freq. d
2

Pump Strength h

FIG. 8.

ieu’s equation with damping (solid hyperbola). Without

damping, the instability region would be instead bounded by

the dotted rays.

Instability region (shaded) for a solution to Math-

creases with h. Increasing wq at fixed h values, as illustrated
in (b), generates this family of parametric resonances. Mea-
sured corner frequencies v (h) and v_(h) fit well to a hyper-
bola (c) when plotted versus h?.

axial c.m. energy is plotted versus the parametric pump
frequency for a pump strength A = 1.3hr. A linear line
shape is observed when Cj is deliberately made large
enough so this nonlinearity dominates [Fig. 10(a)]. When
|C4| is minimized, so the Cg nonlinearity dominates, a dif-
ferent characteristic shape is observed [Fig. 10(b)]. These
shapes are also obtained from the steady-state solutions
[5] to the differential equation Eq. (7). For dominant Cjy,

o

c.m. Axial Energy

-0.5 0.0 0.5
Detuning = (v - 2v )/7,

FIG. 10. Observed resonance line shapes with hysteresis.
Maximum c.m. energy is limited by cavity cooling but line
shapes (a) for large C4 and (b) for negligible C4 agree quali-
tatively with rigid model.
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excited steady states have amplitude given by

41 [2(Q—w, 1 7

where the sign for stable solutions depends on the an-
harmonicity [e.g., the minus sign is chosen if Ay < 0, as
in Fig. 11(a)]. For dominant Cg, nontrivial steady-state
solutions have

81 [2(2—w,) 1
A4:57\§[_“_(w )ii,/hz—h§], (10)

with the same sign selection rule [e.g., Fig. 11(b)]. In
both the observed and calculated line shapes there is
hysteresis. When the pump frequency is swept down for
fixed pump strength the large excitation persists even
after the pump frequency drops below w_ because the
effective resonant frequency is shifted by the large exci-
tation. Hysteresis is also observed (Fig. 12) when the
pump frequency is fixed and the pump strength is swept
back and forth through the region of instability (more
details in Ref. [5]).

The observations discussed in this section are all con-
sistent with a parametric excitation of the rigid motion
of N trapped electrons. In the following sections, how-
ever, we shall see that more detailed observations do not
conform to this simplified model.

IV. CAVITY MODE RESONANCES

We now relax the requirement of Sec. III that the cy-
clotron motion of trapped electrons be resonant with a
radiation mode of the trap cavity. The parametric drive
is fixed at frequency wg = 2w, and strength of about
h = 1.3hr (i.e., 2 dB above threshold), while the mag-
netic field is swept to bring the cyclotron frequency of

c.m. Axial Energy
(@]

Response Freq. v /2

FIG. 11. Calculated rigid model line shapes, showing hys-
teresis of c.m. energy versus pump frequency vq. c.m. energy
is (a) a linear function of pump frequency v4 for C4 < 0 with
Cs = 0, and (b) a parabolic function of v4 for C4 = 0 with
Ce < 0.

J. TAN AND G. GABRIELSE 48
. N
S
(5]

o
3
K|
g _—j
S 0 -
1 1 1 1 1 1 1 1 1 1 1 1 1 1
300 400 500
10’h

FIG. 12. Example of observed hysteresis loop when pump
strength is increased from below threshold into the instability
region and then decreased below threshold, with fixed pump
frequency.

the trapped electrons into resonance with one mode after
the other. Figure 13 shows the experimental setup. The
axial center-of-mass energy is monitored as a function
of solenoid current, which is equivalently calibrated in
terms of magnetic-field strength and electron cyclotron
frequency. The magnetic field is provided by a super-
conducting solenoid designed for precision NMR experi-
ments. The cyclotron frequency is slowly swept into res-
onance with the cavity modes by ramping the current in
the superconducting solenoid (~ 200 H). The current in
the solenoid and the signal from the electron oscillators
are digitized simultaneously and stored in a computer. A
conversion from measured solenoid current to cyclotron
frequency is obtained by exciting a cyclotron resonance
with a microwave source at a high field.

Figure 14(a) illustrates the great sensitivity of the
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FIG. 13. Simplified diagram of the experimental appara-

tus for cavity-mode detection.
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FIG. 14. (a) Cavity resonance observed by monitoring the

axial c.m. energy while slowly sweeping the magnetic field to
vary w., with pump frequency at wq = 2w, and pump strength
h = 1.3h7. (b) Parametric axial resonances for indicated cy-
clotron frequencies as the parametric pump frequency is swept
through wq &~ 2w, while the response at wq/2 is monitored.

parametric resonance at 2w, to resonance between the
cyclotron frequency w! and eigenfrequencies of radiation
modes of the trap cavity. In Fig. 14(a), the axial c.m. en-
ergy rises as the electron cyclotron frequency w/ is swept
continuously through resonance with the TE;;5 mode.
Figure 14(b) shows in more detail how this comes about
for the three indicated detunings between w/ and wiis.
The parametric resonance line shape at each detuning
has the same w_,w; and characteristic shape discussed
earlier, but the level of excitation clearly depends upon
the detuning.

The strongest observed signals (i.e., largest areas) cor-
respond to TE;,, and TM;,, modes with p odd. These
modes couple most strongly to electron cyclotron motions
owing to a nonvanishing transverse electric field at the
trap center and some such modes have quality factors as
high as Q@ = 10%. An extremely fortunate feature, not yet
understood, is that isolated cavity mode resonances such
as Fig. 14(a) typically fit very well to a Lorentzian line
shape as illustrated in Fig. 15. We would expect a rise in
axial c.m. energy at resonance, on the assumption that
the increased cyclotron damping removes internal energy
from the electrons and thus keeps nonlinearities sampled
by the internal motions from disrupting the rigid c.m.
motion described by Eq. (7). Why the rise is Lorentzian
is not clear. Nonetheless, the line shapes and widths re-
main constant as the pump strength and number of elec-
trons is varied over a wide range. In what follows, the
measured resonant frequencies and Lorentzian linewidths
are therefore assumed to be properties of the radiation
modes of the trap cavity.

The extraordinary sensitivity of the synchronized mo-
tion of the electron oscillators to radiative cooling (an
energy transfer to the modes of the trap cavity) allowed
us to observe even weakly coupled cavity modes which
have nodes in the midplane. For modes with standing-
wave nodes at the trap center, the electron cloud experi-
ences a microwave field that is amplitude modulated by
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Cyc. Freq.-99,840 (MHz)

FIG. 15. Lorentzian line shapes (solid lines) fit to ob-
served cavity modes (dots) which are well separated from
other modes.

its driven motion at w4/2 = w,. Such modes (e.g., those
mentioned above except with p even) thus produce two
Lorentzians split by wg as illustrated in Fig. 16(a). One
peak is seen again when we apply a dc offset potential to
the electrodes to shift the electron cloud along the mag-
netic field by A/4 to an antinode of the standing wave
field [4]. (Such studies suggest that the cloud size is at
least less than z0/10.) The motional effect is different
(and typically smaller) for p odd modes since they have
an antinode at the trap center. Nevertheless, for suffi-
ciently large oscillations and for large p, small sidebands
are observed at 2v, on either side of the strong central
peak as illustrated in Fig. 16(b).

With motional effects understood, the observed cav-
ity modes of a Penning trap are identified with famil-
iar standing-wave field configurations, as illustrated in
Fig. 17. Over 100 cavity modes are observed [4, 5] over
a very broad frequency range by sweeping v, from be-
low the lowest cavity mode at 26 GHz up to 166 GHz,
by changing the magnetic field between 0.8 T and the
solenoid’s maximum rated field of 5.9 T. Thermal cy-
cling of the trap apparatus up to 300 K and back to
4.2 K changes the observed resonance frequencies by less
than 0.1%. The modes are identified as transverse elec-
tric TE.,np or transverse magnetic TM,,,, using reso-
nant frequencies which correspond well to those calcu-
lated for a perfect cylindrical cavity [17]. For example,
the azimuthally symmetric TE modes with m = 0 have
high-Q values and are not shifted much by the slits be-
cause induced surface currents flow parallel to the slits,
allowing the trap cavity dimensions to be determined in
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situ at 4 K to within 6 um, as shown in Fig. 18. Calcu-
lated and measured mode frequencies for other modes of
interest agree typically to a percent or better (Fig. 19).
Synchronized electrons allow the identification of the
radiation modes of a trap cavity, and this should prompt
a new generation of electron magnetic-moment measure-
ments. These important measurements provide the most
accurate comparison of theory (quantum electrodynam-
ics) and experiment for an elementary particle and have
alternatively provided the most precise value for the fine-
structure constant. Past measurements [23] employed
hyperbolic Penning trap cavities whose microwave prop-
erties were almost entirely unknown experimentally and
whose resonant modes have only been crudely calcu-
lated numerically [24]. A cavity-modified spontaneous-
emission rate for one electron in a hyperbolic trap cav-
ity first focused attention upon these problems [25], and
a “bolometric technique” later added evidence for some

c.m. Axial Energy

115
TM123 ‘j\¥ 5
£x]
[_‘
0 1

P T P P T T T P T T
93 94 95 96 97 98 99 100 101 102 103

Cyclotron Freq. (GHz)

FIG.17. A smallslice of the cavity mode spectrum (taken
in 34 min) with a signal proportional to energy in the axial
c.m. motion. A full spectrum is in [4] and [5].

sort of modes in another hyperbolic cavity [21]. How-
ever, no mode was identified by its field symmetries and
it remains unknown whether the observed modes of traps
used for these precision experiments even couple to a
single electron at their center. Moreover, the Q val-
ues quoted are only estimates given that Lorentzian line
shapes were not established. The largest error assigned
[23] was thus based on calculated frequency shifts for a
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cylindrical trap model [24] of unknown applicability.

In the well-characterized radiation field of a cylindri-
cal Penning trap, cyclotron damping and frequency shifts
can be systematically studied as a function of detuning
of the cyclotron frequency from the resonant frequency
of identified modes. Comparisons with simple theoretical
forms [4,24] (appropriately corrected for renormalization
effects) should be possible because the field symmetries
are well known. In addition, the intense microwave gradi-
ent field built up in a high-Q mode with pevenand m =1
should allow sideband cooling [26, 18] at w/ — w, of un-
damped axial motion (uncoupled from the LCR circuit)
to millikelvin temperatures [27]. This temperature would
be 10% times lower than previously achieved with an el-
ementary particle. These same modes have a transverse
magnetic field at the cavity center that could directly flip
an electron spin without exciting cyclotron motion.

V. STRONG COUPLING

Isolated modes fit well to Lorentzian line shapes, as
has been illustrated. Non-Lorentzian line shapes are also
observed when an electron cloud and a cavity mode are
strongly coupled. To illustrate the line-shape modifica-
tion, Fig. 20(a) shows the observed resonance for TEq;5
which fits well to a Lorentzian line shape, with small
number of electrons. The number of electrons is in-
creased in Fig. 20(b), resulting in broadening of the line,
especially at its base. With further increase in trapped
electrons, the observed resonance is split, as shown in
Fig. 20(c).

For weak coupling, the decay rate of one cyclotron os-
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FIG. 20. The Lorentzian line shape (a) is modified to the
strongly coupled line shapes in (b) and (c) as the number of
electron N is increased to increase the electron-cavity cou-
pling.

cillator to the Mth cavity-mode is given by

™™

YT 1y (11)
where § is the detuning between the cyclotron and cavity-
mode resonant frequencies. A useful parameter for com-
paring the coupling time between the c.m. cyclotron mo-
tion of N electrons and a cavity mode, on the one hand,
to the decay rate of the standing wave itself due to losses
in the cavity walls, on the other hand, is defined by the
ratio of these coupling rates

- M (12)
1NV,

The numerator gives the rate of energy transfer from the
c.m. cyclotron motion to the Mth cavity mode. It is pro-
portional to N? because this rate depends on the square
of the charge of the oscillator. The denominator I'ps
gives the rate of energy from the cavity mode due to
losses in the cavity walls. The weak-coupling approxima-
tion, which provides Eq. (11), is valid when n < 1. We
rewrite 7 defined in Eq. (12), as

4 yu rewM
S R T I

in terms of known quantities (from calculations and mea-
surements), with r. being the classical electron radius
and v, being the decay rate of one electron in free space.
The factor in square brackets is calculable, depending
only on the geometry of the cavity. It is tabulated in
Ref. [5] for the trap in Fig. 1. The coupling increases
in proportion to the square of N and the square of Q.
By making NV and @ sufficiently large, the coupling time
for the cloud and a mode can be shorter than the decay
time for the cavity mode itself I'ps = wpr/Q. Under this
strong-coupling condition, the weak-coupling approxima-
tion breaks down because the c.m. cyclotron oscillator
and the cavity mode can form normal modes. For TE;s,
we observed that vps = 99.84 GHz and Qs = 690 in the
weak-coupling limit, and therefore

n=6.51 x 1078 N2, (14)

With 700 electrons, n = 0.03, a Lorentzian line shape is
observed, consistent with Eq. (11). Broadening of the line
shape is observed when N = 2 x 10%, which corresponds
to n = 25. Evidence of normal-mode splitting is obtained
when the number of electrons is increased to N = 105,
corresponding to 7 = 650. Normal-mode splitting has
been observed recently in other systems with atoms cou-
pled to a cavity mode as an atomic beam passes through
a high-finesse optical cavity [28, 29].

VI. TRANSITIONS BETWEEN
PHASE-BISTABLE STATES

A coherent response of a system which is driven at
twice the response frequency can with equal likelihood
have either of steady-state phases which differ by 180°.
An electronic signal proportional to cos(x) is observed,
from phase sensitive electronics as in Fig. 5, where x
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is the phase difference between the phase of the axial
center-of-mass motion and an oscillator which oscillates
at exactly half of the frequency of the parametric pump.
A change from one bistable oscillation phase to the sec-
ond (displaced by 180°) thus corresponds to a change in
sign in the observed electrical signal. The signal is also
proportional to the amplitude of oscillation.

We observe abrupt transitions between the two phases,
as illustrated in Fig. 21. These transitions appear to be
similar to those attributed to a much poorer vacuum in
an earlier experiment with only one electron [19]. Based
upon antiproton measurements in a similar apparatus
[30], however, we expect our pressure is below 5 x 10717
Torr so that collisions are entirely irrelevant to these ob-
servations. Thousands of flips observed over many hours
produce the distribution of time between flips 7, illus-
trated in Fig. 22 for N = 750 electrons. The distribution
of times between flips is exponential, indicating the flips
are random over all but the shortest times. However,
there is a distinct “overabundance” of short residence
times. In Fig. 22(a), more than 30% of the observed
transitions occur during the first 5 s of the 50-s time bin.

A close look at the transitions themselves reveals a
diversity of jump “trajectories,” as illustrated in Fig. 23
for identical N = 700 electrons. In many cases [e.g.,
Fig. 23(a)], the c.m. motion first collapses for a period
which can be as long as 100 ms, and then the transition
is completed. In some cases a transition is preceded by
a period of increased fluctuations [Fig. 23(b)]. In other
cases [Figs. 23(c)-23(e)], completion of a transition takes
several attempts in rapid succession. Figure 23(f) shows
a rare event in which the c.m. motion appears to be
oscillating unabated between the “basins” of two phase
states. The duration of the transitions 7; defined loosely
in Fig. 23(a), has a distribution between 10 and 100 ms

€< !
—
0 1 (a) T -—%
=)
T T T x T T T T T
= F
~ —
g o - (b) 2
8 E)
o 1 1 1 1 1 1 L 1 1
< 0 10 20 30 40 S50 60 70 80 90 100

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)
FIG. 21. (a) and (b) Random transitions between phase-

bistable states. (b) The mean residence time 7 on average
becomes shorter with increasing detuning between cyclotron
and cavity mode frequencies. Disordered motion (c) results if
cyclotron cooling is weak.
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depending upon pump strength, anharmonicity, number
of electroms, etc., as illustrated in Fig. 24(b).

The mean time between transitions (or mean resi-
dence time) 7 varies greatly when system parameters are
changed. It increases rapidly with the number of elec-
trons N since the fluctuating motions of a larger number
of electrons average to a smaller sized fluctuation of their
c.m. motion [Fig. 25(a)]. For N > 2500, no transition
is observed over hours when w/ is resonant with a cavity
mode such as TEj15. The mean residence time is also
observed to be longer for larger C, [Fig. 25(b)], appar-
ently because a more anharmonic trap reduces the inter-
nal energy. The internal energy may be lower because
the amplitudes of desynchronized oscillations are smaller
and the cooling of internal oscillations via the LC'R cir-
cuit is more efficient with larger anharmonicity. The
switching rate increases rapidly with increasing internal
energy. Consistent with this interpretation, an increase
in the pump power [Fig. 25(c)] or a stochastic modula-
tion of the spring constant w? (by applying a broadband
noise potential to the ring) diminishes the mean residence
time. The internal energy is conveniently controlled via
the electron-cavity interactions. Figure 25(d) shows the
rapid decrease in mean residence time 7 for a cloud of
N = 400 electrons as the frequency w/, is detuned from
resonance with the TE;;5 cavity mode in Fig. 17). Tran-
sitions occur least frequently very near to resonance with
a cavity mode [Fig. 21(a)] where the internal motion is
most strongly cooled. The switching rate 7! increases
[Fig. 21(b)] when a slight detuning of w, from the mode
resonance allows the internal energy to rise. As the de-
creasing residence times 7 become comparable with the
phase jump times 77, the c.m. motion becomes “tur-
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bulent.” The observed signals of the two phase states

are lowered and punctuated by random periods of inco-
herence. Further off resonance [cross-hatched region in
Fig. 25(d)], the internal energy increases sufficiently so
that the random, desynchronized motions of the electrons
keep a detectable coherent c.m. motion from developing
[Fig. 21(c)] because of the nonlinear couplings.

VII. FLUCTUATIONS AND RELATED
PHENOMENA

The simplicity of a rigid model facilitates insight into
the collective behavior of parametrically pumped elec-
tron oscillators. As we have seen, however, this model
cannot explain the Lorentzian line shapes of observed
cavity-mode resonances, why the parametric axial reso-
nance is at all sensitive to resonant cyclotron damping
by the cavity modes, or the random transitions between
the phase-bistable states. Even when cavity cooling of
internal motions is maximized, there is more interesting
non-rigid behavior, which we now survey.

Near threshold (h = hr, wg = 2w,), the character
of the quiescent state changes rather dramatically with
small change in the pump strength. Fluctuations in the
c.m. motion grow as the pump strength increase toward
the threshold, as shown on magnified scale in Fig. 26(a),
but the coherence time remains short. To observe fluctu-
ations in the signal directly, a storage scope captures the
amplified i.f. signal, externally triggered by a precision
frequency synthesizer at the same frequency and is coher-
ent with the parametic pump. Fluctuations persist above
the threshold in the partially coherent c.m. motion, with
observable deviations [dotted lines in Fig. 26(b)] from a
mean coherent oscillation [solid line in Fig. 26(b)] and
interesting consequences for this phase-bistable system,
as already discussed. Both coherent and stochastic com-
ponents of the c.m. motion are examined in more detail
using a spectrum analyzer to observe the Fourier distri-
bution of signal. The electron oscillators are pumped by a
frequency synthesizer with very high spectral purity, suit-
able for high-precision radio-frequency spectroscopy. We
study changes in the response spectrum brought about
by varying a system parameter. In Fig. 27, the mag-
netic field is changed, to detune w! from resonance with
a cavity mode by a detuning of §, to control the radiative
cooling of internal motions. The Fourier spectrum of the
response above threshold consists of a broad “pedestal”
due to fluctuations and a sharp peak which is orders of
magnitude stronger due to the coherent motion. The
fluctuation spectrum spectra are averaged over 100 sam-
ples. The highest three points in Fig. 27 (log-linear plot)
shows the coherent component at v4/2 decreasing as the
internal energy is increased by detuning the w! from a
cavity mode. The spectrum of the fluctuations broad-
ens with increasing detuning from a cavity mode (i.e.,
increasing internal energy).

The threshold of instability hz is observed to be inde-
pendent of internal energy, as illustrated in Fig. 28 (ob-
tained by sweeping the pump strength for the identical
detunings used in Fig. 27), except for a small fluctuation
at the 1% level. The energy in the coherent c.m. motion
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FIG. 25. Dependence of mean residence
time 7 on control parameters. Mean time be-
tween phase flips versus (a) number of elec-
trons N, (b) anharmonicity coefficient |C4|,

(c) pump strength h, and (d) detuning be-
tween cyclotron frequency and a cavity-mode
eigenfrequency d..
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increases as the cyclotron frequency is tuned closer to the
cavity eigenfrequency (for TE;;5). It is noteworthy that
Fig. 28 shows less noise in the measured mean-squared
amplitude for larger detunings from the cavity mode. It
appears that the frequency spectrum broadens but am-
plitude noise is reduced when the cyclotron frequency is
detuned from cavity-mode resonance. A more detailed
study of the amplitude and phase fluctuation as a func-
tion of cavity cooling would be interesting.

The limitations of the rigid model become obvious
again, even when the radiative cooling of internal mo-
tions is maximized. With the electrons resonantly cooled
by the mode TEj;5, the Fourier spectrum is observed to
change dramatically with increasing pump strength, as
shown in Fig. 29 (each spectrum is an average of 100 sam-
ples). Only the broad, fluctuation spectrum is present
below threshold [Fig. 29(a)]. The observed width is of or-
der N+, /27 but becomes narrower as the pump strength
approaches the threshold. When the pump strength ex-
ceeds hr, a sharp peak [much narrower than the detection
bandwidth of 5 Hz in Fig. 29(a) and 25 Hz in Fig. 29(b)]
emerges from a larger pedestal. The pump strength is
increased first in increments of +1 dB in Fig. 29(a) and
then in increments of +2dB in Fig. 29(b). The fluctua-
tion spectrum broadens as the pump strength increases
and is skewed for high pump strengths [Fig. 29(b)].
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FIG. 26. Sampled IF signal illustrates (a) incoherent re-

sponse for h < hr and (b) long-term coherence for b > hr.
Dotted lines in (b) show maximum deviations from mean co-
herent response (solid curve).
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FIG. 27. Fourier spectra of responses for various detun-
ings from a cavity mode. Coherent response (peak in a single
channel) diminishes as cyclotron frequency is detuned from
cavity-mode eigenfrequency, but fluctuation spectrum broad-
ens.

Figure 30 shows the power in the peak (squares) and
the integrated power in the fluctuation spectrum (cir-
cles) versus pump strength for the data set shown in
Fig. 29. The integrated power of the fluctuation spec-
trum is the sum of contributions from each frequency
bin with the white-noise background subtracted and the
peak removed by omitting the central bin. Above thresh-
old, the coherent component grows with pump strength
but saturates at h =~ 1.6hr and slowly decreases for
1.6hy < h < 6hp. This is an important disagreement
with the rigid model, which predicts the c.m. energy
to be a monotonically increasing function of the drive
strength. For example, if the leading anharmonicity A4
is dominant, then the squared amplitude of the steady-
state rigid motion goes as

A? o y/h? — 2 (15)

when the drive frequency is wgq = 2@,. On the other
hand, Fig. 28 shows that observed energy in coherent
c.m. motion is limited by cooling via radiation into the
cavity, as well as by anharmonicity as would be expected
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FIG. 28. Energy in axial c.m. motion versus pump

strength for various detunings between cyclotron frequency
and TE;15 eigenfrequency.
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sharp peak emerges as pump strength exceeds threshold (a),
with only broadband spectrum appearing below threshold.
Fluctuation spectrum continues to broaden with increasing
pump strength (b), becoming skewed for very strong pump-
ing.

for rigid motion. In spite of the disagreement, the ob-
served line shapes (Fig. 10) agree qualitatively with the
rigid model (Fig. 11). Taking a linear line shape such
as in Fig. 10(a) as an example, the line shape is well
preserved but the slope is observed to decrease when ra-
diative cooling is reduced. The c.m. energy decreases
also if the cyclotron oscillators are heated up with a mi-
crowave drive, as illustrated in Fig. 31.

The mechanism whereby the partially coherent c.m.
motion becomes very sensitive to both cyclotron cooling
and anharmonicity is not understood. It appears that
individual electron oscillators may be excited to large
amplitudes that are limited by anharmonicity and that
the observed coherent response is generated by their syn-
chronized component which would be strongly influenced
by thermal processes involving energy exchange between
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FIG. 30. Comparison of power in the peak (squares) with
the integrated power in the fluctuation spectrum (circles) for
the data set shown in the preceding figure.
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drive. Measured energy in axial c.m. motion with parametric
drive at lower corner frequency vq = v_ is plotted versus nor-
malized microwave drive power (dots). A simple form (solid)
fits well to it.

the axial and cyclotron motions. It is this sensitivity of
the partially coherent c.m. motion to cooling of the in-
ternal motions [Fig. 28(a)] which has been very useful
for probing the electron-cavity interactions (Fig. 14) so
important for other radiative studies. We also find that
the root-mean-squared (rms) saturation signal scales lin-
early with the number of electrons [Fig. 32(a)]. The rms
signal below threshold is also consistent with a linear de-
pendence on the number of electrons, but the slope is
about 50 times smaller [Fig. 32(b)].

In contrast to the saturation and decline in power of
the peak, we observe that the power in the fluctuation
spectrum increases monotonically for h < 6hr (Fig. 30).
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FIG. 32. Scaling of induced current with number of elec-

trons (a) above threshold and (b) below threshold.

The rate of growth in fluctuation power decreases with
pump strength. There are a few steplike structures where
the fluctuation spectrum changes very little with incre-
mental rise in pump strength, but more data are needed
to confirm this and to improve the resolution. The pow-
ers in the peak and pedestal are converging for h < 6h7.
It is not known if this convergence continues for higher
pump strengths which we have not yet been able to probe
experimentally.

A parametric drive excites not only the collective, c.m.
motion of N electron oscillators but also internal degrees
of freedom. Even for small systems (< 100 electrons),
the full dynamics is difficult to analyze. In the past,
a “bolometric” model [20] was developed for the disor-
dered, thermal motions of trapped electrons or ions and
a simplified set of rate equations was thoroughly tested
in experiments with electrons at T' ~ 80 K [20]. In those
early experiments, pulsed excitation showed that internal
degrees of freedom come into thermal equilibrium so fast
that they essentially form a single reservoir, with equili-
bration time shorter than other relaxation times. Since
our apparatus is submerged in liquid He, simplifying as-
sumptions used in earlier studies may not apply at the
lower temperatures. A few pulsed excitation experiments
were carried out in our apparatus. For example, Fig.
33(a) shows the response when electrons initially at 4 K
are heated with a parametric drive below threshold in pe-
riodic 10-ms pulses. A storage oscilloscope captures the
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FIG. 33. Characteristic responses to pulsed parametric
pumping (a) below threshold and (b) above threshold. Aver-
aging over 256 pulses improves the S/N ratio (a) below thresh-
old, but the response from a single pulse is easily observed
(b) above threshold. Slow relaxation (b) follows intial rapid
growth, above threshold.
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response from each pulse and gives an output averaged
over 256 pulses to improve the signal-to-noise ratio. Fig-
ure 33(a) shows the smooth relaxation which is charac-
teristic of the response in a bolometric model [20] and, as
expected, relaxation time is observed to be shorter when
anharmonicity is increased (|Cy4| is made larger). This in-
dicates that energy is transferred between internal reser-
voir and c.m. motion via the nonlinear couplings. How-
ever, when the pump strength is above threshold, new
features are observed. Figure 33(b) shows the substan-
tially larger response of the partially coherent response
to a single 250-ms pump pulse above threshold. This re-
sponse has a rapid initial growth overshooting the steady
state, characteristic of parametric resonance discussed in
Sec. III. Rapid growth stops abruptly and is followed
by a much slower relaxation to a mean steady level with
fluctuations. “Ring down” to the steady level (expected
in rigid model, Fig. 7) is not observed, presumably being
“washed out” by internal fluctuations. The slow relax-
ation to steady level is about 30 times longer than the
typical rise time of the initial rapid growth or observed
relaxation times below threshold. This new time con-
stant does not seem very sensitive to changes in anhar-
monicity and pump strength, but this has not yet been
studied in any detail. A more systematic study would
extend over the full range of control parameters, includ-
ing dependences on number of electrons and on detuning
of cyclotron frequency from cavity-mode resonance, etc.

To see that Fig. 33(b) is a difficulty for a bolometric
model, we now give a simplified set of rate equations
describing energy transfer between axial c.m. motion
and internal reservoir. Experimental evidence of its lim-
itations follows. Below threshold, the bolometric model
provides

Csz el —gzO(Tz - TO) + g‘LZ(T’L - Tz) + Hza (16)
CiTy = —gio(Ts = To) + ¢=i(To = Ti) + Hi,  (17)

where, for simplicity, the tuned circuit and cavity are as-
sumed to be at the same temperature Tp. The axial c.m.
oscillator has temperature T, with heat capacity C,. A
reservoir formed from all internal oscillations has tem-
perature T; with heat capacity C;. Damping of the c.m.
motion due to a tuned circuit is characterized by conduc-
tivity g,0. Internal motions decay to Ty at a rate g;o/C;.
Energy transfer between c.m. motion and the internal
reservoir is characterized by conductivity g;, = g,;. For
sufficiently high temperatures, the thermal conductivities
gi; and heat capacities C; are approximately independent
of temperature. A set of linear, first-order differential
equations, such as Egs. (16) and (17), cannot generate a
response such as in Fig. 33(b).

Although this set of equations has been shown to be
valid for temperatures above or near 80 K for weak pump-
ing of trapped electrons [20], a more general system of
equations would be necessary for electrons cooled to near
liquid He temperature if the temperatures of the axial in-
ternal motions 7| and transverse internal motions 7', do
not equilibrate faster than other relaxation rates. Anal-
ysis of binary collisions in a strongly magnetized elec-
tron gas indicates a strong temperature dependence in
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FIG. 34. Pulsed cyclotron excitation. Slow growth and

fast decay in the axial c.m. energy indicates temperature
dependence in the equilibration process.

this equilibration rate at very low temperatures, drop-
ping rapidly as T — 0 [31-33]. In our study, pulsed
cyclotron excitations show some evidence for this. In
Fig. 34, the energy in the axial c.m. motion of N = 1600
electrons is monitored with a storage scope as a square
wave activates a microwave drive to excite the cyclotron
motions for 10 s, and then deactivates the drive for the
next 10 s. The output is averaged over many drive cycles.
(The parametric drive is disconnected.) If the equilibra-
tion rate is significantly smaller at lower temperature,
then the rise time in the energy of the axial c.m. mo-
tion when cyclotron heating is turned on would be much
longer than the decay time when heating is turned off.
Observed relaxation is clearly non-exponential with the
rise time significantly longer than the decay time, indi-
cating a slower relaxation at low temperatures. As shown
in Fig. 34, nearly 2 s after the microwave drive was ap-
plied, observed axial c.m. energy increased by less than
10%, but faster growth followed. In contrast, axial c.m.
energy has dropped by over 80% within 2 s after the
drive was turned off. More detailed experimental study
near 4 K (at which 90% of cyclotron oscillators are in
the ground state) may reveal other interesting features
due to temperature-dependent collisional processes and
may establish a generalized set of rate equations for low
temperatures.

VIII. CONCLUSIONS

A cylindrical Penning trap makes it possible to study
both a single trapped electron and the nonlinear dy-
namics of parametrically pumped electrons. Anywhere
between 1 and 105 electron oscillators can be isolated
near the center of this trap cavity, localized in the simple
standing-wave patterns of the radiation field which is ex-
cited by the motion of the electrons. Measured radiation
mode frequencies agree very well with those calculated
for an ideal cylindrical cavity, making it possible to iden-
tify the standing wave patterns in a trap cavity.

Many observed features are consistent with a simple
model wherein the parametrically pumped electrons os-
cillate rigidly. The oscillators center-of-mass responds
weakly and stochastically until the pump strength is in-
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creased through a sharp theshold. Above the threshold,
a strong response is observed which is coherent with the
parametric pump. Resonance line shapes change as ex-
pected when the anharmonicity of the electron oscillators
is varied.

Many other observed features cannot yet be accounted
for by any simple model. The axial response not only
depends upon coupling of electron cyclotron motion to
a radiation mode of the trap cavity, but it does so in a
way that produces Lorentzian line shapes. The center
of mass of the electron oscillators abruptly makes nearly
random transitions between degenerate response states
which differ in phase by 180°. This collective behavior
is self-organized insofar as the transition rate increases
with increasing energy in the electron’s internal motions.
Observations on shorter time scales reveal a variety of
phase jump “trajectories.” Hysteresis is observed when
either the strength or the frequency of the parametric
pump is changed. Above the threshold, the stochastic
component of the response grows with increasing pump
strength.

The underlying simplicity of the many observed fea-
tures (Lorentzian line shapes, exponential distribution of
residence times, etc.) will hopefully prompt theoretical
studies of this new nonlinear oscillator system. To this
end, the dependences of the observation upon the sys-
tem parameters are presented. System parameters such
as the number of electrons, oscillator anharmonicity and
damping, parametric pump strength and frequency, mag-
netic field, etc. are all under precise control. It should
be possible in the future to study the onset of collective
behavior as electron oscillators are added one at a time.

The first-time identification of radiation modes of a
trap cavity is an initial application. A new generation of
measurements of the electron’s magnetic moment should
be possible that are not limited by either cavity shifts of
measured frequencies or by the broad damping linewidths
which occur in free space. A thousand-fold decrease in an
electron’s axial temperature also seems feasible with the
microwave field in the trap cavity under precise control.
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APPENDIX

A thorough analysis of coupled, parametrically
pumped electron oscillators is not yet available, but this
system is so well characterized that the full equations of
motions of NV electrons coupled to one cavity mode can
be written down. The wide range of experimental control
over system parameters allows some simplifications to be
made. The kth electron has three degrees of freedom rix=
(zk, Yk, 2 ), which are made dimensionless by scaling to
the size of the trap d. The coupled oscillations parallel to
the symmetry axis of the trap (or to the magnetic field)
satisfy
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Terms with coefficients C; and Cg are due to deviations

from an electric quadrupole potential. The series on the

right-hand side describes the interparticle Coulomb re-
pulsion. We assume that the axial frequency w, is tuned
into resonance with a detection (LCR) circuit [5] so that
the damping term, proportional to the center-of-mass ve-
locity, accounts for the energy dissipation in the resistor
representing the detection circuit.

For the (transverse) motions in the zy plane, we have
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Coupling terms due to anharmonicity and Coulomb in-
teraction are similar to those for the axial motions.
Analogous to interaction between axial oscillator and a
tuned circuit, the cyclotron oscillations are coupled to
a standing-wave mode of the cavity. For simplicity, we
have assumed the electrons are interacting withanm =1
cavity mode near the trap symmetry axis. Then the di-
mensionless field components (fe, f,) near the trap center
are governed by [24]

fe fe 2 ([ fa
(f;,) T (f;,) @ (fy)
N .
Te Tk
- V 20 M k2:1 At (rx) (%)

= 0, (A4)

8.56 x 1077,

where \/re/zo =

The couplings Aps are
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TABLE I. Typical values of frequency parameters in the TABLE II. Parameters for two modes of experimental in-
equations of motion. terest.
Axial damping width v=/(2m) 5 Hz (max.) TE115 TE132
Collision constant Wee/(2m) 12 x 10% Hz Am 0.31 0.56
Axial frequency w,/(27) 63 x 10° Hz T /(2m) 144 x 10° Hz 3.8 x 10° Hz
Cyclotron frequency (swept) we/(27) ~ 100 x 10° Hz wnm/(27) 99.513 x 10° Hz 97.525 x 10° Hz

related to those calculated and tabulated for regular ge-
ometries of interest [24]. The typical values of frequencies
in these equations are provided in Table 1.

The standing-wave configurations in a cylindrical cav-
ity are described by known analytic functions, allowing us
to characterize the electron-cavity coupling by the sim-
ple functions Apr(rx). For the modes of greatest interest,
near the trap symmetry axis, the electron-cavity coupling
is given by

. d
A1np(re) = Ainp sin (zlzk + E) . (A5)

220 2
The first of two important cases is for an antinode at the
midplane, e.g., TE;;5, with

5md
A115(1‘k) = A115 COS <-27T—Zk> (A6)

20
For a small axial oscillation amplitude, the electron-
cavity coupling is a simple constant in this case. The
other important case produces cavity-mode resonances
of a different type, namely the case for a node at the
midplane, e.g., TE;35, with

. d
A132(I‘k) = ——A132 sin (f—zk) (A7)

20

For our apparatus, d/zg = 0.923. To facilitate calcu-
lation of examples that are of experimental interest, we
provide sample values in Table II.

The system is parametrically excited by modulating
the axial spring constant mw?, so that the above equa-

tions are modified by the substitution
w? — w2 [1 + hcos(wat)] - (A8)

The observed signal, obtained from the voltage induced
across the effective detection resistor R

1 d\ .
=—=-kNgq|—) Z, A9
v=-yene () (A9)
is proportional to the axial velocity of the c.m.
7= PR (A10)
N <

=1

A phase-sensitive detector (as illustrated in Fig. 5) mon-
itors the phase of the coherent response with respect
to the pump. For c.m. energy measurements, this sig-
nal is amplified, squared, and filtered, giving an output
proportional to (Z%).
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