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ABSTRACT

Cylindrical Penning traps with open-endcap electrodes are compared with the hyperbolic
traps which are currently used for high precision experiments. Cylindrical traps are easier to
construct and allow free access to the center of the trap for particle loading, laser beams, or
microwaves. The trapping potential can be tuned while particles are inside the trap to
improve harmonicity. Special geometries are noted which allow anharmonicities to be tuned
out without affecting the trap well depth, and the effects of trap imperfections and gaps
between the electrodes are discussed. Such traps will be used for measuring the antiproton
mass, for cooling of trapped antiprotons, and possibly for producing antihydrogen.

INTRODUCTION

Penning traps are used to hold a single charged particle or a cloud of
charged particles in a small volume. The simplest Penning trap consists of a
strong magnetic field, which provides radial confinement, and an electric
field which prevents particles from escaping along the magnetic field lines. If
particle containment is the only goal, neither the shape of the electrodes
used to apply the electric field nor the homogeneity of the magnetic field is
especially important (except that a good symmetry under rotation about the
magnetic field axis is required for long containment times [1]).

Penning traps have been used for high precision studies in which the trap
and the trapped particles are treated as a bound system. Examples include
precise measurements of the magnetic moments of the electron and the
positron [2], the proton-to-electron mass ratio [3] and studies of relativistic
electron motion at millielectronvolt energies [4]. The Penning traps used in
these experiments had electrodes shaped like hyperboloids of revolution
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Fig. 1. Compensated Penning trap designs used in high precision measurements, with
conventions for dimensions and potentials applied.

(Fig. 1a) because this geometry most nearly produces a quadrupole electric
potential at the center of the trap. Such a potential is harmonic along the
magnetic field axis and the particles oscillate between the trap endcaps with
a frequency which is very insensitive to the oscillation amplitude. High
precision measurements of this and other frequencies can be carried out
when unavoidable misalignments and imperfections in trap electrodes are
detected using particles inside the trap and are tuned out. An extra set of
compensation electrodes is introduced for this purpose [5], and the electro-
statics of this process are theoretically understood [6,7]. With an appropriate
geometry, the trapping well depth can be made independent of anharmonic-
ity tuning, to make an “orthogonalized” Penning trap [6].

A Penning trap with a cylindrical ring electrode and flat endcaps (Fig. 1b)
has also been studied to determine its appropriateness for precision mea-
surements. An orthogonalized geometry was identified [8] and then used to
obtain a narrow axial resonance line width of a cloud of electrons [9]. Very
recently a single electron was also observed in this trap [10]. Cylindrical
Penning traps have two important advantages. First, cylindrical electrodes
can be machined to greater accuracy in much less time than hyperbolic
electrodes. Second, it is easier to study theoretically the anharmonicity
compensation for a cylindrical trap than for hyperbolic shapes because the
potentials can be calculated analytically.

Cylindrical Penning traps with long, open-ended endcap electrodes have
already been used to produce polarized electron beams [11] and to trap
antiprotons for up to 10 min [12]. The great advantage of this electrode
configuration is the open access to the interior of the trap, which makes it
easy to load particles and to introduce microwaves or laser beams. In this
paper we study the addition of compensation electrodes to the open-endcap
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Fig. 2. Open-endcap Penning trap.

cylindrical trap to make this configuration more suitable for precision work
without restricting the open access to the center of the trap. We identify a
geometry for which anharmonicity compensation can be carried out without
changing the axial well depth and use, as an example (Fig. 2), a trap which is
intended for use in measuring the antiproton mass [13].

Other configurations of electrodes have been studied recently but, since
anharmonicity compensation was not included, they are not suitable for the
types of measurements mentioned above [14,15]. We use the notation of a
recent review of the theory of a particle in a Penning trap [16].

POLYNOMIAL EXPANSION OF THE ELECTRIC POTENTIAL

The electric potential V' near the center of a Penning trap can be

expanded in Legendre polynomials in the usual way
0 k
V=1% Y C(5) Pulcos 0) (1)
&R

where V}, is the trapping potential, and the characteristic distance
d*=3(z5+ 205) (2)
is chosen because of its usefulness in hyperbolic traps, which we are trying
to approximate. The Legendre polynomials P, (cos #) are used because
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azimuthal symmetry is maintained. Only the even k coefficients C, will be
non-zero when reflection symmetry across the z = 0 plane is assumed.

The lowest order terms in Eq. 1 are the most important for a particle
trapped near the center of the trap. C, is an overall constant and can be
ignored. In a perfect quadrupole potential (which is approximated by a
hyperbolic trap), C, =1 and all other terms equal zero. The frequency of
axial oscillations w, is given, to lowest order, by

2o %

z md2 CZ (3)

for a particle with mass m and charge q.
When C,# 0, the axial oscillator is anharmonic, with the oscillation
frequency depending on the amplitude. The shift in the axial frequency is [8]

Aw, 3(C, ) E,
= 4 4
( GG “

o 2
where E, is the energy in the particle’s axial oscillation. The ratio E, / qV,C,
is typically quite small, but not negligible during precision measurements.
Cylindrical Penning traps will certainly have a non-zero C, term. Even
hyperbolic Penning traps have C, # 0, owing to machining imperfections,
misalignments, endcap truncation, and other factors. Because amplitude-
dependent shifts in the axial frequency are highly undesirable when small
shifts in w, are to be measured, compensation electrodes are introduced into
all high precision Penning traps, including hyperbolic traps [6-8], to tune
out Cy.

The second anharmonic term Cg is less important than C, by a factor of
(r/d)? for particles near the center of the trap. A non-zero C, causes shifts
in w, proportional to the square of the oscillation amplitude. Its effect on
the axial oscillation can be represented [8] as an effective amplitude-depen-
dent C, by replacing C, in Eq. 4 with

- E
Co=C+ %Cs > (5)
VG

The cylindrical electrodes in Fig. 2 are symmetric under reflections across
the z = 0 plane and under rotations about the z axis. If we apply a potential
V, between the endcaps and the ring, and V. to the compensation elec-
trodes, the potential inside the trap can be written as the superposition

where ¢, and ¢. are solutions to Laplace’s equation with the boundary
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Fig. 3. Boundary conditions for solutions to Laplace’s equations ¢, and ¢, both of which are
invariant under rotations about the z axis and under reflections across the z = 0 plane.

conditions of Fig. 3. Near the center of the trap these solutions can be
expanded as

40=1 % (%) Pulcos 0) )
k=0 d

and
(oo} r k

6.=3 ¥ D[ 5] Pulcos 0) (8)
k=0

The C, of Eq. 1 are then

=G0+ D3t ©
Vo
Lowest order anharmonicity compensation occurs when ¥V, is adjusted so
that the two terms on the right cancel to make C, = 0.

The potentials ¢, and ¢, are more naturally solved using a familiar
expansion in Bessel functions of order zero.

V= VE) Z AnJO(lknp) COS(an) (10)
n=0
where
+ 1
k,= M (11)

zg+ 2z,

and z, is the length of the endcap electrodes. The Legendre polynomial
coefficients C, are determined by evaluating Eqgs. 1 and 10 on the z axis and
equating the coefficients of z*. This yields for even k

(-1 24! - 4

k oo
k—1 n
) B =

CcO =
g (lknpo)

zZogt+ z,
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Fig. 7. Boundary conditions for ¢, , and ¢, . of Eqgs. 15 and 16, both of which are symmetric
under rotations about the z axis and antisymmetric under reflections across the z = 0 plane.
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TABLE 1

Geometry and expansion coefficients of the open-endcap trap in Fig. 2

Electrode dimensions
Radius (cm)

Length

Compensation electrodes
Endcap electrodes

Gaps between electrodes

Axial frequency
For electrons
For protons

Expansion coefficients

CP= 05449 D,= 0
c®=-02119 D,=-0.5560
C®= 01638 D= 04300
CP=-01359  Dy=-0.2609

po = 0.600
po/2o=1.0239
z./z5=0.8351
z./zy=4.327
2, /25 = 0.0303

v, =9.63152V,/>(MHz/V'/?)
v, = 0.22477 V}/*(MHz/V'/?)

C,= 05449  ¢;= 03346 d;= 08994
C,= 0 c3= 02202  d,=—0.8439
C= 0 cs=—00385 ds= 03915
Cy=—00365 c;=—00359  d,=—01251

and

AD =sin(k,z,) — sin[k,(zo — z.)]. (13a)
Equations 12 and 13 assume that the endcap electrodes are infinitely long
and that the gaps between the electrodes are negligibly small. These assump-
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TABLE 2

Effects of machining imperfections on the open-endcap trap in Fig. 2. Machining errors in
the ratios of dimensions are expected to be of the order of one to ten parts in 1000

Zq z
A A Az

Go= 0 -0.33 (ﬁ)wm( z°)—0.007(—g)
Zp 29 Zo
V. A A Az

e = —0.3810 —0.28 (ﬁ)+0.44 ( zc)+0 bl
Vo Ci=0 Zo Zy Zg

2 Apy Az, Zg

Proton 3 =0.22477 +0.023] — } —0.070 +0 —
(Vo) / Zy 2y 2y

v Ap, Az, Zg

Electron = 9.63152+10 {|—|—-30 +0 —
VE,)I/Z Zg Zg Zy

tions are not necessary for an exact solution. The effects of shortened
endcaps and larger gaps can be included with slight modifications to Eqs. 12
and 13. Tt should be noted that these solutions converge when the endcap
length is several times larger than its radius. (This can be proved analytically
by solving the infinite endcap case with a Fourier integral and taking the
limit in Eq. 10 as z_, = o0.) The coefficients C, are already within 1% of the
infinite endcap limit when z_/p, > 3. In the rest of the paper we shall use
the limit of long endcaps and negligible gaps (e.g. in Figs. 4-8) unless
otherwise noted (e.g. Tables 1 and 2 and Fig. 9).

THE ORTHOGONALIZED TRAP

The coefficients C{” and D, are functions of the relative trap radius
po/ 2o and compensation electrode size z./z,. High precision measurements
require that we make the anharmonic terms (C,, G, etc.) as small as
possible. From Eq. 9 we have seen that it is possible to make the leading C,
contribution from the compensation electrodes cancel the C, contribution
from the endcaps and ring by adjusting the compensation potential to

v -l
(VO)QJ D, (14)

Unfortunately, adjusting ¥V, to tune out C, generally changes C, and hence
changes the axial resonance frequency w,. This is undesirable, since it
requires a new search for the axial resonance every time an adjustment is
made to V. However, if the trap is configured so that D, =0, then, by Eq. 9,
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Fig. 9. Electrostatic field lines in the compensated, open-endcap trap of Fig. 2 and Tables 1
and 2 (solid) compared with field lines for a pure quadrupole potential (dotted).

adjusting ¥, will have no effect on C,. For any compensation electrode size
z./z,, there is a choice of trap radius p,/z, such that D, = 0. This is called
an “orthogonalized” Penning trap [8]. In an orthogonalized Penning trap,
the axial frequency w, is independent of changes in V. The proper radius vs.
compensation electrode size to produce an orthogonalized trap is shown
graphically in Fig. 4. The compensation potential V,/V, required to tune out
C, in an orthogonalized trap with no imperfections, as a function of
compensation electrode size, is shown in Fig. 5.

Since the trap can be orthogonalized for any compensation electrode size,
we are free to pick any value for z_/z, between 0 and 1. An interesting
geometry is where C, equals zero, at z_/z,= 0.835. At this point the
compensation potential V_/V, which makes C, = 0 simultaneously tunes out
Cs- This could be very useful, since non-zero C, terms have noticeable
effects in high precision measurements. In practice, we expect machining
imperfections to give a non-zero C, = (0.001 (Table 2), but at least the
contributions to C; from the trap geometry will be eliminated. We chose this
geometry (Fig. 2) for the trap we intend to use in the antiproton mass
measurement. Its geometry and expansion coefficients are shown in Table 1.
As Fig. 9 shows, the electric potential in this trap resembles a pure
quadrupole potential over a substantial region of the trap, with substantial
departures from the center.

TRAP IMPERFECTIONS

Trap electrodes are never perfect. Patch effects, misalignments, and
machining errors will change all of the C{” and D, from their calculated
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values. One consequence is a slightly non-zero D,, so that the trap is no
longer properly orthogonalized. As Eq. 9 shows, a non-zero D, causes C,
(and hence the resonant axial frequency w,) to change as V, is adjusted.
Also, D, will be modified slightly, but since D, is not nearly zero this is
typically a small and insignificant change. More importantly, the imperfec-
tions will cause C{” to shift from its calculated value. It will therefore be
necessary to adjust V_/V, while particles are inside the trap in order to tune
out C,. We can estimate how far C{¥ might be from its calculated value by
looking at some hyperbolic traps [6] which have already been built and used.
A hyperbolic trap should have C{” =0. Some existing traps (used for
electron, positron, and proton work respectively) have C{® of —4 x 1073,
—2%1073, and 5 X 1072,

The effects of machining errors (specifically in the relative size of the
radius, the length of the compensation electrode, and the gaps between the
electrodes) have been carefully studied for the example trap of Fig. 2 and
the results are given in Table 2. Machining errors in relative sizes should be
of order one to ten parts in 1000.

Some well-compensated hyperbolic traps [6] have an amplitude-depen-
dent anharmonicity ‘@l <107*, once they are properly tuned. In order to
achieve this with a cylindrical trap, it will be necessary to adjust and
maintain V,/V, to one part in 10%. However, this is not difficult. It is
especially important to keep the trapping potential ¥, as free from fluctua-
tions as possible, since fluctuations in ¥ will directly effect w.. In an
orthogonalized trap, w, is much more sensitive to fluctuations in V; than ¥
because

dw,/dV;
P2 e, /%, )
is so small.

DAMPING AND DRIVING AXIAL RESONANCE

There are several possible sources for an antisymmetric electric potential
V, in a Penning trap [7]. When a resistor is connected between the endcaps
or between the compensation electrodes, the axial motion of the trapped
particle itself will induce an antisymmetric potential. Radio frequency V),
might be deliberately applied to drive the axial resonance, or a small
antisymmetric d.c. voltage V. might be deliberately applied to shift the
center of axial oscillations. Solutions to Laplace’s equation with the antisym-
metric boundary conditions in Fig. 7 can be written as

b=t T af L) Peos o) (16

kndd =1 0
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and

0 k
b=t T i L] Puleos 0) (17)
, koga=1 Zo

for the endcap and compensation electrodes respectively.
A resistor R connecting the endcaps (or compensation electrodes) will
damp the axial oscillations with a damping constant {7]

2 2
_ 4 (&
I.= m (220) R (18)

At the center of the trap, ¢, (or d;) looks like a uniform electric field, and
the equilibrium position of the particle is shifted from z=0 to

d 2 ! I/Zic
Zequil. = (Z)FZ( I/O (19)
It should be noted that an antisymmetric d.c. potential will shift the
resonant axial frequency by an amount [16]

Aw, 3(d\* Vi )’
o=l eel32) @0

z

and can also cause an undesirable amplitude-dependent shift in the axial
frequency. This sensitivity is best seen by extending Eq. 5 to read

Ve |’
Vo

. E.
Com Gt 3G - %(c3>2( (21)

2
The leading coefficients, for the two boundary conditions in Fig. 7, are
shown graphically in Fig. 8. It is desirable to have a large ¢, or d; in order
to damp axial oscillations with a resistor, while a large ¢; or d; is a problem
only if a large antisymmetric potential is applied. These can usually be kept
quite small.

APPLICATIONS

Antiprotons have already been trapped for as long as 10 min in a simple
open-endcap cylindrical trap [12]. Plans are currently under way to make a
proton—antiproton mass comparison using the example trap shown in Fig. 2
and Tables 1 and 2. The open-endcap geometry is very important for this
experiment. The trap is loaded when a pulse of antiprotons from a storage
ring is sent into the trap through a slowing window which makes them
spread radially, so that the large access hole is required. A second set of
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endcap electrodes is placed beyond the first set and biased to high voltages
(a few kilovolts) using a high speed switch [17] for the initial trapping of
high energy antiprotons. As the antiprotons cool, they will eventually fall
into the high precision part of the trap, where the mass measurement can be
made after the outer endcaps are grounded.

Open-endcap traps could be useful for making antihydrogen [18]. A cloud
of positrons can be trapped in the high precision region of the trap, between
the inner set of endcaps. Then an outer set of endcaps can be negatively
biased to capture antiprotons, creating a “nested trap” [9]. Trapped antipro-
tons will travel back and forth through the positron cloud, with some chance
of capturing a positron on each pass.

CONCLUSION

Cylindrical Penning traps with open endcaps have several advantages over
the hyperbolic traps currently used for high precision work. They allow free
access to the center of the trap, making it easier to introduce particles into
the trap. Cylindrically shaped electrodes are also much easier to machine.

Compensation electrodes can tune out anharmonicities and turn the
open-endcap trap into a tool for high precision measurements. Orthogonali-
zation of the compensation electrodes allows for the tuning out of anhar-
monicities without affecting the resonant axial frequency w, and reduces the
sensitivity of the trap to fluctuations in the compensation voltage V.. It is
possible, with the right geometry, to tune out the first-order and reduce the
second-order anharmonicities simultaneously. The geometry of this trap
makes it ideal for use in experiments that require loading of particles from
an external source. In addition, it allows for the construction of nested
Penning traps, to combine clouds with charge of opposite sign.
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Erratum:

Open-endcap Penning Traps
for High Precision Experiments
(Int. J. of Mass Spectrom. and lon Proceases 88 (1989) 319-332))

G. Gabrielse, L. Haarsma, S.L. Rolston

On page 330, a negative sign was omitted from Eq. (19)

_ -\ a (Voc
Zequil. = (Eo_) A (—Vo_) B (19)

and factors of C; (required when C; differs from unity) were omitted from

Eq. (20)

Aw, 3 d ‘C]C; (VDC :
ws __Z(Zo) C? Vo) 20)

and Eq. {21}

= E, 5(d\*a?(Voc)’
= —_ 2 ) == L4 9
Ci=Ci+ 1Cs : 4( ) C-;( v ) . (21}
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