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Optimized planar Penning traps for quantum-information studies
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A one-electron qubit would offer a new option for quantum information science, including the possibility
of extremely long coherence times. One-quantum cyclotron transitions and spin flips have been observed for a
single electron in a cylindrical Penning trap. However, an electron suspended in a planar Penning trap is a more
promising building block for the array of coupled qubits needed for quantum information studies. The optimized
design configurations identified here promise to make it possible to realize the elusive goal of one trapped electron
in a planar Penning trap—a substantial step toward a one-electron qubit.
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I. INTRODUCTION

Quantum jumps [1] have been observed between the lowest
cyclotron and spin states of an electron suspended in the
magnetic field of a cylindrical Penning trap (Fig. 1). These
observations made possible the most precise measurements of
the electron magnetic moment and the fine-structure constant
[2]. The one-electron observations also triggered intriguing
studies on using one-electron qubits as building blocks for
quantum information processing [3–14]. The possibility of a
very long coherence time is very attractive.

A new trap design is needed to realize one-electron
qubits for quantum information studies. Although a single
electron in a single trap is the focus of this work, a scalable
array of coupled one-electron qubits is the long-term goal.
Impressive progress has been made in the microfabrication
of three-dimensional trap arrays [15], but it is still beyond
these or more traditional methods to fabricate a large array of
small cylindrical traps with the properties needed to observe
one-quantum transitions with one electron. A scalable array of
small traps seems more feasible with traps whose electrodes
are entirely in a plane since these could be fabricated on
a chip using variations on more standard microfabrication
methods [14]. The chip could include electrical couplings
between the traps, and could even include some detection
electronics. Secondary advantages of a planar trap would be
an open structure that makes it easier to introduce microwaves
(to modify or entangle electron spin states) and possibly to
load electrons.

One possible planar Penning trap geometry (Fig. 2) is a
round center electrode with concentric rings [10]. Electrons
were stored and observed in such a trap, first in Mainz [11,12]
and then in Ulm [13]. The objective of the latter experiment
was to duplicate in a planar trap the observations of the
one-quantum transitions of a single electron in a cylindrical
Penning trap (Fig. 1). The final experimental report [13] is not
encouraging. It concludes that the “lack of mirror symmetry”
makes it “impossible to create a genuinely harmonic potential”
and that it is thus “impossible” to detect a single electron
within a planar Penning trap. Whether the situation changes
with much smaller planar traps is being considered [14].
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We reach a more optimistic conclusion in this work, though
the pessimism may be appropriate for the trap designs used so
far. The key to a successful planar trap for one electron is a
design that minimizes amplitude-dependent frequency shifts
of the observed oscillation frequency. This report focuses upon
calculating the relationship of such shifts to the electrode
geometry and applied potentials. (Appendix A corrects an
earlier calculation [10] of the crucial amplitude-dependent
frequency shifts needed to characterize and optimize planar
traps.) We identify optimized planar Penning trap geometries
and potentials that produce amplitude-dependent frequency
shifts that are orders of magnitude smaller than for previous
planar trap designs.

A high measurement precision with a single trapped
particle is part of what will be required to observe a spin
flip and realize a one-electron qubit. Several of the most
accurate measurements in physics illustrate the feasibility
of attaining the needed precision when a trap design that
is optimized for the particular high-precision application is
used. The cylindrical Penning trap of Fig. 1(c) [16] was
designed so that its electrodes form a microwave cavity that
inhibits spontaneous emission. This trap design enabled the
observation of one-quantum transitions, which made possible
the most accurate measurements of the electron magnetic
moment and the fine-structure constant [2]. An orthogonalized
hyperbolic trap [17,18] was designed to allow a trapping
potential to be optimized without changing the trap depth. The
most precise mass spectroscopy (e.g., [19]) was carried out in
such a trap with a single ion (or two). An open-access Penning
trap [20] was designed to allow antiprotons from an accelerator
facility to enter the trap. The most accurate comparison of
q/m for an antiproton and proton [21] was carried out with a
single antiproton and a single H− ion in such a trap, as were
the most accurate one-ion measurements of bound electron
g values [22,23] and the most precise proton-to-electron mass
ratio [24]. Inspired by these examples, this study of planar
Penning traps for one-electron applications is carried out in
the hope that a similar rigorous design approach will indicate
the best route to observing one electron in a planar trap.

Optimized geometries and biasing schemes identified here
for planar Penning traps promise to reduce the amplitude
dependence of the observed frequency by many orders of
magnitude. This reduction makes it much more likely that
one electron can be observed in a planar Penning trap—an
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FIG. 1. (a) Quantum nondemolition (QND) observation of a spin
flip of one trapped electron. (b) QND observation of a one-quantum
cyclotron transition for one electron. (c) Cylindrical Penning trap
within which the electron is suspended.

important first step toward realizing a one-electron qubit. Two
related trap configurations, a covered planar trap and a mirror-
image trap, offer improved shielding, new detection options,
and easier trap loading. It remains, of course, to demonstrate
experimentally that the optimized planar trap designs proposed
will approach the performance of the cylindrical Penning trap
in which one-quantum transitions and spin flips of a single
electron were observed.

II. OUTLINE

Section III describes the potential and potential expansions
for a planar Penning trap. Section IV relates the amplitude
dependence of the particle’s axial oscillation frequency to
the potential expanded around the equilibrium location of the
trapped particle. The axial oscillation of a trapped particle must
be detected to tell that a single particle is in the trap. Small
shifts in this frequency will reveal spin flips and one-quantum
cyclotron transitions.

B

(a)

(b)

FIG. 2. (a) Three-gap planar trap with a trapped particle sus-
pended above an electrode plane that extends to infinity. (b) Side
view of trap electrodes and equipotentials spaced by V0, with the
infinitesimal gaps between the electrodes widened to make them
visible. The equipotentials extend into the gaps between electrodes.
The dashed equipotentials of an ideal quadrupole are superimposed
near the trap center.

Two-gap traps (with two biased electrodes surrounded by
a ground plane) are shown in Sec. V to be inadequate for the
observation and the manipulation of a single electron. The
considerable promise of three-gap traps (with three biased
electrodes surrounded by a ground plane) is the subject of
Sec. VI. Optimized planar trap configurations that make
the particle’s oscillation frequency essentially independent of
oscillation amplitude are identified and discussed, along with
the detection and damping of the particle’s motion.

Section VII estimates the size of the unavoidable deviations
between ideal planar Penning traps and the actual laboratory
traps. Real traps have gaps between electrodes, finite boundary
conditions, and imperfections in the trap dimensions, all of
which must be compensated by modifying the voltages applied
to the trap electrodes.

A covered planar trap (a two-gap planar trap covered by
a parallel conducting plane) is proposed in Sec. VIII A as a
scalable way to make planar chip traps less sensitive to nearby
apparatus. An electron suspended midway between a mirror-
image pair of planar electrodes is shown in Sec. VIII B to be
in a potential with much the same properties as is experienced
by an electron centered in a cylindrical Penning trap. For an
electron initially loaded and observed in an “orthogonalized”
mirror-image trap, we illustrate in Sec. VIII C the possibility
to adiabatically change the applied trapping potentials to
move the electron into a covered planar Penning trap that
is optimized.

The damping and detection of a particle in planar traps,
covered planar traps, and mirror-image traps are considered
in Sec. IX. The optimization of damping and detection is
discussed, as are unique detection opportunities available with
a covered planar trap.

A conclusion in Sec. X is followed by three appendices.
Appendix A corrects an earlier calculation of amplitude-
dependent frequency shifts in a planar trap. Appendices B
and C use the calculations of this work to analyze the properties
of planar traps built at Mainz and Ulm.

III. PLANAR PENNING TRAPS

A. The ideal to be approximated

An ideal Penning trap, which we seek to approximate, starts
with a spatially uniform magnetic field,

B = B ẑ. (1)

Superimposed is an electrostatic quadrupole potential, V2(ρ, z)
in cylindrical coordinates, that is a harmonic oscillator poten-
tial on the ρ = 0 axis,

V2(0, z) = 1

2
V0

(
z − z0

ρ1

)2

, (2)

where ρ1 sets the size scale for the trap and V0 sets the potential
scale.

A particle of charge q and mass m on axis then oscillates
at an axial angular frequency

ωz =
√

q

m

V0

ρ1
2
, (3)

about the potential minimum at z0. The potential will trap a
particle only if qV0 > 0.
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The axial oscillation frequency ωz is the key observable
for possible quantum information studies. The one-quantum
cyclotron and spin-flip transitions that have been observed
[e.g., Figs. 1(a) and (b)] were detected using the small shifts
in ωz caused by a quantum nondemolition (QND) coupling of
the cyclotron and spin energies to ωz.

For potentials that can be expressed on an axis of symmetry
as a power series in z − z0 [e.g., Eq. (2)], the general solution
to Laplace’s equation near the point (0, z0) is related to the
axial solution by the substitution,

(z − z0)k → [ρ2 + (z − z0)2]k/2Pk[cos(θ )], (4)

where cos(θ ) = (z − z0)/
√

ρ2 + (z − z0)2 and Pk is a
Legendre polynomial. We will focus upon axial potentials
throughout this work since this procedure can be used to obtain
the general potential in the neighborhood of any axial position
when this is needed.

Applied to the harmonic axial potential of an ideal Penning
trap,

V2(ρ, z) = V0

2

ρ2 + (z − z0)2

ρ1
2

P2 [cos(θ )] . (5)

This quadrupole potential for an ideal Penning trap extends
through all space.

B. Electrodes in a plane

A planar Penning trap (Figs. 2 and 3) starts with a
spatially uniform magnetic field as in Eq. (1). An electrostatic
potential is produced by biasing N ring electrodes in a plane
perpendicular to the symmetry axis of the electrodes ẑ. An
electrode with an outer radius ρi is biased to a potential Vi , as
illustrated in Fig. 3. Without loss of generality, the potential
beyond the rings ρ > ρN is taken to be the zero of potential
VN+1 = 0. The N gaps between biased electrodes are taken
initially to be infinitesimal, but this condition is relaxed in
Sec. VII A.

Two remaining boundary conditions,

V (ρ, z → ∞) = 0, (6a)

V (ρ → ∞, z) = 0, (6b)

will be assumed to derive the potential for z � 0. It is not
always possible in real apparatus to keep all metal far enough
away from the trap electrodes so that these boundary conditions
are accurately satisfied. We consider the case of finite boundary
conditions in Sec. VII C.

Throughout this work we will illustrate the basic features
and challenges of a planar Penning trap using a three-gap
(N = 3) sample trap with dimensions

{ρi} = {1, 5.5, 7.5426}ρ1, (7)

for reasons discussed in Sec. VI. Figure 3 shows this relative
geometry (to scale).

C. Scaling distances and potentials

It is natural and often useful to scale distances in terms of
the radius of the inner electrode ρ1. We will do so, using the
notation z̃ = z/ρ1 and ρ̃ = ρ/ρ1. The relative geometry of a
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FIG. 3. Rings of a planar Penning trap. The relative geometry of
the electrodes is that of the sample trap used to illustrate the general
features of planar traps. Infinitesimal gaps between electrodes are
assumed until Sec. VII A.

planar Penning trap is then given by the set of dimensions
{ρ̃i} = {1, ρ̃2, ρ̃3, . . .}, for example.

It is natural and convenient to scale the trap potential V ,
along with the voltages Vi applied to trap electrodes, in terms of
a voltage scale, V0, to be determined. We will then use scaled
applied potentials, Ṽi = Vi/V0, and a scaled trap potential
Ṽ = V/V0.

D. Exact superposition

The potential produced by a planar Penning trap is a
superposition

V (ρ̃, z̃) =
N∑

i=1

Viφi(ρ̃, z̃ ), (8)

that is linear in the relative voltages applied to trap electrodes.
The functions φi are solutions to Laplace’s equation with
boundary conditions such that φi = 1 on the electrode that
extends to ρi and is otherwise zero on the boundary. More
precisely,

φi(ρ̃, 0) =
⎧⎨⎩0, ρ̃ < ρ̃i−1

1, ρ̃i−1 < ρ̃ < ρ̃i

0, ρ̃ > ρ̃i

, (9a)

φi(ρ̃, z̃ → ∞) = 0, (9b)

φi(ρ̃ → ∞, z̃) = 0. (9c)

These potentials are independent of the voltages applied to
the trap and depend only upon the relative geometry of the trap
electrodes.
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Standard electrostatics methods [25,26] give the φi that
satisfy Laplace’s equation for z̃ � 0 and the cylindrically
symmetric boundary conditions given previously,

φi(ρ̃, z̃) = ρ̃i

∫ ∞

0
dke−kz̃J1(kρ̃i)J0(kρ̃)

− ρ̃i−1

∫ ∞

0
dke−kz̃J1(kρ̃i−1)J0(kρ̃), (10)

with the convention that ρ̃0 = 0. The integrals are over
products of Bessel functions. On axis,

φi(0, z̃) = z̃√
(ρ̃i−1)2 + z̃2

− z̃√
(ρ̃i)2 + z̃2

. (11)

Most of the properties of a planar Penning trap can be deduced
from just the potential on axis. Expressions equivalent to
Eqs. (10) and (11) are in Ref. [10].

To emphasize the role of the N gaps of a planar trap we
define the gap potential across gap i as the difference, �Vi ≡
Vi+1 − Vi . The axial potential is then given by

V (0, z̃) =
N∑

i=1

�Vi�i(z̃), (12)

�i(z̃) = z̃√
(ρ̃i)2 + z̃2

− 1, (13)

a sum of contributions from the N gap potentials.
The axial potential can be computed exactly using Eqs. (8)

and (11), or alternately from Eq. (12). Figure 4 compares
an ideal harmonic axial potential to examples of axial
potentials for optimized planar Penning trap configurations
to be discussed. Figure 2(b) shows equipotentials spaced by
V0 for a planar Penning trap (configuration I in Table I).
The equipotentials are calculated for infinitesimal gaps, but
the electrodes are represented with finite gaps to make them
visible. The equipotentials terminate in the gaps between
electrodes. The dashed equipotentials of an ideal quadrupole
are superimposed near the trap center.

E. Expansion of the trap potential

To characterize the trap potential V (ρ̃, z̃) for z̃ � 0 it
suffices to focus upon expansions of the potential on the ρ̃ = 0
axis. The potential near any expansion point z̃0 on this axis can
be obtained using the substitution of Eq. (4). The axial potential
due to one electrode [Eq. (11)] can be expanded in a Taylor
series,

φi(0, z̃) = 1

2

∞∑
k=0

Cki(z̃ − z̃0)k. (14)

The expansion coefficients,

Cki = 2

k!

[
∂kφi(0, z̃)

∂z̃k

]
z̃=z̃0

, (15)

are analytic functions of the relative trap geometry, {ρ̃i}, and
the relative location of the expansion point, z̃0.

The full trap potential can be similarly expanded as

V (0, z̃) = 1

2
V0

∞∑
k=0

Ck(z̃ − z̃0)k. (16)

The one expansion coefficient needed for k = 2 is so far written
as V0C2. With no loss of generality we are thus free to choose
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FIG. 4. (a) Trap potential on axis. (b) Difference between the trap
potential and a perfect harmonic potential on axis. The labels identify
optimized configurations of the sample trap (Tables I and II), using
Ck from Eq. (16) and ak from Eq. (24).

C2 = 1. This determines V0 and the Ck ,

V0 =
N∑

i=1

C2iVi, (17)

Ck =
N∑

i=1

CkiṼi . (18)

The latter equation, and the rest of this work, make frequent use
of the scaled potentials Ṽi = Vi/V0. For the scaled potentials,
Eq. (17) can be regarded as a constraint,

N∑
i=1

C2i Ṽi = 1, (19)

that an acceptable set of relative potentials must satisfy.
A trap is formed at z̃ = z̃0 only if there is a minimum in

the potential energy qV (0, z̃) for a particle with charge q and
mass m. The linear gradient in the potential must thus vanish
at this point, whereupon

C1 =
N∑

i=1

C1i Ṽi = 0. (20)

Near the minimum the potential energy will then have the form
mωz

2(z − z0)2/2, where ωz is the angular oscillation frequency
of the trapped particle in the limit of a vanishing oscillation
amplitude. Comparing to the quadratic term in Eq. (16) gives

ωz
2 = qV0

mρ1
2
, (21)
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TABLE I. Scaled parameters for the sample planar trap geometry.

{ρ̃i} = {1, 5.5, 7.5426}
a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

Ṽ1 −12.2615 −26.4192 −26.4192 −31.0353
Ṽ2 −16.4972 −27.0861 −27.0861 −31.6642
Ṽ3 −79.7942 −111.1415 −111.1415 −120.1261

z̃0 2.3469 1.4351 1.4351 1.0250

C3 −0.1516 0.0000 0.0000 0.0000
C4 0.0287 0.0000 0.0000 0.0000
C5 −0.0156 −0.0112 −0.0112 0.0213
C6 0.0064 0.0000 0.0000 −0.0366

a2 0.0000 0.0000 0.0000 0.0000
a3 0.0000 0.0000 0.0000 0.0000
a4 0.0000 0.0000 0.0000 −0.0343
a5 0.0000 0.0000 0.0000 0.0000
a6 −0.0003 −0.0039 −0.0039 −0.0095

C11 −0.1205 −0.3737 −0.3737 −0.6810
C12 −0.1625 0.0443 0.0443 0.3356
C13 0.0521 0.0780 0.0789 0.0875
C

(opt)
1d −0.3280 −0.5364 −0.5364 −0.7510

ρ̃
(opt)
d 3.3191 2.0295 2.0295 1.4496

γ1 −194.15 3.45 3.45 3.50
γ2 8.14 2.64 2.64 4.15
γ3 −1.56 −3.12 −3.12 1.61

Fig. 8 points Fig. 9 points
Right Left Right Left

the same as for the ideal case considered earlier because of our
choice of V0. Forming a trap thus requires that q and V0 have
the same sign at z̃0. The sign of V0 can be flipped if it is wrong
by simply flipping the sign of all of the applied potentials.

F. Two viewpoints

Two different viewpoints of the potential expansions and
equations are useful. The first is needed to analyze the
performance of an N -gap trap. The second facilitates the
calculation of optimized trap configurations.

The point of view that we take to analyze an N -gap trap
starts with the N radii {ρi} and the N applied potentials {Vi}.
These are the 2N parameters that fully characterize such a trap.
No interrelations constrain the values of these parameters, so
the difference of the number of parameters and constraints
is 2N .

The axial potential is then a superposition [from Eq. (8)] of
the φi(0, z̃) from Eq. (11) with scaled radii {ρ̃i} = {ρi}/ρ1. The
extremum of V (0, z̃) is the z̃0 needed to evaluate the expansion
coefficients Cki(ρ̃i , z̃0) using Eq. (15). All of the properties of
a trap at z̃ = z̃0 can then be determined. The potential scale
V0(ρi, z̃0, Vi) is determined using Eq. (17), the axial frequency
from Eq. (3), and the expansion coefficients Ck from Eq. (18).
An example analysis for two existing planar Penning traps is
provided in the Appendices.

The point of view we take to identify optimized planar trap
configurations instead uses 2N + 2 parameters to characterize

a planar trap. The effect of the two additional parameters is
compensated by the addition of the two constraints C1 = 0
and C2 = 1 [from Eqs. (19) and (20)]. The difference of the
number of the parameters and constraints is thus 2N , just as
for our previous analysis.

We will first seek solutions for scaled trap configurations,
for which there are 2N parameters and two constraints. The
parameters are the N scaled potentials {Ṽi}, the N − 1 scaled
radii {ρ̃i}, and the scaled distance z̃0 > 0. The two constraints,
C1 = 0 and C2 = 1, are from Eqs. (19) and (20). The difference
of the number of parameters and constraints for any scaled
trap configuration is thus 2N − 2. We are thus free to specify
up to 2N − 2 additional constraints on the scaled radii and
scaled potentials, though not all constraints will have a set of
parameters that satisfies them.

Once the 2N − 2 scaled potentials and radii are chosen,
we are then free to choose two additional parameters to bring
the difference of the parameters and constraints back up to
2N . A convenient distance scale ρ1 and a convenient potential
scale V0 can be chosen to get a desired axial frequency [using
Eq. (21)]. The radii are then {ρi} = ρ1{ρ̃i}, and the applied
potentials are {Vi} = V0{Ṽi}.

Before applying these general considerations to two- and
three-gap traps, we discuss amplitude-dependent frequency
shifts since these will determine the additional constraint
equations that we need to design optimized planar traps.

IV. AXIAL OSCILLATIONS

In this section we investigate the axial oscillation of a
trapped particle near the potential energy minimum of a planar
Penning trap. In the following sections, Secs. V and VI,
we investigate optimized planar Penning traps, realized by
imposing additional requirements on the design of planar traps
(in addition to the two above) to make the axial oscillation of
a trapped particle more harmonic.

The crucial observable for realizing a one-electron qubit
is the frequency of the axial oscillation of a trapped electron.
One trapped particle will be observed in the planar Penning
trap only if the oscillation frequency is well enough defined
to allow narrow-band radiofrequency detection methods to
be used. Small changes in the particle’s oscillation frequency
will signal one-quantum transitions of the qubit, as has been
mentioned.

For a perfect quadrupole potential, the motion of a trapped
particle on the symmetry axis of the trap is perfect harmonic
motion at a single oscillation frequency, ωz, independent of
the amplitude of the oscillation. For a charged particle trapped
near a minimum of the nonharmonic potential expanded in
Eq. (16), near z̃ = z̃0, the oscillation frequency depends upon
the oscillation amplitude.

A. Amplitude-dependent frequency

The oscillation frequency for a particle trapped near a
potential minimum within a planar Penning trap depends
upon the oscillation amplitude. A derivation of this amplitude
dependence starts with applying Newton’s second law to get
the equation of motion. For a particle of charge q and mass m
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on the symmetry axis ẑ of the trap,

d2

dt2
u + (ωz)

2u + λ(ωz)
2

∞∑
k=3

kCk

2
uk−1 = 0, (22)

where u = z̃ − z̃0. The harmonic restoring force is presumed
to be larger than the additional (unwanted) terms. The latter
are labeled with a dimensionless smallness parameter λ that is
taken to be unity at the end of the calculation.

Solutions are sought in the form of series expansions of
the amplitude and the oscillation frequency in powers of the
smallness parameter,

u = u0 + λu1 + λ2u2 + . . . , (23a)

ω = ωz + λω1 + λ2ω2 + . . . . (23b)

The lowest-order solution is a harmonic oscillation, with
oscillation amplitude Ãρ1, for which we chose the phase u0 =
Ã cos(ωt) with Ã > 0.

By assumption, the lowest-frequency Fourier component of
the particle’s axial motion is predominant. Fourier components
at harmonics of ωz(Ã), not shown explicitly in the formula,
have smaller amplitudes. The frequency contributions are
determined by the requirement that no artificial driving terms
resonant at angular frequency ω are introduced. This well-
known method [27,28] is sometimes called the Linstedt-
Poincaré method. The result is that the oscillation frequency
ω = ωz(Ã) is a function of oscillation amplitude Ã for the
harmonic Fourier component, given by

ωz(Ã) = ωz

[
1 +

∞∑
k=2

akÃ
k

]
. (24)

At zero amplitude the oscillation frequency ωz(Ã) → ωz, of
course. There is no term linear in the oscillation amplitude
(contrary to Ref. [10], see Appendix A).

The amplitude coefficients ak are functions of the potential
expansion coefficients Ck , each of which in turn is a function
of the trap dimensions ρi and the potentials Vi applied to the
trap electrodes.

a2 = −15(C3)2

16
+ 3C4

4
, (25a)

a3 = −15(C3)3

16
+ 3C3C4

4
(25b)

= C3a2, (25c)

a4 = −2565(C3)4

1024
+ 645(C3)2C4

128
− 21(C4)2

64

− 105C3C5

32
+ 15C6

16
, (25d)

a5 = −2565(C3)5

512
+ 765(C3)3C4

64
− 69C3(C4)2

32

− 15(C3)2C5

2
+ 3C4C5

4
+ 15C3C6

8
(25e)

= (C5 − 2C3C4)a2 + 2C3a4, (25f)

a6 = −205845(C3)6

16384
+ 159795(C3)4C4

4096

− 21039(C3)2(C4)2

1024
+ 81(C4)3

256
− 13545(C3)3C5

512

+ 1995C3C4C5

128
− 315(C5)2

128
+ 3015(C3)2C6

256

− 57C4C6

64
− 315C3C7

64
+ 35C8

32
, (25g)

a7 = 3C3a6 + [−3(C3)3 − 4C3C4 + 2C5]a4 + [3(C3)3C4

+ 4C3(C4)2 − 2C4C5 − 3C3C6 + C7]a2. (25h)

The exact expressions derived for a8 and a9 take too much
space to display, and are not normally needed. A convention
other than C2 = 1 would require that each Ck in the previous
equations be replaced by Ck/C2.

Several properties of the relationships between the Ck

and ak will be exploited for designing planar traps. Two
combinations of potential expansion coefficients make a2 = 0:

C3 = C4 = 0 ⇒ a2 = 0, (26)

C4 = 5
4 (C3)2 ⇒ a2 = 0. (27)

Relationships between the ak in Eqs. (25a)–(25f) imply

a2 = 0 ⇒ a3 = 0, (28)

a2 = a4 = 0 ⇒ a2 = a3 = a4 = a5 = 0. (29)

One set of potential coefficients that produce this remarkable
suppression of the low-order ak is

C3 = C4 = C6 = 0 ⇒ a2 = a3 = a4 = a5 = 0. (30)

Another is

C4 = 5
4 (C3)2 and C6 = − 7

2C3[(C3)3 − C5]

⇒ a2 = a3 = a4 = a5 = 0. (31)

It remains to investigate whether and how any or all of these
attractive combinations of Ck values can be produced by
biasing a planar Penning trap.

B. Tunabilities

A change in the potential Vi applied to each electrode
will change the axial frequency ωz and will also change the
amplitude dependence of the axial frequency by changing a2.
The orthogonalized hyperbolic, cylindrical, and open-access
traps were designed so that the potential applied to one pair
of electrodes changed the axial frequency very little while
changing a2. The potential on such compensation electrodes
could then be changed to tune a2 to zero without shifting the
axial frequency out of resonance with the detectors that were
needed to monitor the improvement.

We define a tunability for each electrode,

γi = 1

ωz

∂ωz

∂Vi

/
∂a2

∂Vi

. (32)

to quantify how useful the electrodes will be for tuning a2.
The tunabilities are defined as generalizations of the single
tunability γ used to optimize the design of the orthogonalized
traps.

Ideally, and this ideal was closely approximated in the
orthogonalized traps, there are compensation electrodes for
which γi ≈ 0, and other electrodes for which γi is very large
in magnitude. In Sec. VI B we will review the tunabilities that
were calculated and realized for the cylindrical trap. In the
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sections that follow we will compare these to what can be
realized with a planar Penning trap.

C. Harmonics of the axial oscillation

The largest Fourier components for the small-amplitude
motion of the trapped particle are given by

z̃ = z̃0 + Ã0 + Ã1 cos(ωt) + Ã2 cos(2ωt)

+ Ã3 cos(3ωt) + . . . . (33)

By assumption, the harmonic Fourier component at frequency
ω has the larger amplitude Ã1 ≈ Ã, with the harmonics then
given by

Ã1 = Ã + C3

2
Ã2 +

[
29(C3)2

64
− C4

16

]
Ã3 + . . . , (34)

Ã2 = C3

4
Ã2 + (C3)2

4
Ã3 + . . . , (35)

Ã3 =
[

3(C3)2

64
+ C4

16

]
Ã3 + . . . . (36)

Insofar as Ã � 1, these higher-order oscillation amplitudes are
smaller, but they depend critically upon the low-order potential
expansion coefficients as well.

D. Thermal spread in axial frequencies

The image current induced in nearby trap electrodes by a
particle’s axial motion is sent through the input resistance of a
detection amplifier circuit. The oscillating voltage across the
resistor is detected with a very sensitive cryogenic amplifier.
Energy dissipated in the resistor damps the axial motion, with
some damping time (γz)−1. Section IX shows how the damping
rate γz is related to the resistance for a three-gap trap.

The damping brings the axial motion of a trapped particle
into thermal equilibrium at the effective temperature of the
amplifier. It is quite challenging to achieve a low axial
temperature with an amplifier turned on. For example, the
electrodes of the cylindrical Penning trap were cooled to 0.1 K
with a dilution refrigerator. Even with very careful heat sinking
of a Metal Semiconductor Field Effect Transistor (MESFET)
amplifier that was run at an extremely low bias current,
however, the axial temperature with the amplifier operating
was still Tz = 5.2 K [29]. We then used feedback cooling to
bring the axial temperature as low as 0.85 K [29]. A lower
axial temperature was obtained, but only by switching the

amplifier off during critical stages of the measurement of the
electron magnetic moment. For the estimates that follow we
will assume an axial temperature of 5 K, but stress that much
higher axial temperatures are very hard to avoid.

What has prevented the observation of one electron in a
planar trap so far is the large amplitude dependence of the
axial frequency in such traps. Thermal fluctuations of the
particle’s axial energy make the particle oscillate at a range of
Fourier components, �ωz. In the cylindrical trap of Fig. 1(c)
this spread in frequencies is less than the damping width,
�ωz < γz. For planar traps so far the thermal spread of axial
oscillation frequencies is much broader than the damping
width, �ωz � γz.

As a measure of the thermal width we will consider only
the lowest-order contribution

�ωz

ωz

≈ |a2| kBTz

1
2mωz

2ρ1
2
. (37)

It should be possible to calculate neglected higher-order
contributions if correlations are considered carefully, but this
lowest-order expression suffices for our purposes.

The tables that follow report the lowest-order thermal
widths �fz = �ωz/(2π ) and the damping widths γz/(2π ) in
Hz. Vanishing values of �fz thus mean that a2 = 0, whereupon
there is typically not much thermal broadening of the damping
width. However, higher-order contributions ensure that there
is always a nonvanishing thermal width.

V. TWO-GAP TRAPS

A minimal requirement for a useful trap is that it be possible
to bias its electrodes to make the leading contribution to the
amplitude dependence of the axial frequency vanish, a2 = 0.
We show here that this is not possible with a two-gap (N = 2)
planar trap.

A scaled two-gap planar trap is characterized by 2N = 4
parameters: ρ̃2, Ṽ1, Ṽ2, and z̃0. These parameters must satisfy
the two constraints C1 = 0 and C2 = 1 [of Eqs. (19) and (20)].
The difference of the number of parameters and constraints is
thus 2N − 2 = 2. Consistent with this, we can solve for any
two of the parameters in terms of the other two.

Unfortunately, if the additional constraint a2 = 0 is added
then there are no sets of parameters that are solutions. An
explicit demonstration that a2 cannot be made to vanish comes
from solving for Ṽ1 and Ṽ2 in terms of z̃0 and ρ̃2 using the two
constraint equations. These solutions determine

C3 = −9(z̃0)4 + (ρ̃2)2 − 4(z̃0)2[1 + (ρ̃2)2]

3[z̃0 + (z̃0)3][(z̃0)2 + (ρ̃2)2]
, (38)

C4 = 5[15(z̃0)6 + 12(z̃0)4[1 + (ρ̃2)2] − 3[(ρ̃2)2 + (ρ̃2)4] + (z̃0)2[4 − 5(ρ̃2)2 + 4(ρ̃2)4]]

12[1 + (z̃0)2]2[(z̃0)2 + (ρ̃2)2]2
, (39)

a2 = −5[36(z̃0)8 + (ρ̃2)4 + 36(z̃0)6[1 + (ρ̃2)2] + (z̃0)2[(ρ̃2)2 + (ρ̃2)4] + (z̃0)4[4 + 29(ρ̃2)2 + 4(ρ̃2)4]]

48(z̃0)2[1 + (z̃0)2]2[(z̃0)2 + (ρ̃2)2]2
. (40)
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FIG. 5. Parameters of two-gap traps that make C3 = 0 as a
function of ρ̃2.

The amplitude coefficient a2 is explicitly negative for all values
of z̃0 and ρ̃2, and it only approaches zero in the not-so-useful
limit that z̃0 → 0.

The best that can be done with a two-gap trap is to use
C3 = 0 as a third constraint on the four parameters, Ṽ1, Ṽ2, z̃0,
and ρ̃2. Only the analytic solution for z̃0 is simple enough to
display here,

z̃0 = 1

3

√√
4(ρ̃2)4 + 17(ρ̃2)2 + 4 − 2(ρ̃2)2 − 2. (41)

Figure 5 shows how the parameters of two-gap traps depend
upon ρ̃2.

Two-gap traps are not so useful given that it is not possible
to do better than make C3 = 0. It is not possible to make
a2 = 0. For the remainder of our discussion of planar traps we
concentrate on three-gap traps since these have much better
properties.

VI. OPTIMIZED THREE-GAP TRAPS

A. Overview

The goal of our optimization of a planar trap is to reduce
the amplitude dependence of the axial oscillation frequency
of a trapped particle to a manageable level so that the
trapped particle’s oscillation energy is in a narrow range of
Fourier components. Otherwise, the oscillation energy will

be broadened by noise-driven amplitude fluctuations to a
broader range of Fourier components. The signal induced by
the more harmonic axial oscillation can then be filtered with
a narrow-band detector that rejects nearby noise components,
making possible the good signal-to-noise ratio needed to detect
the small frequency shifts that signal one-quantum transitions.

The dependence of the axial frequency ωz(Ã) on the
oscillation amplitude Ã = A/ρ1 is given by

ωz(Ã) − ωz

ωz

= 1 + a2Ã
2 + a3Ã

3 + a4Ã
4

+ a5Ã
5 + a6Ã

6 + . . . , (42)

the low-order terms from Eq. (24). Since Ã � 1, the lowest-
order amplitude coefficient a2 is the most important, followed
by a3, and so on. Each of the coefficients ak is a function [given
in Eq. (25)] of the potential expansion coefficients. Each of
these is determined by the geometry and the applied trapping
potentials, which must then be determined.

As discussed more generally in Sec. III F, a scaled three-gap
planar Penning trap configuration is specified by 2N = 6
parameters: ρ̃2, ρ̃3, Ṽ1, Ṽ2, Ṽ3, and z̃0. These can be chosen
to realize desired properties of a trap. These parameters
must satisfy the two constraint equations C1 = 0 and C2 =
1 [Eqs. (19) and (20)]. The difference of the number of
parameters and the number of constraints is thus 2N − 2 = 4.
The challenge is to identify up to four useful sets of constraint
equations for which solutions exist.

B. What is needed?

To estimate what is needed to observe a single trapped
electron it is natural to look to the demonstrated properties
of the cylindrical trap used to observe the one-quantum
transitions we seek to emulate. The electrodes of a cylindrical
trap are invariant under reflections z → −z about the position
of the trapped particle. This symmetry is never true for a planar
Penning trap.

The first consequence of the reflection symmetry is that
the odd-k expansion coefficients Ck vanish. The second is
that the low-order, odd-k ak vanish as well, since these are
proportional to the Ck with odd k. For a cylindrical trap
the frequency expansion coefficients ak of Eq. (25) thus
simplify to

a2 = 3
4C4, (43a)

a3 = 0, (43b)

a4 = 15
16C6 − 21

64 (C4)2, (43c)

a5 = 0. (43d)

The odd-order ak thus vanish naturally for an ideal
cylindrical Penning trap.

Care must be taken in making quantitative comparisons
between the planar traps and the cylindrical trap. Amplitudes
and distances in the cylindrical trap were naturally scaled
by the larger value of d = 3.54 mm [16,30] rather than by
ρ1 = 1.09 mm as in the sample trap considered here, for
trap configurations that produce the same axial frequency. The
conversion between the C

(cyl)
k for the cylindrical trap [30,31]
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and the Ck for the planar trap is given by

Ck =
(ρ1

d

)k−2 C
(cyl)
k

C
(cyl)
2

. (44)

We apply this conversion to reported values for the cylindrical
trap for the rest of this section.

The amplitude dependence of the axial frequency is reduced
for the cylindrical Penning trap by adjusting a single compen-
sation potential applied to a pair of compensation electrodes.
The adjustment changes primarily C4, but also C6 to a lesser
amount. The adjustment continues until C4 ≈ 0, whereupon
C6 ≈ −0.0008. The frequency coefficients are then found
using the appropriately converted Ck in Eq. (25). This gives
a2 = a3 = a5 = 0 and a4 = −0.0007.

The resulting frequency-versus-amplitude curve is shown in
Fig. 6 for ωz/(2π ) = 64 MHz, and the corresponding thermal
spread of axial frequencies is �fz = 0 Hz since a2 = 0. The
compensation potential is typically then adjusted slightly away
from C4 = 0 to make the axial frequency insensitive to small
fluctuations about a particular oscillation amplitude [32].

In practice, C4 = 0 is not realized exactly, but |C4| < 10−5

is typically achieved. If C4 = −10−5, and C6 = −0.0008 as
before, then the amplitude coefficients are a2 = −8×10−6,
a4 = −0.0007, and a3 = a5 = 0, the thermal spread of axial
frequencies is 0.5 Hz, and the frequency-versus-amplitude
curve is as shown in Fig. 6.

The cylindrical trap is designed so that the axial frequency
is much more insensitive to the tuning compensation potential
than to the potential applied to make the main trapping
potential. If we define the endcap electrode potential to be

b
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FIG. 6. (a) Amplitude dependence of ωz(A) ≈ 2π64 MHz for
optimized configurations of the sample trap (Table I) is comparable
or smaller than for the cylindrical trap. (b) Slight adjustments in the
applied potentials minimize the dependence of ωz upon fluctuations
about a large oscillation amplitude (solid) rather than for small
oscillation amplitudes (dashed).

our zero of potential, the γi factors are γring = −141 and
γcomps = 0.032. The latter would have the value γcomps = 0
for the “orthogonalized” design for the cylindrical trap except
for the unavoidable imperfections of a real laboratory trap.

C. Previous three-gap traps

In marked contrast to the cylindrical trap within which the
one-quantum transitions of a single electron were observed,
the planar traps attempted so far were not designed to make
a2 = 0 and were not biased to make even C3 = 0. It is thus not
so surprising that attempts to observe one electron in a planar
Penning trap have not succeeded.

In fact, Fig. 7 shows that the three-gap trap geometries tried
so far (crosses) are outside of all of the shaded regions that
we use to identify optimized trap geometries. The best that
could have been done for the earlier planar traps would have
been to make C3 = 0. In fact, any trap geometry represented in
the upper triangular region of Fig. 7 can be tuned to make C3

vanish. Appendices B and C look more closely at the design
of earlier planar Penning traps and suggest that these were not
biased to make C3 = 0.

D. Optimize to a2 = a3 = a4 = a5 = 0

For a scaled three-gap trap we must choose six parameters
(ρ̃2, ρ̃3, Ṽ1, Ṽ2, Ṽ3, and z̃0) that solve the constraints of Eqs. (19)
and (20). Our preferred path to optimization starts from adding

Mainz 2006

Ulm 2008

sample trap

unphysical region

a2 a3 0

a2 a3 a4 a5 0

C3 C4 a2 a3 0

C3 C4 C6 a2
a3 a4 a5 0

2 4 6 8 10

2

4

6

8

10

ρ2

ρ 3

FIG. 7. The shaded regions for which the indicated ak can be
made to vanish for a three-gap planar Penning trap, along with the
region and the curve for which the indicated Ck can alternatively
be made to vanish. To be avoided is the shaded area near the
diagonal boundary ρ̃2 = ρ̃3 where there is a rather strong and sensitive
cancellation between the effect of the potentials V2 and V3. No
optimized traps are possible in the unshaded region, with the the
earlier traps (crosses) at Mainz [11] and Ulm [13] as examples.
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axial potential minimum. (b) The corresponding Ck . (c) The corres-
ponding ak .

the constraints

C1 = 0, (45a)

C2 = 1, (45b)

a2 = a3 = 0. (45c)

What appear here to be four constraints are actually three
constraints because a3 = 0 follows from a2 = 0 via Eq. (25c).

The difference of the number of parameters and constraints
is three. Where solutions exist, we might thus expect them to
be functions of the two parameters that specify the relative
geometry, and that a range of z̃0 might be possible. The shaded
area in Fig. 7 represents the relative geometries for which
there are solutions. Solutions also do exist for a range of z̃0

values, as illustrated in Fig. 8 for our sample trap geometry.
The solutions are double-valued because the third constraint
equation is quadratic in the scaled potentials Ṽ1, Ṽ2, and Ṽ3.
The solid and dashed curves distinguish the two branches.

The left and right points in Fig. 8, with detailed properties
in columns I and II of Tables I and II, are trap configurations

TABLE II. One set of absolute values for the sample planar trap
geometry. The broadening �fz is for a 5 K thermal distribution of
axial energies. The damping widths γz/(2π ) are for the numbered
electrode connected to R = 100 k�. Thermal frequency spreads �fz

below 1 Hz will be very difficult to realize in practice owing to
imperfections in real traps.

{ρi} = {1.0909, 6, 8.2283} mm

a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

ρ1 1.0909 1.0909 1.0909 1.0909 mm
z0 2.5603 1.5655 1.5655 1.1182 mm
ρ

(opt)
d 3.6208 2.2140 2.2140 1.5814 mm

fz 64 64 64 64 MHz
V0 −1.0941 −1.0941 −1.0941 −1.0941 V
V1 13.4158 28.9064 28.9064 33.9572 V
V2 18.0504 29.6361 29.6361 34.6452 V
V3 87.3065 121.6051 121.6051 131.4355 V

�fz 0.0 0.0 0.0 0.0 Hz
1 : γz 2π1.37 2π13.16 2π13.16 2π43.70 s−1

2 : γz 2π2.49 2π0.19 2π0.19 2π10.61 s−1

3 : γz 2π0.26 2π0.57 2π0.57 2π0.72 s−1

d : γ
(opt)
z 2π10.14 2π27.11 2π27.11 2π53.14 s−1

Fig. 8 points Fig. 9 points
Right Left Right Left

that satisfy the more stringent set of constraints

C1 = 0, (46a)

C2 = 1, (46b)

a2 = a3 = a4 = a5 = 0. (46c)

What appear to be six constraints on the six parameters are
actually four constraints in light of Eq. (29). The difference of
the number of parameters and constraints is thus two. Where
solutions exist we will thus regard them as functions of the
relative geometry, ρ̃2 and ρ̃3, which will then determine a
particular value of z̃0. The darkly shaded region in Fig. 7 shows
the relative geometries for which solutions can be found.

For the solution that is the right point in Fig. 8 none of
the potential coefficients C3, C4, C5, and C6 vanish. The axial
potential in Fig. 4 is thus clearly different from a harmonic
oscillator potential. Since C3 �= 0 the amplitude of the second
harmonic of the axial oscillation is the lowest-order term from
Eq. (35),

Ã2

Ã1
= C3

4
Ã + . . . . (47)

The amplitude of this second harmonic should still be relatively
small insofar as Ã = A/ρ1 is small.

We discuss the solution that is the left point in Fig. 8 and
column II in Tables I and II in Sec. VI F.

E. Optimize to C3 = C4 = a2 = a3 = 0

A second path to optimizing the six parameters for a scaled
trap configuration starts with adding the constraint C3 = 0 to
the two requirements for a trap, C1 = 0 and C2 = 1 [Eqs. (19)
and (20)]. All three constraint equations are then linear in
the scaled potentials Ṽ1, Ṽ2, and Ṽ3, yielding single-valued
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FIG. 9. (a) Scaled potentials applied to our sample trap electrodes
to produce a trap with C3 = 0 as a function of z̃0. (b) The resulting
Ck and ak .

solutions for a given z̃0, ρ̃2, and ρ̃3. There are three more
parameters than constraints. Solutions that give C3 = 0 are
possible for any relative geometry. The traps can be biased to
make a range of z̃0 values. For our sample trap geometry, the
scaled potentials are plotted as a function of z̃0 in Fig. 9. The
resulting Ck and ak are shown as well.

The axial potential is more harmonic at the two points
in Fig. 9, both of which satisfy the more stringent set of
constraints,

C1 = C3 = C4 = 0, (48a)

C2 = 1, (48b)

a2 = a3 = 0. (48c)

What appear to be six constraints on the six parameters for
the scaled trap are actually four [since Eq. (48c) follows from
Eqs. (48a) and (48b) via Eqs. (25a)–(25c)]. There are thus only
two more parameters than constraints. Various relative trap
geometries can thus be biased to satisfy this set of constraints,
as represented by the solid boundary and arrows labeled C3 =
C4 = a2 = a3 = 0 in Fig. 7, and z̃0 is thus determined for each
relative geometry. Note that although this region lies within the
shaded area for which a2 = a3 = a4 = a5 = 0 can be realized,
in general it is not possible to satisfy both sets of constraints
simultaneously.

For the sample trap geometry, two of the applied potentials
are nearly the same, making this nearly a two-gap trap, but the
slight potential difference is needed. More details about these
solutions are in columns III and IV of Tables I and II. Compared
to the optimized configuration in Eq. (46), the optimization of
Eq. (48) has a more harmonic potential (Fig. 4) but a less

good suppression of the amplitude dependence of the axial
frequency as long as a4 �= 0 and a5 �= 0.

Any solution with C3 = C4 = 0 (including the two points
in Fig. 9 and columns III and IV in Tables I and II, as well as
the left solution point in Fig. 8 column II in Tables I and II
described in the following) has a suppressed harmonic content
compared to Eq. (47), with

Ã2

Ã1
= 5C5

12
Ã3 + . . . , (49)

from Eqs. (34) and (35). The amplitude of higher harmonics
is suppressed by additional powers of Ã.

We discuss the solution that is the right point in Fig. 9 and
column III in Tables I and II in the following section.

F. Harmonic optimization

The highest level of optimization is for traps that are
harmonic in that C3 = C4 = 0, as well as having the remark-
able suppression of the amplitude dependence of the axial
frequency that comes by adding C6 = 0 [Eq. (30)]. For this
optimized harmonic configuration

C1 = C3 = C4 = C6 = 0, (50a)

C2 = 1, (50b)

a2 = a3 = a4 = a5 = 0. (50c)

What appear to be nine constraints are actually five [because
Eqs. (50c) follows from Eqs. (50a) and (50b) via Eqs. (25)].
There is thus one more parameter to chose (ρ̃2, ρ̃3, Ṽ1, Ṽ2, Ṽ3,
and z̃0) than there are constraints. The free parameter leads
to a range of possible relative geometries (the dashed line in
Fig. 7). Missing from Eq. (50) is C5 = 0 since there are no
solutions when this constraint is added.

Our sample trap (filled circle in the dashed line in Fig. 7) is
one example. For it, the left solution point in Fig. 8 and the right
solution point in Fig. 9 are actually the same configuration,
as is obvious from columns II and III of Tables I and II.
This convergence of two solutions happens only for traps with
relative geometries on the dashed line in Fig. 7. For other
traps in the shaded region where a2 = a4 = 0 can be satisfied,
these two solutions remain distinct, and the highly optimized
constraints of Eq. (50) cannot be satisfied for any choice of the
trap potentials.

The optimized harmonic trap configurations (Fig. 10)
involve only a very narrow range of scaled distances z̃0

from the electrode plane to the axial potential minimum.
The scaled potentials needed are shown in Fig. 10(b). The
leading departure from a harmonic potential is described by
C5 = −0.011 [Fig. 10(b)]. As mentioned, we find no solutions
to the constraint equations if a vanishing C5 is required.

The highly optimized properties of Eq. (50) are an opti-
mized harmonic configuration in that the leading departures
from a harmonic axial potential vanish because C3 = C4 = 0
at the same time that the amplitude dependence of the axial
frequency is strongly suppressed. A particle’s axial oscillation
will thus have a very small amplitude at the overtones
of the fundamental harmonic, as given by Eq. (49), with
the amplitude of higher harmonics suppressed by additional
powers of Ã.
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FIG. 10. (a) An optimized harmonic trap [Eq. (50)], as illustrated
using our sample trap geometry, is possible with only a small range of
z̃0 values and relative geometries. (b) The required scaled potentials.
(c) Values of the nonzero C5.

G. Comparing amplitude-dependent frequency shifts

The optimized trap configurations greatly reduce the ampli-
tude dependence of the axial oscillation frequency. Avoiding
frequency fluctuations caused by noise-driven amplitude fluc-
tuations is critical to resolving the small frequency shifts that
signal one-quantum cyclotron and spin transitions.

One way to compare the optimized configurations is in
Fig. 6. The axial frequency shift is shown as a function of
oscillation amplitude for the three optimized configurations
of the sample trap. For one electron in the cylindrical trap
an oscillation amplitude of 0.1 mm was large and easily
detectable.

Another figure of merit is the frequency broadening for
the thermally driven axial motion of a trapped particle, which
was discussed in Sec. IV D. We use the 5 K axial temperature
realized and measured for a cylindrical Penning trap cooled
by a dilution refrigerator [29], though it should be noted that
realizing such a low detector temperature is a challenging
undertaking. Each trap configuration can thus be characterized
by the thermal broadening of the axial resonance frequency,
as indicated in Fig. 11. Imperfections in real planar traps and
instabilities in applied potentials will likely make it difficult to
get thermal widths much less than 1 Hz for an axial frequency
of 64 MHz.

optimized traps
proposed in

this work

calculated for
Mainz and Ulm

observed in
Mainz, Ulm

0.1 1 10 100 1000 104 105 106 107
fz in Hz at 5 K

FIG. 11. Comparison of the frequency widths calculated for opti-
mized planar traps with a 5 K axial temperature. The imperfections of
a real planar trap will likely make it difficult to realize widths below
1 Hz for an axial frequency of 64 MHz.

VII. LABORATORY PLANAR TRAPS

Planar Penning traps put into service in the laboratory will
not have the ideal properties described in the previous sections
of this work. A real trap does not have gaps of negligible
width, does not have an electrode plane that extends to infinity,
does not have conducting boundaries at an infinite distance
above the electrode plane and at an infinite radius, and will not
have exactly the ideal dimensions and the perfect cylindrical
symmetry that are being approximated. None of these have
large effects. However, the result is that the potentials applied
to the electrodes of a real laboratory trap will need to be
adjusted a bit from the ideal planar trap values to compensate
for the unavoidable deviations and imperfections.

The effect of nonnegligible gaps is calculated in Sec. VII A.
The effect of a finite electrode plane and a finite conducting
radial enclosure is discussed in Sec. VII C. Imperfections in
the trap dimensions and symmetry are dealt with in Sec. VII D
using simple estimates that proved adequate for the design of
earlier traps. These estimates are used to discuss the tunning
of the trap potentials required to compensate for imperfections
of this order (Sec. VII E).

A. Gaps between electrodes

Small gaps of some width w between electrodes are
unavoidable, of course. As long as w � z0, the potential
variation caused by the gaps at the position of the trapped
particle should be small since it should diminish exponentially
with an argument that goes as w/z0. We assume that the gaps
between electrodes are deeper than they are wide since this
is needed to screen the effect of any stray charges on the
insulators that keep the electrodes apart.

Solving exactly for the trapping potential using boundary
conditions that include deep gaps between the electrodes
is a challenging undertaking. Instead we use a simple and
approximate boundary condition that was used to demonstrate
the small effect of the gaps in a cylindrical trap [16]. We
take the potential in the electrode plane across each gap to
vary linearly between the potentials of the two electrodes. The
potential is thus determined everywhere in the electrode plane
by the potentials on the electrodes.

The basis of this approximation is illustrated by the
equipotentials shown for a planar trap in Fig. 2(b) [and later
in Figs. 12(b), 14(b), and 16(b)]. All the equipotentials from
the trapping volume must connect to equipotentials within the
gaps. Deep within a small but deep gap the equipotentials
will locally be similar to the equipotentials between parallel
plates, the plates being the vertical electrode walls within the
gap. The equipotentials will remain roughly parallel until they
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rise above the electrode plane, whereupon they will spread.
We make the approximation that in the electrode plane the
potential in the gap varies linearly with radius between the
voltages applied to the two electrodes that are separated by
the gap. Since the effect of the gaps is already small a better
approximation should not be needed.

The completely specified electrode plane boundary is thus
given by the electrode boundaries and the linear change
of potential between them at the gaps of width wi (with
w̃i = wi/ρ1) centered at radius ρi . The solution to Laplace’s
equation on axis then becomes

V gap(0, z) =
N∑

i=1

�Vi�i(z̃), (51)

�i(z̃) = z̃

w̃i

sinh−1

(
ρ̃i + w̃i/2

z̃

)
− z̃

w̃i

sinh−1

(
ρ̃i − w̃i/2

z̃

)
− 1. (52)

In the limit of vanishing gap widths this potential becomes the
potential of an ideal planar trap in Eqs. (12) and (13).

Following the procedure outlined earlier (Sec. VI), this
potential is expanded about z̃ = z̃0. Sets of parameters that
satisfy reasonable constraint equations identify the optimized
trap configurations that greatly reduce the amplitude depen-
dence of the axial frequency and make the trap potential more
harmonic. We get four optimized configurations, as before, but
with applied potentials that are slightly shifted.

Biasing a trap with a finite gap width as if it was an ideal
planar trap with no gap width is one approach. Table III shows
the Ck and ak when ideal trap biases (from Tables I and II)
are applied to the sample trap with w = 50 µm gap widths.
The broadening of the axial frequency �fz for a thermal
distribution of axial frequencies is still small enough that it
should not prevent observing one electron in a trap with such
gaps.

TABLE III. Gaps between the electrodes of the sample trap when
the potentials for an ideal planar trap (from Tables I and II) are applied
produce different Ck and ak . The gap width is w = 0.002 in = 50 µm.

{ρ̃i} = {1, 5.5, 7.5426}
a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

z̃0 2.3469 1.4351 1.4351 1.0250

C3 −0.1516 0.0000 0.0000 0.0000
C4 0.0287 0.0000 0.0000 0.0001
C5 −0.0156 −0.0112 −0.0112 0.0213
C6 0.0064 0.0000 0.0000 −0.0365

a2 0.0000 0.0000 0.0000 0.0000
a3 0.0000 0.0000 0.0000 0.0000
a4 0.0000 0.0000 0.0000 −0.0342
a5 0.0000 0.0000 0.0000 0.0000
a6 −0.0003 −0.0039 −0.0039 −0.0095

�fz @ 5 K 0.3 0.3 0.3 2.7 Hz

TABLE IV. Gaps of width w = 0.002 in = 50 µm between the
electrodes of our sample trap shift the scaled and absolute potentials
that must be applied to obtain the optimized trap configurations. The
shifts are with respect to the values calculated for a vanishing gap
width in Tables I and II.

{ρ̃i} = {1, 5.5, 7.5426}
a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

δṼ1 −0.0008 0.0015 0.0015 −0.0076
δṼ2 −0.0006 0.0014 0.0014 −0.0076
δṼ3 0.0034 0.0048 0.0048 −0.0157

δV1 0.0009 −0.0016 −0.0016 0.0083 V
δV2 0.0006 −0.0015 −0.0015 0.0083 V
δV3 −0.0037 −0.0053 −0.0053 0.0172 V

�fz @ 5 K 0.0 0.0 0.0 0.0 Hz

Shifting the potentials applied to the electrodes improves
the Ck and ak , as indicated in Table IV. However, the predicted
thermal widths then become smaller than what imperfections
(discussed in Sec. VII D) will likely allow us to attain, so this
adjustment is not really needed.

The small size of these coefficients illustrates that realistic
gaps between the electrodes of a trap as large as our sample
trap pose no threat to realizing a planar Penning trap. Simply
biasing the trap as if it were a trap with vanishing gap widths
suffices. However, as planar traps get smaller the gaps will
likely be relatively larger with respect to the trap dimensions.
The use of Eqs. (51) and (52) will then be required.

B. Practical limitations on gaps

Two practical considerations are associated with gaps
between electrodes. Both can make the difference between
a trap that works and one that does not. Both are difficult to
calculate.

The first is that charges that accumulate on the insulators
in the gaps between the electrodes can substantially modify
the trapping potential. When the trap is cooled to 4 K or
below, these charges can remain for days. Such charges have
made some traps in our laboratory completely unusable, but
no systematic study has been undertaken.

There are only two solutions that we know of. Careful
loading and operation procedures can minimize the number
of charges that build up on the insulators. Also, thick metal
electrodes with narrow gaps make it more difficult for charges
to reach the insulating substrate at the bottom of the slits
between electrodes. Any charges that do collect on the
insulator will be screened by metal surfaces to either side
of the gaps.

As mentioned in the Appendices, both the Mainz and Ulm
traps had exposed insulators in gaps that were not screened
because the gaps were wider than they were deep. Charges on
the insulating substrates that are exposed in the gaps of these
traps may well have contributed to the broad frequency spreads
that were observed. Improved traps with much better screening
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of the insulator at the bottom of the gaps seem possible but
have yet to be used with trapped particles.

The second practical consideration involving gaps between
electrodes becomes more serious with decreasing gap width.
We have observed currents between polished gold-plated trap
electrodes separated by small gaps. These field emission
currents [33–36] grow exponentially with the difference in
potential across the gap.

Trap designs that limit the size of the gap potentials are one
solution. For three-gap traps, �V3 = 0 − V3 is generally the
largest of the gap potentials. It can generally be reduced by
decreasing the radial width of the second electrode, ρ2 − ρ1,
and increasing the radial width of the third electrode, ρ3 − ρ2.
We will see in Sec. VIII A that a planar trap with a conducting
plane above it will permit an optimized trap with lower gap
potentials. Other solutions are to increase the gap width and to
make the metal surfaces within the gap as smooth as possible.
As planar traps and planar trap arrays get smaller it will be
necessary to investigate these solutions further.

C. Finite boundaries

For laboratory traps it is difficult to approximate an infinite
electrode plane and to keep all parts of the apparatus many trap
diameters away from the trapping volume. The effects of real-
istic finite boundary conditions are thus extremely important.
For smaller planar Penning traps the finite boundaries may be
less important.

One choice of finite boundary conditions comes from
locating a planar trap within a grounded conducting cylinder
closed with a flat plate (Fig. 12). The boundary conditions in
the electrode plane are still given in Fig. 3 for ρ < ρc. The
boundary conditions at infinity in Eq. (6) are replaced by

V (ρc, z) = 0, (53)

V (ρ, zc) = 0. (54)

Particles can be loaded into the trap through a hole through
the conducting plate above that is small enough to negligibly
affect the potential near the particle.

The solution to Laplace’s equation for z > 0 that satisfies
these boundary conditions can be written as

V (0, z̃) =
N∑

i=1

�Vi�i(z̃; ρ̃c, z̃c). (55)

Standard electrostatics methods [25,26] give dimensionless
potentials,

�i(z̃; ρ̃c, z̃c) = ρ̃i

ρ̃c

∞∑
n=1

2J1
(
α0n

ρ̃i

ρ̃c

)
α0nJ1

2(α0n)

sinh
(
α0n

z̃−z̃c

ρ̃c

)
sinh

(
α0n

z̃c

ρ̃c

) , (56)

that are functions of zeros of the lowest-order Bessel function,
with J0(α0n) = 0. The potential off the axis is given by
substituting V (ρ̃, z̃) for V (0, z̃) in Eq. (55), and inserting
J0(α0nρ̃/ρ̃c) to the far right in Eq. (56). The planar trap
described in Eq. (12) is recovered in the limit of large ρ̃c

and z̃c insofar as the �i(z̃; ρ̃c, z̃c) reduce to the �i(z̃) of
Eq. (13).

The simplest approach is to bias the electrodes of the
enclosed trap as if it was an ideal planar trap with no enclosure,

B

zc

ρc

(a)

(b)

FIG. 12. (a) Planar trap enclosed within a conducting, capped
cylinder. Particles can be loaded through a tiny axial hole in the
cover (not visible). (b) Side view of trap electrodes and equipotentials
spaced by V0, with the infinitesimal gaps between the electrodes
widened to make them visible. The equipotentials extend into the gaps
between electrodes. The dashed equipotentials of an ideal quadrupole
are superimposed near the trap center.
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TABLE V. A conducting enclosure changes the Ck and ak when
the optimal potentials for an ideal planar trap (from Tables I and II)
are applied. The enclosure for the sample trap is shown to scale in
Fig. 12 with ρc = 19.05 mm and zc = 45.72 mm.

{ρ̃i} = {1, 5.5, 7.5426}
a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

z̃0 2.2406 1.2750 1.2750 0.8481
C3 −0.1586 −0.0034 −0.0034 0.0110
C4 0.0365 0.0082 0.0082 −0.0414
C5 −0.0193 −0.0081 −0.0081 0.0785
C6 0.0075 −0.0075 −0.0075 −0.0712
a2 0.0038 0.0062 0.0062 −0.0312
a3 −0.0006 0.0000 0.0000 −0.0003
a4 −0.0003 −0.0072 −0.0072 −0.0701
a5 0.0001 0.0000 0.0000 −0.0040
a6 −0.0004 −0.0069 −0.0069 −0.0064
�fz @ 5 K 190 Hz 310 Hz 310 Hz 1600 Hz

using the potentials tabulated in Tables I and II. The size
of the resulting Ck and ak coefficients are then displayed in
Table V for the conducting enclosure shown to scale in Fig. 12
with dimensions ρc = 19.05 mm and zc = 45.72 mm, both
substantially larger than ρ3 = 8 mm. The resulting thermal
frequency shifts for a 5 K axial motion are large enough that
this broadening will make it hard to observe one electron and
realize a one-electron qubit.

It is possible to do much better by shifting the potentials
applied to the trap electrodes, without changing the relative
geometry of the electrodes. Table VI shows the required
potential shifts and the calculated Ck and ak that result for each
of the four optimized planar trap configurations for an ideal
planar trap (summarized in Tables I and II). The frequency
broadening is small enough that it should be possible to observe
one electron within such a trap.

The configurations in columns II and III of Table VI
no longer coincide exactly, however, even though both trap
configurations still have very attractive properties. The finite
boundary conditions effectively shift the dashed line in Fig. 7
that represents the possible geometries for which an optimized
three-gap trap can be realized, so that the relative geometry
of the sample trap no longer allows this highest level of
optimization. What could be done is to slightly change one
of the trap radii to compensate for the calculated effect of the
finite boundary conditions. However, the shift of geometry is
often less than the size of the typical imprecision with which
the electrode radii of a real trap can be fabricated (discussed
in the next section) so in practice this makes little sense.

D. Imprecision in trap dimensions and symmetry

A fabricated laboratory trap will not have exactly the
intended dimensions and symmetry because of unavoidable
fabrication imprecision. Such effects can only be estimated.
The simple estimation method used here has proved itself
to be adequate for the design of cylindrical traps [16] and
open-access traps [20].

TABLE VI. For a conducting enclosure around the sample trap,
optimized trap configurations can be obtained by shifting the applied
potentials by δVi and δṼi from the values for an ideal planar trap
in Tables I and II. The enclosure for the sample trap is shown to
scale in Fig. 12 with ρc = 19.05 mm and zc = 45.72 mm. Note that
configurations II and III are now distinct.

{ρ̃i} = {1, 5.5, 7.5426}
a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

δṼ1 1.2769 1.4585 1.6122 1.6247
δṼ2 1.1724 1.4626 1.6088 1.6239
δṼ3 1.9777 2.2179 2.6248 2.5540

δV1 −1.3971 −1.5958 −1.7640 −1.7777 V
δV2 −1.2828 −1.6003 −1.7603 −1.7768 V
δV3 −2.1639 −2.4267 −2.8719 −2.7944 V

z̃0 2.3625 1.4333 1.4436 1.0225

C3 −0.1520 0.0013 0.0000 0.0000
C4 0.0289 0.0000 0.0000 0.0000
C5 −0.0155 −0.0111 −0.0113 0.0220
C6 0.0064 0.0000 0.0002 −0.0371

a2 0.0000 0.0000 0.0000 0.0000
a3 0.0000 0.0000 0.0000 0.0000
a4 0.0000 0.0000 0.0002 −0.0347
a5 0.0000 0.0000 0.0000 0.0000
a6 −0.0003 −0.0039 −0.0038 −0.0095
�fz @ 5 K 0.0 0.0 0.0 0.0 Hz

We start with an achievable fabrication tolerance of
0.001 in = 25 µm that is realistic for existing traps of the size
of our sample trap. (Whether smaller traps can be constructed
with better fractional tolerances is being investigated [37].)
Adding and subtracting the achievable tolerance to the radii ρ2

and ρ3 of a three-gap planar trap makes variations (Table VII)
from the design ideal (Tables I and II).

These variations do not have the exact ratios of the trap
radii needed to make an optimized harmonic trap configuration
[Eq. (50)] that is specified by the dashed line in Fig. 7 and in
Fig. 10(a). The variations have better properties than what
has been observed to date with a laboratory planar trap.
However, the imprecision in the radii still makes the predicted
broadening of an electron’s axial resonance for a 5 K thermal
distribution of axial energies to be too large to observe one
trapped electron very well. It would be virtually impossible to
realize a one-electron qubit.

The solution must be to slightly adjust the potentials on
the electrodes to recover properties closer to the ideal, if
this is possible. In the cases of the gaps and the conducting
enclosure we saw that this could be done, at least in principle,
by calculating what the improved set of potentials should be.
For imprecision in the trap radii, however, the effective radii for
the electrodes will be unknown and hence no such calculation
is possible. What is required is a procedure for tuning the
potentials of the trap to narrow the thermal broadening. For
trap design we must make sure that the trap potentials can
be tuned to compensate for imperfections of this order. The
tuning procedure and range is the subject of the next section.
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TABLE VII. Changes of 0.001 in = 25 µm for the electrode radii
of the sample trap deteriorate its performance when the potentials for
an ideal optimized harmonic configuration (from Tables I and II) are
applied.

δρ2 −25 25 0 0 µm
δρ3 0 0 −25 25 µm

z̃0 1.4809 1.3876 1.3966 1.4726

C3 0.0017 −0.0027 −0.0017 0.0012
C4 −0.0036 0.0038 0.0024 −0.0024
C5 −0.0108 −0.0112 −0.0111 −0.0110
C6 0.0011 −0.0016 −0.0012 0.0009

a2 −0.0027 0.0028 0.0018 −0.0018
a3 0.0000 0.0000 0.0000 0.0000
a4 0.0011 −0.0016 −0.0012 0.0009
a5 0.0000 0.0000 0.0000 0.0000
a6 −0.0031 −0.0048 −0.0046 −0.0033

�fz @ 5 K 130 140 93 89 Hz

Imperfections that are not cylindrically symmetric are
no doubt present. While it is possible with some effort to
make calculations of potential configurations that are not
cylindrically symmetric [37], the input from imperfections
that should be used in such a calculation is difficult to estimate.
Fortunately, the experience with earlier traps suggests that this
is not necessary for trap design.

E. Tuning a laboratory trap

The point of carefully designing the optimized traps for
which the lowest order ak vanish, preferably along with C3 and
C4, is not that we actually expect to realize this performance
in a real laboratory trap. The previous section illustrates that
radius imprecision alone will keep this from happening. The
reason for the careful optimized designs is to make sure
that imprecision alone will make these crucial coefficients
differ from zero. Notice in Table VII that the imperfections
considered do not make either a3 or a5 deviate much from
zero, and a4 stays at an acceptably low value.

To make a useful trap we need a way to tune the trap in
situ to make a2 = 0. The other important coefficients will
remain small enough because of the optimized design. To
tune out the effect of radius imperfections in our sample trap,
for example, the trap must be tuned to change the size of
a2 by about ±0.003. After each adjustment the width of the
axial resonance line can be measured to see if the thermal
broadening has been reduced or increased.

For the cylindrical Penning trap used to observe one-
quantum transitions of one electron, tuning of the trap was
essential to the observations that were made. In that trap, like
every trap within which precise frequency measurements are
made, the effect of imperfections could never be calculated
well enough to be useful. In situ tuning of a compensation
potential was always needed.

For a cylindrical trap, tuning is a straightforward (if a bit
tedious) matter. To a good approximation, the potential applied
to the compensation electrodes [Fig. 1(c)] changes a2, while
the potential applied between the endcap and ring electrodes

changes V0 and ωz. The axial resonance line is measured after
every adjustment of the compensation potential to see if the
thermal broadening increased or decreased. The “orthogonal-
ized design” of this trap kept the change in the compensation
potential from changing the axial frequency very much at all.
The axial resonance line was thus easy to keep track of during
trap tuning, and the axial oscillation never comes close to going
out of resonance with the detection circuit.

The tunability defined in Eq. (32) quantifies how much
the axial frequency changes for a given change in a2 when
the potential on a particular electrode is changed. For the
compensation electrodes of the cylindrical trap the tunability
was 0 for a perfect trap, and γcomps = 0.03 was realized for
a laboratory trap (Sec. VI B). The much larger γring = −141
indicates that this electrode is for changing the axial frequency
of the trap rather than for tuning a2.

For a planar Penning trap such an orthogonalization is
unfortunately not possible. Changing the potential on each
electrode will change both a2 and ωz, as indicated by
tunabilities in Table I that are not small and which do not
vary much from electrode to electrode in most cases (e.g.,
|γi |≈3 in one example). The result is that it is necessary to
adjust two or three of the potentials applied to the electrodes
of a three-gap trap for each step involved in tuning the trap.
Adjustments of the applied potentials must be chosen to vary
a2 by a reasonable amount while keeping V0 and ωz fixed.

Figure 13 identifies the potentials for which a2 = 0 and
a4 = 0 for our sample trap with and without the radius
imperfections of Table VII. For each point on this plot V1

has been adjusted so that V0 and hence the axial frequency ωz

remain fixed. In this example it would be necessary to change
V2 or V3 (along with V1 to keep V0 fixed) to achieve a2 = 0.

δρ2 25 µm
δρ3 0

δρ2 25 µm
δρ3 0
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FIG. 13. The a2 = 0 (solid) and a4 = 0 (dashed) contours for the
sample trap with one of its radii displaced by the indicated distance
as a function of the potentials applied to the electrodes. V2 and V3 are
changed as plotted, and V1 is adjusted to keep the axial frequency at
64 MHz.
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FIG. 14. (a) A covered planar Penning trap could be loaded
through a tiny axial hole in the cover (not visible). (b) Side view of
trap electrodes and equipotentials spaced by V0, with the infinitesimal
gaps between the electrodes widened to make them visible. Some
equipotentials extend into the gaps between electrodes and some
terminate at infinity. The dashed equipotentials of an ideal quadrupole
are superimposed near the trap center.

However, by changing both V2 and V3 (along with V1) it would
be possible to make a2 = 0 while at the same time making a4

much smaller in magnitude.

VIII. COVERS AND MIRRORS

A. Covered planar trap

A covered planar Penning trap (Fig. 14) is a planar trap
that is electrically shielded by a nearby conducting plane. The
covered planar trap has some very attractive features.

1. The electrodes are in a single plane that can be fabricated
as part of a single chip.

2. The conducting plane provides an easily controlled
boundary condition above the electrode plane that needs no
special fabrication, nor any alignment beyond making the
planes parallel.

3. A trap that is radially infinite is well approximated if the
radial extent of the two planes beyond the electrodes is large
compared to their spacing.

4. A covered planar trap is naturally scalable to an array of
traps.

5. The axial motion of electrons in more than one trap
could be simultaneously detected with a common detection
circuit attached to the cover.

6. The axial motions of electrons in more than one trap
could be coupled and uncoupled as they induce currents across
a common detection resistor by tuning the axial motions of
particular electrons into and out of resonance with each other.

Three possible additional advantages emerge when the
properties of the trapping potential in a covered planar trap
are considered.

1. A two-gap covered planar trap can be optimized in much
the same way as a three-gap infinite planar trap.

2. Smaller gap potentials can sometimes be used to achieve
optimized configurations, permitting smaller gap widths and
better screening of the exposed insulator between electrodes.

3. In some cases a smaller a6 can be realized for trap
configurations with a2 = a3 = a4 = a5 = 0.

These possibilities are illustrated using an example.
The secondary advantages for planar Penning traps (men-

tioned in the Introduction) may be diminished when a cover
is used. Microwaves of small wavelength can be introduced
between the electrode plane and the cover. However, the
added complication of small striplines [38] is likely required
for longer wavelengths. It should not be significantly more
difficult to load electrons with typical methods via small holes
in the electrodes, but if other loading mechanisms are used
then the electron trajectories may be obstructed by the cover.

The potential between the electrode plane and the cover
plane is a superposition of terms proportional to the potentials
applied to the electrodes, Vi , and the potential applied to the
cover plane, Vc,

V (0, z̃) =
N∑

i=1

�Vi�i(z̃; z̃c) + Vc�c(z̃; z̃c). (57)

The grounded cover plane makes the �i(z̃) of Eq. (13)
dependent upon z̃c,

�i(z̃; z̃c) = ρ̃i

∫ ∞

0
dk

sinh [k(z̃ − z̃c)]

sinh (kz̃c)
J1(kρ̃i), (58)

which approaches �i(z̃) for large z̃c. Biasing the cover plane
at a nonvanishing Vc superimposes a uniform electric field,
described by

�c(z̃; z̃c) = z̃/z̃c, (59)

between the large electrode and cover planes.
The scaled geometry and potentials of a two-gap covered

planar Penning trap are characterized by six parameters (ρ̃2, z̃c,
Ṽ1, Ṽ2, Ṽc, and z̃o). This is the same number of parameters that
characterize a three-gap planar trap with no cover electrode,
the optimization of which was discussed in detail in Sec. VI.

The trap geometries that can be optimized are represented
in Fig. 15. The six parameters can be chosen to satisfy the
same sets of four constraints considered in Sec. VI, giving the
various shaded regions in Fig. 15. The six parameters can be
chosen to satisfy the five constraints of Eq. (50) on the dashed
curve in Fig. 15 for which C3 = C4 = C6 = a2 = a3 = a4 =
a5 = 0.

The optimized harmonic configuration represented by the
dot in Fig. 15 has its scaled parameters listed in Table VIII.
One set of possible absolute parameters is listed in Table IX.
In the following section we discuss other attractive features of
this particular configuration.

Figure 14(b) shows equipotentials spaced by V0 for a
covered planar Penning trap (configuration I in Table VIII).
The equipotentials are calculated for infinitesimal gaps, but
the electrodes are represented with finite gaps to make them
visible. The equipotentials terminate in the gaps between
electrodes or at infinity. The dashed equipotentials of an ideal
quadrupole are superimposed near the trap center.

Covered planar traps are scalable in that an array of traps
can share the same covering plane at potential Vc, with the
axial frequency and the harmonic properties of each trap being
tuned by the potentials applied to the other electrodes. This is
analogous to Fig. 13 in which a2 can be tuned at constant
frequency by changing only V1 and V2 while leaving V3 fixed.
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a2 a3 0
a2 a3 a4 a5 0

C3 C4 a2 a3 0
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orthogonalized
mirror image traps

sample covered trap
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8
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ρ2

z c

FIG. 15. Parameter space regions for which the indicated ak can
be made to vanish for a two-gap planar trap with a cover, along with
the region and the curve for which the indicated Ck can alternatively
be made to vanish. No optimized traps are possible in the unshaded
region. The dotted line indicates orthogonalized mirror-image traps
formed from two sets of two-gap planar trap electrodes, as described
in Sec. VIII B.

TABLE VIII. Scaled parameters for the sample two-gap covered
planar trap geometry.

{ρ̃i} = {1, 4.4572}, z̃c = 5.5914

a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

Ṽ1 23.6322 23.9786 23.9786 24.2851
Ṽ2 19.0275 23.3251 23.3251 23.6609
Ṽc 21.2413 29.8478 29.8478 32.4943

z̃0 2.4214 1.4338 1.4338 1.0306

C3 −0.1532 0.0000 0.0000 0.0000
C4 0.0294 0.0000 0.0000 0.0000
C5 −0.0143 −0.0099 −0.0099 0.0208
C6 0.0057 0.0000 0.0000 −0.0351

a2 0.0000 0.0000 0.0000 0.0000
a3 0.0000 0.0000 0.0000 0.0000
a4 0.0000 0.0000 0.0000 −0.0329
a5 0.0000 0.0000 0.0000 0.0000
a6 −0.0003 −0.0038 −0.0038 −0.0096

C11 −0.1155 −0.3781 −0.3781 −0.6789
C12 −0.2558 −0.0690 −0.0690 0.2056
C1c 0.3577 0.3577 0.3577 0.3577
C

(opt)
1d −0.3715 −0.5521 −0.5521 −0.7545

γ1 −142.78 3.37 3.37 3.47
γ2 6.72 2.34 2.34 4.28
γc 7.64 0.00 0.00 0.00

The effect of a grounded radial boundary at ρ̃c (rather than
at infinity) can also be calculated. The superposition

V (0, z̃) =
N∑

i=1

�Vi�i(z̃; ρ̃c, z̃c) + Vc�c(z̃; ρ̃c, z̃c), (60)

has dimensionless potentials that depend upon the distance to
the radial boundary, ρ̃c, as well as upon z̃c. The first of these,

�i(z̃; ρ̃c, z̃c) = ρ̃i

ρ̃c

∞∑
n=1

2J1
(
α0n

ρ̃i

ρ̃c

)
α0nJ1

2(α0n)

sinh
(
α0n

z̃−z̃c

ρ̃c

)
sinh

(
α0n

z̃c

ρ̃c

) , (56)

was used earlier in Eq. (56) to describe a grounded enclosure
around a planar trap. The second,

�c(z̃; ρ̃c, z̃c) =
∞∑

n=1

2

α0nJ1(α0n)

sinh
(
α0n

z̃
ρ̃c

)
sinh

(
α0n

z̃c

ρ̃c

) , (61)

goes to the uniform field limit of Eq. (59) in the limit of large
ρ̃c. These potentials can be used to investigate radial boundary
effects as needed, though we will not give examples here.

B. Mirror-image trap

A mirror-image planar trap (Fig. 16) is a set of two planar
electrodes that are biased identically and face each other. The
axial potential,

V (0, z̃) =
N∑

i=1

�Vi [�i(z̃; z̃c) + �i(z̃c − z̃; z̃c)] , (62)

is a function of the dimensionless potentials defined in
Eq. (56).

For a two-gap mirror-image trap there are only four scaled
parameters to be chosen (ρ̃2, z̃c, Ṽ1, Ṽ2). The mirror-image
symmetry of the electrodes ensures that the potential minimum
is midway between the electrode planes and that all odd-order
Ck vanish. The constraints are C2 = 1, C4 = 0, and C22 = 0,
the latter giving the orthogonality property discussed in the
following. With one more parameter than constraints, the

TABLE IX. A set of absolute values for the sample two-gap
covered planar trap geometry.

{ρi} = {1, 4.4572} mm, zc = 5.5914 mm

a2 = a4 = 0 C3 = C4 = 0

I II III IV
Eq. (46) Eqs. (46), (50) Eqs. (48), (50) Eq. (48)

ρ1 1 1 1 1 mm
z0 2.4214 1.4338 1.4338 1.0306 mm
ρ

(opt)
d 4.6396 2.1166 2.1166 1.4797 mm

fz 64 64 64 64 MHz
V0 −0.9194 −0.9194 −0.9194 −0.9194 V
V1 −21.7271 −22.0456 −22.0456 −22.3274 V
V2 −17.4936 −21.4448 −21.4448 −21.7535 V
Vc −19.5290 −27.4416 −27.4416 −29.8749 V

�fz 0.0 0.0 0.0 0.0 Hz
1 : γz 2π 1.50 2π 16.03 2π 16.03 2π 51.68 s−1

2 : γz 2π 7.34 2π 0.53 2π 0.53 2π 4.74 s−1

c : γz 2π 14.35 2π 14.35 2π 14.35 2π 14.35 s−1

d: γ
(opt)
z 2π15.47 2π34.18 2π34.18 2π63.83 s−1
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zc

B
(a)

(b)

FIG. 16. (a) A mirror-image Penning trap is formed with two
planar trap electrodes facing each other. Particles can be loaded
through a tiny axial hole in one of the electrodes (not visible).
(b) Side view of trap electrodes and equipotentials spaced by V0, with
the infinitesimal gaps between the electrodes widened to make them
visible. The equipotentials extend into the gaps between electrodes.
The dashed equipotentials of an ideal quadrupole are superimposed
near the trap center.

possible geometries for a two-gap mirror-image trap are given
by the dotted curve in Fig. 15. The filled circle on this curve
represents the trap geometry that is used to illustrate the
properties of a mirror-image trap in Fig. 16 and in Tables X
and XI.

The properties of a mirror-image trap are similar to those
of the cylindrical Penning trap [Fig. 1(c)] used to suspend one

TABLE X. Scaled parameters for the sample two-gap mirror-
image planar trap geometry.

{ρ̃i} = {1, 4.4572}, z̃c = 5.5914
C3 = C4 = 0, Eq. (48)

Ṽ1 = Ṽ
top

1 13.9582
Ṽ2 = Ṽ

top
2 12.3743

Ṽ3 = Ṽ
top

3 0.0000

z̃0 2.7957

C3 0.0000
C4 0.0000
C5 0.0000
C6 0.0015

a2 0.0000
a3 0.0000
a4 0.0014
a5 0.0000
a6 0.0002

C11 = −C
top
11 −0.0811

C12 = −C
top
12 −0.2624

C13 = −C
top
13 −0.0142

C
(opt)
1d −0.3577

ρ̃
(opt)
d ∞

γ1 = γ
top
1 4.35

γ2 = γ
top
2 0.00

γ3 = γ
top
3 −33.96

TABLE XI. A set of absolute values for the sample two-gap
mirror-image planar trap geometry.

{ρ̃i} = {1, 4.4572}, z̃c = 5.5914
C3 = C4 = 0, Eq. (48)

ρ1 1 mm
z0 2.7957 mm
ρ

|opt|
d ∞ mm

fz 64 MHz
V0 −0.9194 V

V1 = V
top

1 −12.8330 V
V2 = V

top
2 −11.3768 V

V3 = V
top

3 0.0000 V

�fz 0.0 Hz

1 : γz 2π 0.74 s−1

2 : γz 2π 7.72 s−1

3 : γz 2π 0.02 s−1

d : γ (opt)
z 2π 14.35 s−1

electron and to observe its one-quantum cyclotron transitions
and spin flips. A charged particle suspended midway between
the two electrode planes sees a potential that is symmetric
under reflections across this midplane, in which case all odd-
order potential coefficients (C3, C5, etc.) vanish, as for the
cylindrical trap (Sec. VI B). Also, as for a cylindrical trap,
we can choose the potentials applied to the trap electrodes to
make a trap with a very small C4, whereupon a2 and a3 are
very small.

A useful property of mirror-image traps and cylindrical
traps is that both of these can be “orthogonalized” in a way
that a planar trap cannot. A single potential (applied to two
electrodes with mirror-image symmetry) is tuned to minimize
the amplitude-dependence of the axial frequency. The trap is
orthogonalized in that this tuning does not change the axial
frequency, which in general would take it out of resonance
with the detection circuit.

Figure 16(b) shows equipotentials spaced by V0 for the
mirror image Penning trap of Table X. The equipotentials
are calculated for infinitesimal gaps, but the electrodes are
represented with finite gaps to make them visible. The
equipotentials terminate in the gaps between electrodes. The
dashed equipotentials of an ideal quadrupole are superimposed
near the trap center.

C. Mirror-image trap transformed to a covered trap

At least for initial studies it may be useful first to load
an electron into the center of an orthogonalized mirror-image
trap. The presence of a single electron can be established with
established methods used with cylindrical Penning traps. The
challenge is then to adiabatically change the potentials applied
to the electrodes to turn the mirror-image trap into a covered
planar trap. It is crucial that the electron not be lost. If a
high quality trapping well can be maintained throughout the
transfer, then it may even be possible to monitor the electron
at intermediate points between the two configurations.

We investigate the feasibility of transferring from the
mirror-image trap discussed above (Tables X and XI) to the
optimized, covered planar trap discussed in the last section
(Tables VIII and IX). The electrode geometry chosen for our
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FIG. 17. One set of applied potentials that relocates an electron
centered between the electrode planes of a mirror-image planar trap
(far right) to a covered planar trap (far left) while keeping the axial
frequency constant and keeping a2 = a3 = C3 = C4 = 0.

example is the lone point in Fig. 15 for which it is possible to
make an orthogonalized mirror-image trap and also to make a
the most highly optimized covered planar Penning trap. The
potentials applied to achieve the mirror-image trap are those
to the far right in Fig. 17. The potentials applied to realize the
covered planar trap are those to the far left in Fig. 17.

For these traps there are six parameters to choose: five
relative trap potentials (Ṽ1, Ṽ2, Ṽ

top
1 , Ṽ

top
2 , Ṽ

top
3 ) and z̃0.

During the transfer we can choose a particular z̃0 as a
constraint, along with four others that we have discussed
earlier, C1 = C3 = C4 = 0 and C2 = 1. Since there are more
parameters than constraints there is some freedom in the choice
of potentials during the transfer, provided that solutions exist.
Our choice of intermediate potentials in Fig. 17 was made to
avoid large potential differences between electrodes (discussed
in Sec. VII B). The axial oscillation frequency does not change
during the transfer. Also, the trap remains optimized during
every point in the transfer, with a2 = a3 = C3 = C4 = 0. It
may thus be possible to detect the electron’s axial oscillation
at every step of the transfer.

IX. DAMPING AND DETECTING AN AXIAL
OSCILLATION

A. Damping and detection in a planar trap

The damping rate γz for the axial motion of a trapped
particle is the observed resonance linewidth for the axial
motion in the limit of a vanishing oscillation amplitude. A
thermal distribution of axial oscillation amplitudes broadens
the observed resonance linewidth when the axial frequency is
amplitude dependent. When the oscillation energy has Fourier
components that extend well beyond the damping linewidth,
it is difficult to detect the oscillation with the narrow-band
detection methods needed to observe the small signal from a
single particle. For the cylindrical Penning trap used to observe
one-quantum transitions of a single trapped electron [1] this
was not a problem. The thermal anharmonicity contribution to
the linewidth was less than the damping linewidth. For the Ulm

planar trap the situation was very different. The thermal width
was 105 times larger than the damping linewidth, making it
impossible to observe a single electron at all [13].

In preceding sections we focused upon minimizing the
amplitude-dependence of the axial frequency so that the
thermal broadening could be reduced. Just as important is in-
creasing the axial damping linewidth. Here we discuss what is
needed to maximize the electron’s damping rate. Maximizing
the damping maximizes the detected signal as well.

The usual method to probe the axial oscillation of a single
trapped particle is to detect the current that its axial motion
induces in a resistor R connected to its electrodes [31,39]. This
resistance also damps the motion. The energy dissipated in the
resistor comes from the axial motion of the trapped particle,
which is thereby damped to the bottom of the axial potential
well. In practice the resistor is a tuned circuit that is resonant
at the axial oscillation frequency, at which frequency it acts as
a pure resistance.

For a planar Penning trap, Fig. 18 illustrates how the AC
connections between the circuit and the electrodes can be made
to the same electrodes that are DC biased to form the trapping
potential. Alternatively, an extra gap (e.g., the dashed circle
labeled ρd in Fig. 18) can be added to one of the trap’s
electrodes to maximize the damping and detection, as will
be discussed. This damping-detection gap can coincide with
one of the gaps already chosen to minimize the amplitude-
dependence of the axial frequency. When the extra gap does
not coincide with one of the others, the extra gap will not
change the electrostatic trapping potential insofar as the same
DC bias voltage is applied to either side of the additional gap.

The circuit in Fig. 18 represents one way to connect the
detection and damping resistance, R, to the electrodes of a
three-gap planar trap. The current induced by the particle’s
axial oscillation makes an instantaneous voltage VI across the
resistance. This induced voltage exerts a reaction force on
the trapped particle. The thermal Johnson noise from random
electron motions within the resistor induces an additional in-
stantaneous noise voltage Vn across the resistor and electrodes.
The oscillatory voltage VI + Vn on the effective damping

V1
V2

V2

V3
R

VI Vn

VD

ρ1

ρd

ρ2

ρ3

FIG. 18. Electrical circuit used to bias, detect, damp, and drive a
trapped particle’s axial motion. An extra gap (dashed circle) in the
electrodes of the planar trap can be added to optimize the damping
and detection without changing the electrostatic properties of an
optimized planar trap. The relative trap geometry is that of the sample
trap.
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electrode for which ρ < ρd both drives the particle’s axial
motion and is detected.

The particle is in the near field of the potential

Vosc = (VI + Vn)φd, (63)

produced by this oscillatory voltage, where the electrostatic
potential

φd (z̃) = 1 − z̃√
(ρ̃d )2 + z̃2

, (64)

follows from Eq. (11).
For a potential Vi applied to electrode i, the instantaneous

electric field on a particle oscillating near its equilibrium
position at z̃ = z̃0 is

Ei(z̃0) ≈ − D1

2ρ1
Vi. (65)

The factor D1 depends upon electrodes to which a voltage is
applied to make the field. For a voltage applied just to the
damping and detection electrode,

D1 = C1d = −2(ρ̃d )2

[(z̃0)2 + (ρ̃d )2]3/2
, (66)

where the potential expansion coefficient C1i is defined in
Eqs. (14) and (15).

There is a maximum coupling of the circuit and a trapped
particle insofar as C1d has a maximum magnitude at

ρd =
√

2z̃0. (67)

The coupling coefficient is then given by

C
(opt)
1d = −4 × 3−3/2

z̃0
≈ −0.77

z̃0
. (68)

Figure 19(a) illustrates the maximum for all values of z̃0.
If instead the electrodes of the optimized planar trap are at-

tached to the resistance, without adding an extra gap at ρd , then
D1 is the sum of the C1i for the electrodes attached to the resis-
tor. If the central two electrodes are attached to the detection
circuit, for example, then D1 = C11 + C12. The coefficients
C1i for the optimized configurations of our sample trap are
listed in Table I, as is C

(opt)
1d . Figure 19(b) shows how the various

possibilities for these coefficients and sums depend upon z̃0.
The induced signal,

VI = qD1

2ρ1
Rż, (69)

is proportional to the axial velocity of the oscillating particle,
as well as to D1 and R [31]. The damping force that arises
from this induced potential produces the damping rate for a
particle of charge q and mass m,

γz =
(

qD1

2ρ1

)2
R

m
, (70)

that goes as the square of D1 [31]. One power of D1 arises
because the induced current is proportional to D1. The second
power arises because a potential on the electrodes induces a
damping force that is also proportional to D1. The damping
rates for a resistor connected between a single electrode
and ground are listed in Table II for R = 100 k�. The
maximum damping rate γ

(opt)
z that pertains for Eq. (67) is also

tabulated for comparison. As noted previously, if the resistor
is connected to more than one electrode then the appropriate
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FIG. 19. (a) The coefficient C1d that describes the coupling, and
the plotted product z̃0C1d , both have a maximum magnitude at ρ̃d =√

2z̃0. (b) Electric field coefficients that describe the damping rates
and detection efficiency for the sample trap.

coefficients C1i for the connected electrodes must be summed
to make D1 before squaring.

The thermal Johnson noise in the resistor drives a particle
that is near to its equilibrium location with a driving force

Fn ≈ qD1

2ρ1
Vn. (71)

For the circuit shown in Fig. 18 we have D1 = C1d .
An external driving force may be added to drive the axial

motion of a trapped particle. Such a driving force has the
advantage that a larger oscillation amplitude and hence a
larger induced signal is produced at just the frequency of the
drive in the steady state. A larger oscillation amplitude, of
course, makes it more important to minimize the amplitude-
dependence of the axial frequency. One choice is to apply an
oscillatory driving voltage VD to the third electrode, between
ρ2 and ρ3, as indicated in Fig. 18. The applied driving potential,
VD , produces a driving force on a particle near its equilibrium
location that is given by

FD ≈ qD1

2ρ1
VD. (72)

For VD applied to the third electrode we have D1 = C13.

B. Damping and detection in a covered trap

For a covered planar trap, the damping and the detected
signal is maximized by introducing an extra gap at radius
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ρd and connecting the damping resistor to each of the
electrodes with radius ρ � ρd . The choice ρ

(opt)
d that gives

the maximum damping and detection signal, along with the
corresponding C

(opt)
1d and γ

(opt)
z , are displayed in Tables VIII

and IX. This detection configuration offers an appreciable
detection efficiency. For some achievable values of z0 the
detection efficiency is nearly maximized without the need to
make an extra gap in the electrode plane.

As mentioned earlier, covered planar traps are scalable in
that an array of traps can share the same covering plane,
with the axial frequency and the harmonic properties of
each trap being tuned separately by the potentials applied
to the other electrodes. Multiple traps can also share the
same detection circuit if the detection resistor is attached to
the covering plane—a great simplification in practice. Many
trapped electrons could be simultaneously detected with one
circuit if their axial frequencies are tuned to be slightly
different but within the detector’s bandwidth. A coupling
between two electrons takes place during the time that their
two traps are tuned to make their axial frequencies the same.

C. Damping and detection in a mirror-image trap

For a mirror-image trap, the damping and hence the signal is
maximized by connecting all of the electrodes in one plane to
the damping resistor [i.e., ρ

(opt)
d → ∞]. Choosing ρd = zc/2

gives γz that is 64% of the total possible damping. Choosing
ρd = zc gives γz that is 98% of the total possible damping.
For the sample mirror-image planar trap (Tables X and XI),
connecting the damping resistor to the first two electrodes
of one of the planes (i.e., choosing ρ̃d = ρ̃2) results in γz =
2π13.23 s−1, which is 92% of the damping that would result
from detecting the signal induced on the entire electrode plane.

X. CONCLUSION

A cylindrical Penning trap has been used to observe one-
quantum spin flip and cyclotron transitions of a single trapped
electron. Attempts to make similar observations in a planar
Penning trap did not succeed, generating some pessimism
about whether this is possible. In this report we show how to
optimize the properties of a planar Penning trap to reduce the
deadly amplitude dependence of the monitored axial frequency
by orders of magnitude, and how to optimize the damping
and detection. We introduce a covered planar trap that is well
isolated from its environment, readily scalable to an array of
one-electron traps, with one detector promising to suffice for
the efficient simultaneous detection of multiple particles. We
also introduce mirror-image planar traps that are an attractive
option because of their reflection symmetry. A mirror-image
trap can be electrically transformed into a covered planar trap
while a particle is stored within. The optimized planar trap
designs that are proposed offer new routes toward observing
a single electron in a planar trap, realizing a one-electron
qubit, and using a scalable array of such qubits for quantum
information studies.
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APPENDIX A: AN EARLIER CALCULATION

Minimizing the amplitude dependence of the axial fre-
quency is the key to designing a planar trap within which
a single electron can be suspended and used to realize a
one-electron qubit. An accurate description and prediction
of the properties of a planar Penning trap configuration thus
requires a calculation of the amplitude dependence of the axial
frequency. Here we correct an earlier calculation [10] of the
amplitude dependent frequency shifts.

Earlier in this work the amplitude dependence of the axial
frequency was shown to have the form

ωz(Ã) = ωz

[
1 +

∞∑
k=2

akÃ
k

]
. (24)

Reference [10] differs by starting this sum with k = 1,
suggesting that the dominant axial frequency shift is first-order
in the oscillation amplitude. We find no first-order shift. The
substantial disagreement between the ak in Eq. (25) with the
much simpler

ak =
∣∣∣∣Ck+2

2

∣∣∣∣ , (A1)

from Ref. [10] (translated into our notation) is illustrated in
Table XII. The differing expressions for a3, for example, are
not even functions of the same Ck . Higher order ak differ
more. (Eq. (2) of Ref. [11] and also Ref. [12] repeat the
Ref. [10] results.)

The amplitude dependence of the axial frequency must be
calculated by solving the equation of motion, Eq. (22), to get
the ak in Eq. (25), as outlined between these two equations.
Except for the absolute value whose origin is not clear,
Eq. (A1) from Ref. [10] is instead consistent with equating
(1/2)mω2

z (z − z0)2 to q[V (0, z) − V (0, z0)], solving for ωz,
expanding the square root in z − z0, and identifying the latter
with A.

Finally, the relationship between energy and amplitude in
Eq. (11) of Ref. [10], repeated in Eq. (3) of Ref. [11], is missing
a factor of two. It should read A = √

2E/(mω2
z ).

TABLE XII. Lowest-order coefficients that describe the ampli-
tude dependence of the axial frequency. This work and Ref. [10]
differ considerably in amplitude and sign, most notably in the leading
lowest order.

This work Ref. [10]

a1 = 0 a1 = |C3|
2

a2 = − 15(C3)2

16 + 3C4
4 a2 = |C4|

2

a3 = − 15(C3)3

16 + 3C3C4
4 a3 = |C5|

2
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APPENDIX B: MAINZ TRAP

The first planar Penning trap used to store electrons was
demonstrated at Mainz [11,12]. A large number of electrons
(estimated to be between 100 and 1000 electrons) were stored
and the three motions of the electrons’ center of mass were
observed. The trap dimensions and potentials are given by

ρi = {3.15, 6.3, 9.45} mm, (B1)

Vi = {0, 16,−38.5} V, (B2)

with radii taken to extend to the center of the 0.3 mm wide gaps
between electrodes. The potentials come from the caption of
Fig. 8 of Ref. [11], but with signs reversed compared to what
is reported since this is necessary to approximately replicate
the curves in Fig. 8 of that work. Finite boundaries are not
included in our analysis, even though Sec. VII C illustrates
that they can be important, because the needed information is
not available in the experimental accounts.

We calculate that V3 = −36.2 V would make C3 = 0,
which seems to have been the goal, whereupon a2 = −0.8
and C4 = −1.0. This gives a calculated single-particle thermal
frequency width of �fz = 310 kHz for Tz = 300 K. This
thermal width is smaller than the calculated and measured
widths of 1–6 MHz reported in Fig. 7 of Ref. [11]. Unless
the calculation is corrected as described in Appendix A, the
calculated width should not agree with what we calculate. The
measured width may be wider than expected because there
are more trapped electrons than was estimated. Experimental
experience in our laboratory also suggests that it is likely that
the observed width is broadened by charges accumulated on
the insulator within the gaps, since the gaps were not deep
enough to screen the potential from such charges.

A minimal requirement for a trap that could be used to
observe a single electron is that a2 be close to zero. Figure 7
shows that for the relative geometry used in the Mainz trap
there is no set of applied potentials that could make a2 = 0. In
fact, |a2| < 0.1 cannot be achieved for any reasonable values
of Vi and z0. This is true even if the artificial and unnecessary
constraint V1 = 0 is relaxed.

APPENDIX C: ULM TRAP

The serious effort made at Ulm to try to observed a single
electron trapped in a planar Penning trap [13] did not succeed.
Given that we conclude above that optimized planar traps could
likely be used to observe one trapped electron, we examine
here the trap geometry and the applied potentials that were
used. The object is to check whether the performance of
the Ulm trap is consistent with our calculations. Given that
the observed linewidth is broader than calculated, we also
discuss some practical considerations that may have affected
the performance.

The trap geometry is described in Sec. 2.1 of Ref. [13]:
“The diameter of the central electrode and the width of the
trapping electrodes are equal to 2 mm.” In our notation, this is

{ρ1, ρ2, ρ3} = {1, 3, 5} mm. (C1)

Several bias configurations are mentioned in Sec. 2.2 and Fig. 2
of Ref. [13]

{V1, V2, V3} = {0, 7, 7} V, (C2)

{V1, V2, V3} = {0, 5.2, 14} V, (C3)

{V1, V2, V3} = {0, 4.8, 14} V. (C4)

The penultimate paragraph of Sec. 2.3 of Ref. [13] mentions
a set of “optimized control voltages”,

{V1, V2, V3} = {0,−1, 2.611} V, (C5)

presumably for the same geometry. However, this last set of
potentials seems not to have been used successfully, perhaps
because of the greatly reduced trap depth that is produced.

The calculated properties for each of these four con-
figurations are summarized in Tables XIII and XIV. None
of these trap configurations make a2 close to zero, the
likely minimal requirement for observing and controlling
one trapped electron. The mentioned “optimized” biasing
scheme is actually worse than the others. Finite boundaries are
not included in our analysis, even though Sec. VII C illustrates
that they can be important, because the needed information is
not provided in the experimental account.

A choice was made to keep the center electrode and the
plane outside the electrodes at the same potential. This is an
added constraint, Ṽ1 = 0, upon the four scaled parameters
that determine the behavior of a three-gap trap: Ṽ1, Ṽ2, Ṽ3,
and z̃0. Two additional constraints, C1 = 0 and C2 = 1, are
required to form a trap. With the optional constraint there is
one more parameter than there are constraints. If we choose z̃0

as the corresponding free parameter, Fig. 20(a) shows the bias
potentials that must be applied to realize each possible value
of z̃0. Figure 20(b) gives the corresponding ak and Ck . For

TABLE XIII. Scaled parameters for the trap used in Ulm [13].

{ρ̃i} = {1, 3, 5} [Eq. (C1)]

Used Mentioned

Eq. (C2) Eq. (C3) Eq. (C4) Eq. (C5)

Ṽ1 0 0 0 0
Ṽ2 −4.6075 −5.2815 −5.2040 22.3016
Ṽ3 −4.6075 −14.2194 −15.1782 −58.2296

z̃0 1.4761 1.9070 1.9493 3.9328
C3 −0.6386 −0.4251 −0.4082 −0.3267
C4 0.2718 0.1340 0.1211 0.0540
C5 −0.0766 −0.0443 −0.0389 −0.0015
C6 −0.0021 0.0141 0.0129 −0.0021

a2 −0.1785 −0.0689 −0.0654 −0.0596
a3 0.1140 0.0293 0.0267 0.0195
a4 −0.0447 −0.0143 −0.0127 −0.0041
a5 0.0088 0.0074 0.0065 0.0007
a6 0.0026 −0.0030 −0.0026 −0.0001

C11 −0.3529 −0.2003 −0.1902 −0.0299
C12 −0.1287 −0.2004 −0.2029 −0.1188
C13 0.1287 0.0744 0.0696 −0.0455
C

(opt)
1d −0.5215 −0.4037 −0.3949 −0.1957

ρ̃
(opt)
d 2.0875 2.6969 2.7568 5.5618

γ1 −4.89 0.47 0.07 30.26
γ2 −5.27 −8.32 −10.05 −82.50
γ3 −1.09 1.49 2.80 −194.34
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TABLE XIV. Absolute values for the trap used in Ulm [13]. Axial
frequencies calculated here differ from those reported in Ref. [13],
which claims fz = 62.2 MHz and 67.97 MHz for the potentials given
in columns 1 and 2, respectively, of this table.

{ρ̃i} = {1, 3, 5} [Eq. (C1)]

Used Mentioned
Eq. (C2) Eq. (C3) Eq. (C4) Eq. (C5)

ρ1 1 1 1 1 mm
z0 1.4761 1.9070 1.9493 3.9328 mm
ρ

(opt)
d 2.0875 2.6969 2.7568 5.5618 mm

fz 82.2714 66.2300 64.1039 14.1339 MHz
V0 −1.5193 −0.9846 −0.9224 −0.0448 V
V1 0 0 0 0 V
V2 7 5.2 4.8 −1 V
V3 7 14 14 2.611 V

�fz @ 5 K 8.3 4.0 3.9 16.2 kHz
�fz @ 300 K 500 240 235 971 kHz

1 : γz 2π 13.96 2π 4.50 2π 4.06 2π 0.10 s−1

2 : γz 2π 1.86 2π 4.50 2π 4.61 2π 1.58 s−1

3 : γz 2π 1.86 2π 0.62 2π 0.54 2π 0.23 s−1

d : γ (opt)
z 2π 30.49 2π 18.27 2π 17.49 2π 4.30 s−1

reasonable z̃0 � ρ̃N we find that |a2| � 0.05. Having explored
what trap performance is possible with the optional constraint,
we note that there is no compelling reason to make this choice.
In fact such a choice would make it impossible to identify
optimized planar Penning trap configurations.

It is possible to bias the Ulm trap electrodes to make C3 = 0
by choosing V3/V2 = −3.533 for any V2 > 0. However, this
choice also results in C4 = −0.77 and a2 = 0.58, the latter
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FIG. 20. (a) Scaled potentials applied to the Ulm trap to get a
particular z̃0. (b) Resulting trap properties for each z̃0. The trap
is biased subject to the optional constraint V1 = Ṽ1 = 0. It is not
possible to make a2 very small.

being worse than for the configurations in Table XIII. For this
relative trap geometry, relaxing the optional constraint V1 = 0
does not improve the trap performance.

Observing a single electron will be difficult if the thermal
broadening of the axial frequency, �fz, is very large compared
to the damping linewidth, γz/(2π ). Table XIV shows that this
is indeed the case if the axial temperature is as low as 5 K,
the lowest effective axial temperature that has been achieved
without feedback cooling [29]. The heat generated in the
detection amplifier makes it very difficult to achieve such a
temperature, even for 0.1 K surroundings, so the effective
axial temperature could easily have been much higher than
5 K. The table shows the thermal broadening for an effective
axial temperature of 300 K.

Reference [13] says that a still broader width of 3 MHz
“is expected and is in agreement with the measured data.”
Why this particular width should be expected is not specified.
However, it is not surprising that the observed frequency
width is larger than we calculate because the width grows
with the large and unknown number of electrons in the trap.
Experimental experience in our laboratory also suggests that
it is likely that the observed width is broadened by charges
accumulated on the insulator within the gaps since nothing in
the circuit board technology used screens the potential from
such charges.

One further item may be worth mentioning even though it
is not completely understood. Many years ago, the first trap
cooled with a dilution refrigerator was located on the still of the
refrigerator, within the refrigerator’s inner vacuum container
(IVC). The vacuum was expected to be extremely good once
the helium gas used to precool the IVC was pumped out.
However, no good one-electron signals were ever observed,
for reasons not clearly understood, but seemingly related to the
cryopumped gas on the surface of the electrodes. Only when
the trap vacuum was separated from the IVC vacuum did we
get the clean signals used to resolve one-quantum transitions
with one electron [1]. The Ulm trap was also located within the
IVC vacuum. The long trapping lifetime observed with many
trapped particles confirmed the expectation of a very good
vacuum. Whether isolating the trap vacuum from the IVC
would improve the observed signals has not been investigated
at Ulm.

Is it possible to observe a single electron in a planar
trap? Reference [13] concludes that it is not because the
anharmonicity will always be too great, and it also reports that
a thermal width narrower than 5 kHz could not be calculated
for any N -gap trap where N is anything between 1 and 6. The
only hope offered was that a much smaller trap might make
the damping rate large enough to observe one electron despite
the anharmonicity inherent in planar traps [13,14]. Indeed,
Eq. (70) shows that when the trap dimension is decreased the
damping rate increases as the square of dimension. With micro-
fabrication methods it should be possible to fabricate smaller
traps that thus will have a much larger damping. What remains
to be demonstrated is that the anharmonicity will not become
large enough for small traps to offset the damping advantage.

Our conclusion is different and much more optimistic.
We agree that it should be very difficult to observe a single
electron in the planar Penning trap used at Ulm. However,
the fundamental problem is the relative geometry of the
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Ulm trap, not its size. The thermal broadening is too great
as a result of a choice of trap geometry that cannot be
optimized to make a2 = 0. Nonetheless, the conclusion [13]
that it is “impossible” to observe a single electron in a planar
Penning trap with a mm size scale now seems much too

strong. The optimized geometries and applied potentials that
we present here for planar Penning traps of any size offer the
possibility of a very large reduction in the critical amplitude
dependence of the axial frequency. Experimental trials are
warranted.
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