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Spectacular accuracies have been achieved with single elementary particles trapped in hy-
perbolic Penning traps, but only after anharmonicities have been tuned out of these traps by
varying the potential of extra compensation electrodes introduced into the traps. The relax-
ation calculation reported here is the first theoretical study of the electrostatic properties of
such compensated Penning traps. Enough computations have been completed to clarify the
basic physics involved in anharmonicity compensation and to provide useful, quantitative
information for experiments in progress (especially for testing of anharmonicity systemat-
ics). The clearer picture of anharmonicity compensation which emerges suggests that the
design of existing Penning traps could be significantly improved. An optimal electrode con-
figuration is proposed which, in principle, makes the harmonic oscillation frequency of a
trapped particle independent of changes in the compensation potential.

I. INTRODUCTION

A single electron was first trapped in a Penning
trap at the University of Washington.! Subsequent
progress’ led to measurements of the magnetic mo-
ments of both the electron® and the positron®* to ac-
curacies of 5X107!!, The measurements of the
magnetic-moment anomalies are the most stringent
tests of quantum electrodynamics which has recent-
ly been used to calculate the anomalies to the order
a* (in Ref. 5). Comparison of the electron and posi-
tron magnetic moments provides an unprecedented
test of the invariance of the electron-positron system
under CPT. Experiments are now underway whose
ultimate goals are to trap a single proton® (in order
to measure the proton-electron mass ratio) and to
improve the accuracy of the magnetic moment of
the electron to 10~ !? or better.” All of these experi-
ments are only possible when anharmonicities are
tuned out of the Penning traps by adjusting the po-
tential on extra compensation electrodes introduced
into the traps.

Although extra electrodes were included in an ear-
lier trap to improve the trapping potential produced
by nonhyperbolic electrodes,® the first dramatic de-
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crease in the anharmonicity of a precision, hyperbol-
ic Penning trap was reported in Ref. 9. In that re-
port the first compensated trap and a slight varia-
tion on it (with pointed compensation electrodes)
were discussed. Subsequently, the first compensated
trap was used for electron anomaly measurements,’
and essentially, identical copies of the second were
used for positron measurements* and to observe the
relativistic mass increase of a 0.5-eV electron.’
These traps were so successful that no great effort
was expended to systematically study electrostatic
anharmonicity.

Penning traps constructed more recently for the
proton experiments® and for next-generation g —2
measurements’ led to an increased appreciation of
the severity of the electrostatic screening involved in
anharmonicity compensation. However, attempts to
improve the ability of Penning traps to tune out
anharmonicities without shifting the harmonic-
oscillation frequency of a trapped particle were not
very successful. The time required to design, con-
struct, and assemble a precision hyperbolic trap
(typically a year or more) and the difficulty involved
in making precise measurements of their electrostat-
ic properties obstructed progress towards. such an
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optimized trap.

The relaxation calculation reported here speeds up
the process a great deal. In fact, initial calculations
which were carried out in just several weeks were al-
ready very useful for making trap-building de-
cisions. Over the last year, when time allowed, a
variety of configurations of hyperbolic Penning
traps with different compensation geometries was
examined. For each configuration, the relatively
small number of parameters of importance for parti-
cle trapping (discussed in Sec. II) were calculated.
The recent availability of an array processor greatly
facilitated these calculations. Section III describes
the relaxation calculation itself, including an impor-
tant coordinate transformation used to avoid
mismodeling the hyperbolic electrodes.

Enough computations have now been completed
to provide a clearer picture of the basic physics in-
volved in anharmonicity compensation and to pro-
vide useful quantitative information for experiments
in progress (especially for testing for systematic ef-
fects of electrostatic anharmonicities). Section IV
focuses on a particular choice of hyperbolic elec-
trodes (labeled as an asymptotically symmetric Pen-
ning trap). The existing compensated traps are all
asymptotically symmetric traps. The lessons learned
in the study of such traps make clear that the design
of existing Penning traps could be significantly im-
proved. Section V summarizes the successful search
for an optimized configuration of hyperbolic elec-
trodes. Section VI is a conclusion.

The calculation applies to a compensated Penning
trap with electrodes that are perfectly aligned and
are free of holes, slits, or imperfections. While the
effects of harmonic distortions of the potential and
stray homogeneous electric fields (together with
misalignments of the magnetic field) have been
shown in an earlier paper to be completely avoid-
able,'” imperfections and misalignments do modify
some of the quantities calculated in this paper as do
holes and slits in electrodes. Fortunately, changes in
the trapping potential which result from a change in
the compensation potential are not greatly modified
by these complications. The few measurements
available from high-precision traps agree very well
with the calculation.

II. COMPENSATED PENNING TRAPS

An ideal Penning trap consists of a homogeneous
magnetic field (taken to be in the Z direction) togeth-
er with two hyperbolic endcap electrodes and one
hyperbolic ring electrode, all of which are axially
symmetric about the z axis. The endcap and ring
electrodes lie along the contours

2l=z} 4 5p? Q.1

and

2= —3pb+ 30" 2.2)
respectively, where p and z are cylindrical coordi-
nates. The constants p, and z, are thus the
minimum radial and axial distances to the ring and
endcap electrodes from the center of the trap.
Whatever the values of p, and z,, the electrodes
asymptotically approach the cones z2= 5 p? for large
pand z. x l

For endcaps at potential 5 ¥, and ring at — 5 ¥,
the ideal electrodes produce the potential

2 12
Z —3p

Videa =V0C(po/z0)+Vo——7 - 2.3)
Zo+ 3P0

The first term on the right is an unobservable con-
stant [which will, however, be used in Eq. (2.15)]
given by
2 12
Zo—7P0
Clpo/z)= =+ 200 (2.4)
2 25+ 3P0
The second term is the desired quadrupole potential
for a Penning trap. Notice that both p and z are
naturally scaled in the potential by a characteristic
trap dimensional d given by

d’=5(z3+3p) . 2.5

For the most popular choice of py=1"2z,, the end-
cap and ring electrodes approach the asymptotic
cones symmetrically for large p and z. We thus call
this configuration an asymptotically symmetric Pen-
ning trap and observe that d =z, and C(p,/z,) van-
ishes for this special case.

The potential in a laboratory Penning trap ¥ devi-
ates from the potential for the ideal trap with the
same pg and z, by AV,

The deviation is due to holes and slits in the quadru-
pole electrodes (to admit particles and various
radio-frequency and microwave drives) together
with imperfections, misalignments, and truncations
of these electrodes. In a compensated Penning trap,
extra compensation electrodes introduced into the
asymptotic region'! contribute to AV and allow AV
to be changed. Figure 1 is a scale drawing of a labo-
ratory Penning trap with hyperbolic electrodes. Fig-
ure 2 shows the model electrodes used for the relaxa-
tion calculation of Sec. III. The compensation elec-
trode is symmetric about the asymptote and charac-
terized by the angle a. Notice that a=180° is a flat
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FIG. 1. Drawing of the most recently constructed
compensated Penning trap. It was designed by the author
and is currently being used in an attempt to measure an
electron’s magnetic moment to an accuracy of 10~'2
Drawing is to scale except for the holes in the endcaps
and the slit in the ring which are slightly enlarged to
make them visible. Electrodes are axially symmetric
about the magnetic field vector shown.

electrode perpendicular to the asymptote, while
a=0" is a compensation electrode which lies entirely
on the asymptote.

For particle trapping, complete knowledge of AV
is not required since particles are typically trapped
near the center of the trap where the spherical coor-
dinate r <<d. In this region [at position (7,0,¢) in

FIG. 2. Model used for calculating the electrostatic po-
tential in a hyperbolic Penning trap. Relaxation calcula-
tions are carried out for various a and r. as well as for
various ratios for pg to 2. Endcap, ring, and compensa-
tion electrodes are at Vo, - Vo, and V., respectively.
The particular example shown is an asymptotically sym-
metric trap with a=30°and r./d =2.2.

spherical coordinates] AV can be conveniently ex-
panded in a familiar way in even- order Legendre po-
lynomials Py (cosf) multiplied by rk,

k

V=5V, 2 Ci | = | Pi(cosb) . 2.7

even

The compensation electrodes, holes and slits in elec-
trodes, truncations, etc., which produce AVs£0 are
assumed here to maintain axial symmetry about the
z axis and reflection symmetry under z— —z. As
demonstrated in Fig. 1, these symmetries are care-
fully maintained in the construction of precision
Penning traps. Distances in Eq. (2.7) are scaled by
the characteristic trap dimension.

As mentioned, only the lowest-order coefficients
are important for particle trapping. The first, Cy, is
unobservable and can be ignored. The major effect
of C,#0 is an amplitude-independent shift of the
harmonic-oscillation frequency , of a trapped par-
ticle of charge ¢ and mass m (from the harmonic-
oscillation frequency of an ideal trap with the same
Po and ¥4} )7

wi=

). (2.8)

A C450 produces highly undesirable shifts (in the

three eigenfrequencies of the trapped particle) which

depend upon oscillation amplitudes. Most impor-

tant is the shift of the axial frequency Aw, which re-

sults from an energy E, in the axial oscillation,'?
Ao, E,

~5C4—— . 29
W, 2 4qVO ( )

A factor of (14+C,)~? has been neglected on the
right since C, <<1 for a good trap. Even when the
trapped particle is driven weakly enough so that no
drive-related anharmonicity shift is observed,
thermal excitations of the axial motion broaden the
axis resonance width. In experiments so far, the axi-
al motion has been coupled to a damping resistor at
temperature T, which is at or somewhat above the
bath temperature, depending upon whether or not
the detection electronics is off or on. To roughly es-
timate the resulting linewidth, consider a Boltzmann
distribution of axial excitation energies E, at tem-
perature T,. The root-mean-squared spread in exci-
tation energies is equal to kT,. Thus a rms axial
linewidth ", roughly given by

r, kT,
@y 1€ qVo

(2.10)

=~

results from electrostatic anharmonicity. This
anharmonicity linewidth must be added in quadra-
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ture to other contributing linewidths to produce the
total observed linewidth. Measured axial linewidths
thus provide an estimate (or upper limit) for |C,|.
Uncompensated traps have been built!® with
[C4| <1072 and more recently’  with
|C4| <1073, The compensated traps reported in
Ref. 9 have produced |C,| <10~* when carefully
tuned.®

The coefficient C4 quantifies the major part of
trap anharmonicity and therefore will dominate the
discussion in the rest of this paper. Other C; can
also contribute slightly, however, especially when C,
is reduced a great deal by tuning the compensation
potential. The most likely contributors are Cy from
Eq. (2.7) and C; which is not included in Eq. (2.7)
because it vanishes when reflection symmetry is per-
fectly maintained. The axial frequency shift in Eq.
(2.9), for example, acquires additional terms which
can be accounted for by replacing C,4 [in Eq. (2.9)]
by

E,
CimCy—3C34+53C—— . 2.11

a=Cy—73C3+7C Ve (2.11)
The odd-order coefficient C; enters as the square be-
cause it is associated with an odd-parity term in the
potential which can perturb energy levels only in
second order. Higher-order coefficients like C¢ are
of higher order in E, /qV,. This ratio is typically of
order 10~* for E, ~kT,. The additional terms thus
should produce a small offset from C, and a small
dependence upon E, which can be detected typically
only after C, is reduced by tuning the compensation
potential.

To compensate trap anharmonicities, the potential
V. of the compensation electrodes is tuned to mini-
mize the observed width of the axial resonance
and/or to minimize drive-dependent shifts of w, and
thus to minimize C4.° The potential coefficients Cj
are linear in this compensation potential. To see
this, observe that the boundary conditions for V in
Fig. 2 are the superposition of the boundary condi-
tions in Figs. 3(a) and 3(b) which uniquely determine
solutions to Laplace’s equation, ¢, and ¢, respec-
tively, so that

V=Vobo+ Vo . (2.12)

Both V4, and the expansion of AV are explicitly
linear in ¥ but not in ¥,. Thus each C is the sum
of a term which is independent of ¥, and a term
linear in V,/V,

dCy
dv,

Ve

Ck::C,((O)—I— Vo 7 .
0

(2.13)

The C¥ pertain to a compensation potential ¥, =0

(b)

(c)

FIG. 3. Boundary conditions which together with axial
symmetry about the z axis and reflection symmetry under
z— —z define the solutions to Laplace’s equation: ¢, in
(a), ¢, in (b), and Ay in (c).

which is midway between the endcap and ring po-
tentials. A nonzero compensation potential adds a
second term which can be used to cancel the first
and thus eliminate a troublesome Cj, typically C,.
It is important to notice that the dimensionless con-
stants V,dCy /dV, are actually independent of V,,
V., and d. We label these quantities the tunabilities
for Cj since they represent a trap’s ability to tune
out Cy.

From Eq. (2.12) it is evident that only two solu-
tions of Laplace’s equation are required to complete-
ly specify the potential in a flawless, compensated
Penning trap for all possible values of ¥, V., and d.
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The tunabilities ¥,dC; /dV, can be determined sole-
ly from ¢.. Observe from Eq. (2.12) that ¢, is equal
to dV/dV,. Since V4, is independent of V,, dif-
ferentiating the expansion for AV with respect to V,
yields

l o
b=7 2
k =0,

even

k

dC;
Pi(cosf) . (2.14)

av,

r
Vo 4

The tunabilities (first term in large parentheses) are
the expansion coefficients for ¢.. Equivalently, the
tunability for C; is a kth-order derivative of ¢, in
the limit that r goes to zero. The C{” can be ob-
tained solely and most directly from a new solution
to Laplace’s equation

Ado=do—Vigea/Vo » (2.15)

which we use in place of ¢,. The boundary condi-
tions for A¢, [in Fig. 3(c)] include ring and endcap
boundaries at A¢,=0. The compensation electrode
boxindary is dashed in Flig. 3(c) since it varies from
— 7 at the endcap to + 5 at the ring. At each point
on this boundary A¢y is equal to — Vgea; /¥y. Com-
bining Egs. (2.6), (2.7), and (2.12) for the special case
V. =0 yields

k

Z | Plcosh) . (2.16)

Apo=7 3 G|
k=0,

even

The C,”’ are thus the expansion coefficients for Ad.

Both A¢y and ¢, vanish on the endcap and ring
boundaries. The boundaries for these two solutions
[in Figs. 3(c) and 3(b)] thus differ only (but signifi-
cantly) on the compensation electrode boundary. On
this boundary, A¢, varies from A¢o=—% at the
endcap end to A¢0=—;- at the ring end, while ¢, is
an equipotential at ¢.=1. The substantial dipole
character of A¢, on the compensation boundary (as
viewed from the center of the trap), by contrast to
the monopole character of ¢, on the same boundary,
typically makes A¢y much smaller than ¢, near the
center of the trap. This means that the C{*’ which
are important for particle trapping are typically
smaller in magnitude than the corresponding
VodCy /dV,, since these are exact counterparts in
the expansions for A¢, and ¢, respectively. Thus
according to Eq. (2.13), C4 can be made to vanish
with a compensation potential ¥, which is smaller
in magnitude than the trapping potential V,, for a
flawless trap.

The hyperbolic electrodes of a laboratory Penning
trap often contain small holes and slits to admit par-
ticles and various radio-frequency and microwave
drives. We shall not attempt to calculate the effect
of holes and slits here, since a different technique is

required. We observe, however, that holes and slits
in the hyperbolic electrodes would primarily modify
the boundary conditions which determine A¢,. The
additional contributions to C{”’ make it difficult to
precisely estimate the net C.Y for a laboratory trap.
In a good trap, however, the C,”’ can easily be made
much less than 1 as evidenced by the |C,| ~ 1072
to 10~ realized in uncompensated traps. For-
tunately, ¢, near the center of the trap (and hence
tunabilities like V,dC,/dV,) is much less modified
by the addition of holes, slits, imperfections, and
misalignments. Measured values of V,dC,/dV,, in
fact, agree very well with the calculated values. We
shall focus upon the tunabilities since a trap must be
designed to ensure an adequate value of V(dC,/dV,.
A clear and direct test of the relaxation calcula-
tion is possible because the tunability for C, can be
simply and directly measured. From Eq. (2.8)

dC2 2V0 d&)z
Yqv, o, dV,

(2.17)

A factor of (1+C,)~! has been approximated as 1
on the left since C, << 1 for a good trap. Measure-
ments of the change in the harmonic-oscillation fre-
quency as a function of the compensation potential
thus constitute a test of the relaxation calculation.
Several such measurements are plotted later (in Fig.
8). The significance of V,dC,/dV, for trap design
is more readily apparent when the factor w,/2V} in
Eq. (2.17) is identified as dw, /dV so that

dC, dw,/dV,
4V, ~ dw,/dV,

(2.18)

The axial frequency can be changed by varying ei-
ther the trapping potential ¥, or the compensation
potential V.. For the precision electron, positron,
and proton experiments mentioned, standard cells
are used for ¥V, to provide a sufficiently stable and
noise-free axial frequency w,. Less stability is there-
fore required in the compensation potential ¥, than
in the trapping potential ¥, by a factor of the tuna-
bility for C, according to Eq. (2.18).

It is clearly desirable to design the trap electrodes
to make V,dC,/dV, much less than 1 so that a
lesser quality, variable potential source can be used
for V,. At the same time, the electrodes must be
designed to make V,dC,/dV, large enough so that
C, can be made to vanish with a reasonable compen-
sation potential. To qualify this additional con-
sideration for trap design we define a quality factor
v for precision Penning traps,

VodC, /dV,

Y=V,dcC./av, (2.19)

A minimum |y| is most desirable, since ¥y
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represents the undesirably axial frequency shift
which accompanies an adjustment of C, by a partic-
ular amount as can be seen from the equivalent defi-
nition,

2 Ao,

= 2.2
AC, w, (2.20)

14

Both Aw, and AC, are brought about by a small
change in the compensation potential. The relaxa-
tion calculation shows that y=~0.56 for all of the ex-
isting electron, positron, and proton traps—
completely independent of innovations in compensa-
tion electrode shape and location. This is not at all
optimal. We show in Sec. V that ¥ can, in principle,
be made to vanish. In practice, however, a reduction
of y by a factor of 20 seems feasible, though no such
trap has yet been constructed.

The quality factor y is also important for a cali-
bration of V,dC4/dV,. This tunability cannot be so
easily measured as can the tunability for C,. The
quality factor relates these two tunabilities and ac-
cording to the relaxation calculation is often nearly
independent of the shape and location of the com-
pensation electrodes. Thus a value

VodC4 1 da)z/ch

~ 2.2
dv, vy dw,/dV, @21

may be inferred from measurements of the change
in @, brought about by changes in ¥, and V,. The
electrostatic anharmonicity coefficient C, can thus
be varied by well-known amounts to test for sys-
tematic effects of anharmonicity.

The sign of V,dC4/dV, can be more directly
measured by driving the axial oscillation to a very
high oscillation energy E,. The classical anharmon-
ic oscillation which results is well understood, being
completely discussed, for example, in Ref. 12. Ob-
serve from Eq. (2.9) that dw,/dE, and C, have the
same sign since the well depth gV, must be positive
if a particle is to be trapped. Thus from Ref. 12 we
deduce that the axial resonance line shape is sharply
cut off on the high-frequency side for C, >0 and on
the low-frequency side for C4, <0 as illustrated in
Fig 4. Varying V, establishes the sign of
VodCy/dV,. A value VydC,/dV, <0 is measured
and calculated for the existing compensated traps,
all of which are asymptotically symmetric traps.

III. RELAXATION CALCULATION

In a region bounded by fixed potentials, any solu-
tion to Laplace’s equation which satisfies the boun-
dary conditions is the unique electrostatic potential.
The iterative, relaxation technique is a convenient
way to find this unique solution when a “good

/\ C4>O

C,<O

| kHz

FIG. 4. Axial resonance line shapes for a cloud of
(~30) electrons trapped in the compensated Penning trap
of Fig. 1. The center profile represents a compensation
potential which is tuned so that C4=~0. Increasing and
decreasing the compensation potential produces the
characteristic skewed resonance shapes for C4> 0 (above)
and C4 <0 (below).

guess” at the solution is available as it is for a high-
quality Penning trap. The interior of the trap is
covered with an appropriate grid of discrete mesh
points. Laplace’s equation provides an expression
for evaluating the potential at a particular mesh
point in terms of potentials at neighboring mesh
points. For the simplest case of mesh points equally
spaced in rectangular coordinates, for example, the
potential at each point is just the average of the po-
tentials of its six nearest neighbors plus corrections
of order of the mesh spacing 4 to the fourth power.
Each point is so evaluated in terms of its neighbors,
over and over again until successive iterations pro-
duce negligible changes in the potential, which is
then determined uniquely to order #*. The starting
estimate of the potential determines how many itera-
tions are necessary before the potential converges.
The electrodes of a laboratory Penning trap (e.g.,
Fig. 1) completely bound the three-dimensional inte-
rior of the trap with fixed potentials, except for
small gaps between the electrodes which we shall
model as negligibly small as indicated in Fig. 2. The
electrodes additionally are axially symmetric about
the z axis and are symmetric under reflections
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z— —z. These symmetries make it advantageous to
switch to cylindrical coordinates to reduce the
three-dimensional trap volume to an area within a
single quadrant as shown in Figs. 2 and 3 and there-
by bring about a considerable reduction in the num-
ber of mesh points which are required. This savings
comes at the expense of a slightly more complicated
version of Laplace’s equation
2 2
_dy @y 1oy
oz dp® p Op
which differs from Laplace’s equation in two dimen-
sions by the addition of the last term. Relaxation
formulas for mesh points equally spaced in p and z
are correspondingly more complicated than the sim-
ple averaging mentioned earlier for mesh points
spaced evenly in rectangular coordinates. Notice in
Fig. 2 that portions of the p and £ axes serve as
boundaries. These boundaries are not equipotentials,
of course, but are bounded by the appropriate reflec-
tion and/or axial symmetry enforced on these boun-
daries.
We transform further from cylindrical coordi-
nates to coordinates

t=22—3p, (3.2)

, (3.1

s =zz+%p2 , (3.3)

which further complicate the relaxation formulas
but are more convenient than cylindrical coordinates
for three reasons. First, equipotentials of an ideal
trap are transformed into straight lines parallel to
the §'axis. For a square mesh in (s,¢) space as shown
in Fig. 5, mesh points thus lie exactly along the end-
cap and ring electrodes. The calculation can thus
proceed without fear of introducing errors due to
mismodeling such boundaries, even for a coarse
mesh. Second, owing to the choice of the coordinate
s, mesh points lie along the p and % axes, so that

s/z¢
FIG. 5. Model Penning trap of Fig. 2 as it appears in
(s,2) space following the transformation of Egs. (3.2) and
(3.3). Square mesh of side A is introduced for the relaxa-
tion calculation.

these boundaries too are modeled exactly. Finally,
the mesh density is much greater in the asymptotic
region as can be seen in Fig. 6 which shows the re-
sulting distribution of mesh points in the (p,z) plane.
The greater density is needed in this region to model
compensation electrodes of various shapes and to
handle the variations of the potential which occur
there. The near-rectangular structure of the
transformed trap area shown in Fig. 5 is also very
convenient for numerical bookkeeping.

Laplace’s equation in the new coordinates has the
form

0=9;—’;+% +f(s,1) ::g: +g(s,t)% ,
(3.4)
where the functions f and g are defined by
fs,0)=2(s +-3t)/(3s +1) , (3.5)
g(s,t)=4/(3s +1) . (3.6)

Expressions for the various derivatives in Eq. (3.4)
are derived to desired accuracies by simultaneously
solving truncated Taylor series expansions for the
potentials at neighboring mesh points. Substituting
these in Laplace’s equation produces the relaxation
formula

g[{i:,i, DU USSR S .A-,.( O S S S S
0 0.5 1.0 15 20
P2

FIG. 6. Model Penning trap and the square mesh of
Fig. 5 as they appear in (p,2) space. Relaxation calcula-
tion with this course mesh yields potential coefficients ac-
curate to better than 5%. Mesh densities three to four
times greater were used to achieve accuracies better than
1% in the low order Cj.
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Vo,o=[%(V1,0+ Voi+V_10+Vo, -1 )+T16‘f(5,t)( Vii=Vi1—=V_i1+V_1,-1)
+ 358 (5D (V _30+2V10—6V_; o)][1— 58 (s,0n] " (3.7)

The subscripts denote the relative position (in the §
and ¢ directions and in units of &) of the various po-
tentials from the point of interest denoted by ¥V .
This relaxation formula has corrections of order 4 *
which are neglected and is thus exact for Legendre
polynomials P, multiplied by r* for k=0-—6.
Equation (3.7) is applied to all mesh points except
those on and next to the p and 7 axes. Eight addi-
tional formulas of similar complexity with correc-
tions of order 4® or smaller are used for these
points. A less convenient array of nearest mesh
points is available for each of these points because of
their proximity to the p and z axes. The appropriate
axial and/or reflection symmetry is built into the re-
laxation formulas used on the axes. Each formula
was tested numerically.

In each iteration, the relaxation formulas are used
to recompute the potential at each mesh point in
terms of its neighbors, beginning in the asymptotic
region and moving toward the center of the trap.
The boundaries are loaded as appropriate for ¢, and
Ay, and the interior points are taken to be at zero
potential for a starting estimate. Every 1000 itera-
tions the potentials of the six points nearest the
center of the trap are examined. Iterations are
discontinued when the sum of these potentials con-
verges to the full single precision (approximately
seven significant figures) of a Floating Point Sys-
tems array processor hosted in a VAX computer.
Since each electrode configuration required from
8000 to 28 000 iterations, taking from 1 to 10 h, it is
indeed fortunate that this array processor was made
available by the University of Washington Physics
Department. The convergence criterion used is
more stringent than is absolutely required, but it re-
moves lack of convergence as a possible source of
computational error. It was also unnecessary to
develop techniques to accelerate convergence. The
converged potentials at mesh points with r/d < 1 are
fitted (by linear least squares) to the appropriate
small 7 /d expansion in even-order Legendre polyno-
mials [Eq. (2.14) or (2.16)] truncated at k =18. The
expansion coefficients so determined (V,dCy/dV,
and C° for ¢, and Ad¢y, respectively) are plotted
and discussed in the following sections.

The accuracies of the calculated potential coeffi-
cients are immediately tested by a second relaxation.
This time new boundary potentials on the endcap,
ring, and compensation electrode boundaries are
determined from the appropriate expansion [in Eq.
(2.14) or (2.16)] using the calculated expansion coef-

I

ficients with k < 18. The time-consuming relaxation
calculation is repeated, and another set of potential
coefficients is extracted by least-squares fitting. The
differences between the original expansion coeffi-
cients and these test coefficients are taken to be indi-
cations of uncertainties. By this test, the coeffi-
cients reported in this paper are accurate to better
than 1% with a maximum mesh density three to
four times greater than that shown in Figs. 5 and 6.

Finally, the dependence of the calculated quanti-
ties upon the mesh density was also investigated.
Figure 7(a), for example, shows V,dC,/dV, for an
asymptotically symmetric trap as a function of the
number of mesh intervals in d =z,. The percent
scale on the right indicates the V,dC,/dV, has con-
verged to within 1% for d divided into 40 mesh in-
tervals. The ratios of tunabilities in Figs. 7(b) and
7(c) are converged ten times better.

IV. ASYMPTOTICALLY SYMMETRIC
TRAPS

The endcap and ring electrodes of the traps used
for the high-precision electron, positron, and proton
experiments previously mentioned, all lie on hyper-
bolas as in Egs. (2.1) and (2.2) with py=V'2z,.
These hyperbolas are symmetric about the asymp-
tote (z>=7p?) for large p and z. Because of the
popularity of such asymptotically symmetric traps,
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FIG. 7. Dependence of ¥(,dC,/dV, and two ratios of
tunabilities upon the number of mesh intervals in d, for
an asymptotically symmetric trap with r./d =2.5 and
a=180°. Percent scales on the right refer to the values
obtained with 40 mesh intervals in d.
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they are discussed initially in detail, using the model
in Fig. 2. Comparisons of calculation and experi-
ment provide tests of the calculation and the calcu-
lation in turn provides useful information for the ex-
periments in progress which are using asymptotical-
ly symmetric traps.

An important feature of anharmonicity compen-
sation is demonstrated in Fig. 8 where VdC,/dV,
(the tunability for C,) is plotted versus the normal-
ized distance 7, /d from the center of the trap to the
compensation electrode along the asymptote. Notice
that the logarithmic vertical scale covers nearly
seven orders of magnitude while r./d on the hor-
izontal scale changes only by a factor of 4 and cov-
ers the range over which compensated, asymptoti-
cally symmetric traps have been built. The rapid
falloff is due to the severe screening of the compen-
sation potential by the endcap and ring electrodes.
As is well known, the ?otential at a large distance r
from a line of charge!® or from a flat electrode!” is
reduced by a factor of exp(—r/I) when grounded,
perfectly conducting plates spaced a distance / apart
are located as shown in Fig. 9(a) or 9(b), respective-
ly. Locally, the slopes of the curves in Fig. 8 are ap-
proximately described by this exponential factor
with r =r, and [ taken to be the separation of the
endcap and ring electrodes at r =r,.

The solid line in Fig. 8 represents the tunability
VodC,/dV, for flat compensation electrodes per-
pendicular to the asymptote (¢=180° in Fig. 2).
The dashed line represents a=30°. These two
choices are plotted to allow comparison with three
available measured values. The comparison is en-

/dV

-V, dC,
3

T

FIG. 8. Tunability V,dC,/dV, for asymptotically sym-
metric, compensated Penning traps with a=180" and 30°.
Measured values are for the positron trap of Ref. 4 with
a=30° (X ), the proton trap of Ref. 6 with a=30° (0),
and the electron trap of Fig. 1 with a=180° (A).

v=0

| . line of charge

V=0
(b)

FIG. 9. Two-dimensional screening models. Parallel
flat plate electrodes screen the potential produced (a) by a
line of charge and (b) by a perpendicular electrode. In

both cases, for r.>>1, a screening of the potentials by a
factor of exp( —r, /1) results.

couraging considering that the traps are imperfectly
modeled and especially considering the steep falloff
with increasing r./d. For the proton trap (the
smallest of the three traps in Fig. 8), a change in the
location of the compensation electrode by only 250
um would thus change V,dC,/dV, by a factor of 3.
Several other traps have been constructed which do
not fit on Fig. 8 since r./d >4. These traps could
not be tuned to eliminate anharmonicities, because a
large enough V. /¥, could not be applied.

The strong electrostatic screening not only causes
the rapid falloff of V,dC,/dV, with increasing r./d
but also completely shapes the potential which
penetrates to the center of the trap. This observa-
tion is crucial to this paper and means that
VodC,4/dV, and VydCy/dV, are essentially propor-
tional to V,dC,/dV,. In Fig. 10, the tunabilities for
C,4, Cg, and Cyg are normalized to the tunability
VodC,/dV, and are plotted versus the location of
the compensation electrode r./d. The ratios (and
hence the shape of the potential near the center of
the trap) converge with increasing r,/d to values
which are strikingly independent of both the loca-
tion of the compensation electrodes (represented by
r./d) and the shape of the compensation electrode
(as modeled by a). Even for compensation elec-
trodes extending as far into the trap as r./d =1.5,
however, the dependence on the point angle of the
compensation electrodes « is slight enough to allow
plotting the ratios of tunabilities on a linear vertical
scale (in Fig. 10), despite the fact that the tunabili-
ties are individually changing by seven orders of
magnitude over the range of r./d covered in this
figure. For a particular r./d, changing from
a=180°" to 0° reduces the tunabilities by roughly a
factor of 2 (Fig. 11). The choice of a for the com-
pensation electrode is, however, only important in-



2286 GERALD GABRIELSE 27

204+ T T r T T
L a= 30° .
80'\
L 130° \ ]
i dc /dCZ ]
sl dv,  dv, ]
- 180° -
>° 1.0~ .
©
~ 5 B
~N
O o -
E L .
~
O
> -
2 0.5r
~ 5 -
x
[S) - -
z A
Or—eo" i
1300
- %0 \dce dc, .
L — /= 4
dv, * dv,
F 180°,  dCg dC, 4
S05F 130N\ AV, L aVe N\ .
8Q
Lyl 30% | ) 1 ]
0”0 2.0 30 40

re/d
FIG. 10. Ratios of the tunabilities (as labeled) for
asymptotically symmetric Penning traps. These ratios
clearly approach a limit for 7. /d > 2 which is independent
of both a and r./d. Tunabilities in these ratios vary indi-
vidually by nearly seven orders of magnitude over the
range of r. /d plotted here.

sofar as it establishes an effective r./d for an
equivalent flat compensation electrode.

The quality factor y defined earlier [in Egs. (2.19)
and (2.20)] represents the undesirable change
Aw,/w, which accompanies a change AC, brought
about by adjusting the compensation potential. Ob-
serve that v is the inverse of the ratio of tunabilities
plotted as the upper curve in Fig. 10. The successful
compensated traps referred to earlier all have
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(degq)
FIG. 11. Dependence of VydC,/dV. upon the point
angle of the compensation electrodes for asymptotically
symmetric, compensated Penning traps with r./d =2.5.

r./d >2 and thus share the same quality factor
¥=~0.56 which is remarkably independent of the lo-
cation and shape of the compensation electrode. In-
novations in the shape and location of the compen-
sation electrodes clearly have not and cannot im-
prove the quality factor for asymptotically sym-
metric traps.

Knowledge of V,dC4/dV, is very useful since it
allows an adjustment of C4 by a known amount to
test for systematic effects of anharmonicity. The
trap of Fig. 1 is well modeled (in Fig. 2) and in fact
was designed using the results of this relaxation cal-
culation. A value of (dw,/dV,)/(dw,/dV,) equal
to —1073 is calculated and measured. The calculat-
ed value of VodC,/dV, of —2x 1073 suggests that
a change in V. /¥, of approximately 5% is required
to produce a change AC,~10~*. For traps not well
modeled in Fig. 2 the measurement of
(dw,/dV,)/(dw,/dV,) and the calculated value of
y must both be used. The first compensated trap,
for example, has endcap and ring electrodes truncat-
ed at r./d =2.2 (according to the scale drawing in
Ref. 9). The compensation electrode is located back
at r./d ~2.7 and is not symmetric about the asymp-
tote. A value of (dw,/dV,)/(dw,/dV,) equal to
—3%x107? is measured," suggesting (from Fig. 8)
that this trap has the properties of a trap with flat
compensation electrodes at r./d ~2.6. A change in
V./V, of approximately 2% is required to produce
a change ACy~107* according to Eq. (2.21). The
insensitivity of y to the shape and location of the
compensation electrodes should make such a calibra-
tion reliable.

Figures 8, 10, and 11 provide a rather complete
description of ¢, near the center of the asymptoti-
cally symmetric traps. Changes in C,, C4, C¢, and
Cg which occur when the compensation potential V,
is changed can be deduced from these figures.
Agreement between the calculation and the few
available measured values is very good. To complete
the description of asymptotically symmetric traps,
the relaxation calculation is also used to similarly
calculate the solutions A@, from which the coeffi-
cients C¥ are determined. Exact counterparts to
Figs. 8 and 10 reveal the same steep dependence
upon r./d shown in Fig. 8 and establish that the
shape of A¢, near the center of the trap is also
essentially independent of both a and r, /d.

Detailed plots of the C{” are much less useful
than Figs. 8, 10, and 11 and thus are not included in
this paper. The reason is that the calculated values
of the C{¥’ are significantly modified by the addition
of holes and slits in the quadrupole electrodes as
well as by imperfections and misalignments of these
electrodes. This occurs because the boundary condi-
tions for ¢, and hence Ad, are modified by these ad-
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ditions. To illustrate, consider the ratios of —C%
to VodC,/dV, plotted in Fig. 12. Equation (2.13)
establishes that these ratios are equal to the values of
the normalized compensation potential V,/V, re-
quired to make C,4 vanish for flawless traps with no
holes and slits in the electrodes. For flat compensa-
tion electrodes (@ =180°) the required V,/V, is al-
ways less than a few percent. For a=30", the re-
quired values are even smaller, less than 0.5%. The
small values were anticipated (in Sec. II) because the
potential of the compensation boundary is more
monopolelike for ¢, and more dipolelike for A,
but should only be regarded, however, as limiting or
reference values. Existing traps tune up at much
larger values of |V,/V,| ranging from —200%
(trap in Fig. 1) to —10% (for the positron trap®) to
1000% (for the proton trap®).

V. AN OPTIMAL HYPERBOLIC
PENNING TRAP

Essentially no progress has been previously made
toward producing a trap with a smaller quality fac-
tor y. The first compensated trap reported seven
years ago and traps constructed last year all were
asymptotically symmetric traps with ¢ close to the
value y=~0.56 which is independent of a and r,/d.
The relaxation calculation discussed earlier estab-
lishes clearly that attempts to reduce y by changing
the shape and location of the compensation elec-
trodes were not successful because electrostatic
screening determines the shape of the equipotentials
for ¢. near the center of the trap, especially for
r./d>2.

For an asymptotically symmetric trap, the endcap
electrodes are closer to the center of the trap and to
the asymptote than is the ring for r <d. The end-
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FIG. 12. Ratio of —C to V,dC,/dV, for asymptoti-
cally symmetric traps with a=30° and 180° as a function
of r./d. For a perfectly aligned electrode with no holes,
slits, or imperfections, the vertical scale is the normalized
compensation potential V. /¥, required to make C4 van-
ish.

caps thus screen the compensation potential more
strongly than does the ring. Equipotentials for ¢,
which penetrate near the center of the trap thus are
not symmetric about the asymptote z>= -;-pz, but are
shifted lower in the trap. The quality factor y will
vanish only if the tunability V,dC,/dV, vanishes.
This tunability is the expansion coefficient which
multiplies the second-order Legendre polynomial P,
in the expansion (2.14) for ¢.. Since P, vanishes on
the asymptote, the tunability for C, and hence y will
vanish if the equipotentials for ¢. are symmetric
about the asymptote near the center of the trap. To
reduce |y| it thus is apparent (once the dominant
role of electrostatic screening is fully understood)
that py and z; must be made more nearly equal than
in an asymptotically symmetric trap, to make ¢, as
symmetric as possible about the asymptote.

The first computational search for the optimal
symmetry, done for r./d =2.5, is summarized in
Fig. 13. The tunabilities VodCz/ch1 and
VodC,/dV, are plotted as functions of —z-p(z)/zé
which ranges from % to 1. The % corresponds to
Po=2o, and the 1 identifies an asymptotically sym-
metric trap (with py=V"2z,). (These configurations
are not that much different from each other as may
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FIG. 13. Tunabilities (a) VodC,/dV. and (b)

VodCy/dV, as functions of p3/2z3 for a trap with
r./d =2.5 and a=180". Quality factor y=0 at the point
where V,dC, /dV, vanishes.
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be seen in Fig. 14, where the hyperbolas are pic-
tured.) The tunablhty VodCZ/dV [in Fig. 13(a)]
varles lmearly with 2Po/20 going through zero at
2po/zon 674. By contrast, V,dC,/dV, [in Fig.
13(b)] varies only slightly as might be expected,
since P, varies only slightly near the asymptote.
The quality factor v is the ratio of the plotted tuna-
bilities. It thus goes to the ideal value of y=0 at the
Zero crossing point.

The relaxation calculation was used to make
curves like those in F1g 13 for different values of
r./d. The value of po/zo required to achieve y=0
was determined from these curves and is plotted in
Fig. 15 as a functlon of r./d. Notice that the op-
timum value of 5 po/zo changes by less than 3% for
r./d >1.5 and by only about 01.% for r./d >2.
The hyperbolas for the endcap and ring electrodes
for an optimally designed trap with r./d >2 are
thus characterized by

pozl.lGZo (5.1)

and are plotted in Fig. 14. The tunabilities
VodC,/dV, and V,ydCs/dV, for such optimally
designed traps are essentially the same for a particu-
lar r./d as those reported for asymptotically sym-
metric traps in Sec. IV and therefore can be obtained
from Figs. 8 and 10.

In practice, of course, it will be impossible to
achieve y=0 because of imperfect mechanical toler-
ances. It seems likely, however, that |y | could be
reduced by at least a factor of 20 from the y~0.56
currently being achieved with asymptotically sym-
metric traps. Such an improvement would make the
tedious process of tuning out anharmonicities much
easier and should facilitate the achievement of
higher resolutions in @, as well.
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FIG. 14. Contours for the hyperbolic electrodes (from
left to right) for a trap with py=z,, an optimum trap, and
an asymptotically symmetric trap. Endcap contour is
shared by all three configurations.
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FIG. 15. Optimum value of p3/2z2 which makes y=0,
as a function of r./d for a=180". Optimal value rapidly
approaches the limiting value ~0.674 for r./d > 2.

VI. CONCLUSION

Two solutions to Laplace’s equation, ¢, and Ay,
completely determine the electrostatic potential in a
compensated Penning trap for all trapping potentials
(Vy), compensation potentials (V,), and trap sizes
(d). The boundary conditions for ¢. and Agy are in
Figs. 3(b) and 3(c). The key quantities for particle
trapping are the lowest-order coefficients in small-~
expansions of ¢. and A¢, because particles are typi-
cally trapped near the center of the trap. Thus the
tunabilities V(dC,/dV, and V,dC,/dV: reveal the
most important properties of ¢., and Cy and C{’
reveal the most important properties of Agy,.

These expansion coefficients have been evaluated
by a relaxation calculation for a variety of configu-
rations of compensated Penning traps with hyper-
bolic endcap and ring electrodes. The coefficients
are calculated for the model trap electrodes in Fig. 2
as a function of the location of the compensation
electrodes (given by r./d), the shape of these elec-
trodes (modeled by a), and as a function of the
choice of hyperbolas (re})rmented by po/zp). The
coefficients C and CY* are severely modified
by the holes and slits in the hyperbolic electrodes of
laboratory traps as well as by imperfections and
misalignments. The calculated values of these coef-
ficients thus must be regarded as limiting values to
be approached in the limit of flawless electrodes.
The tunabilities V,dC,/dV, and V,dC,/dV,, for-
tunately, are much less affected by these additions,
and the calculated values agree well with the mea-
sured values in the few cases they can be compared.

All of the existing high- precision compensated
Penning traps have endcap and ring electrodes along
hyperbolas with py=1"2z, which symmetrically ap-
proach the quadrupole asymptotes for large p and z.
Figures 8—12 reveal the important electrostatic
properties of such asymptotically symmetric Pen-
ning traps. Not surprisingly, the potential of a com-
pensation electrode is severely screened by the end-
cap and ring electrodes, the severity increasing for a
compensation electrode farther from the center of
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the trap. Thus Fig. 8 shows that V,dC,/dV, de-
creases by more than six orders of magnitude be-
tween r./d =15 and r./d =4.0. Changing the
shape of the compensation electrode can change the
value of this coefficient by up to a factor of 2 (see,
e.g., Fig. 11). The most striking result of the relaxa-
tion calculation, however, is that the shape of the
compensation potential which penetrates to the
center of the trap is essentially independent of the
shape and location of the compensation electrode as
is demonstrated in Fig. 10. The higher-order tuna-
bilities V,dC; /dV, are thus proportional to
VodC,/dV, and have the same dependence on r./d
and a.

The quality factor y is defined [in Eqgs. (2.19) and
(2.20)] to quantify the undesirable fractional shift in
the harmonic-oscillation frequency w, which accom-
panies a change in anharmonicity AC, brought
about by tuning the compensation potential. The
quality factor depends solely upon the shape of ¢,
near the center of the trap. All of the past and
present high-precision Penning traps thus have
essentially identical quality factors (y~0.56) despite
careful attention to asymptotic symmetry and
despite innovations in the shape and location of
compensation electrodes. Reducing the quality fac-
tor to the ideal value of y=0 requires that equipo-
tentials of the compensation potential ¢, at the
center of the trap be made symmetric about the
quadrupole asymptote. A major lesson from the re-
laxation calculation is that the shape of equipoten-
tials of ¢, is determined by electrostatic screening by
the endcap and ring electrodes and not by asymptot-
ic symmetry. The quality factor can therefore be
made to vanish only by a better choice of hyperbolas
for the endcap and ring electrodes.

An optimal configuration of trap electrodes is
proposed in Sec. V. At py/z, approximately equal

to 1.16 the quality factor vanishes. This means that
adjusting the compensation potential (to tune out
anharmonicities) will, in principle, not change the
harmonic-oscillation frequency w, of a trapped par-
ticle at all. Imperfect mechanical tolerances will of
course prevent this ideal orthogonality from being
realized, but an improvement over existing traps by
a factor of 20 seems manageable. Optimally
designed traps should be much more convenient to
use and should facilitate the achievement of higher
resolutions in the axial resonance frequency. In ad-
dition, the compensation electrodes in an optimally
designed trap can be located nearer to the center of
the trap. One advantage which results is that
radio-frequency drives applied to these electrodes (to
make g —2 transitions, for example) would be
screened much less than in existing traps.
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