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I. Introduction

Measurements of the anomalous magnetic moment of the electron a
provide the most stringent test of quantum electrodynamics (QED)
(Kinoshita, 1990a). This theory predicts corrections to the simplest Dirac
theory due to the interaction of an electron with the fluctuating radiation
modes of the electromagnetic vacuum. It relates a to an asymptotic series
in powers of the fine structure constant c,
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Over four decades, measurements of ¢ (Conti et al, 1974; Van Dyck et
al., 1987b; Van Dyck, 1990) and « were greatly improved, as were QED
calculations' of the expansion coefficients ¢;. The highest accuracy
measurements (Van Dyck er al., 1987b; Van Dyck, 1990) of a employ a
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single electron in a Penning trap (Brown and Gabriese, 1986) to obtain
an accuracy Aa/a <4 x 10 °. The unrivaled comparision of a measured
and calculated property of an elementary particle reveals an agreement
Aafa <4x107% which would have astounded those who were struggling
to formulate renormalized QED.

A few years ago, experimental progress in measuring the anomalous
magnetic moment g was seriously interrupted. The electromagnetic
vacuum in which the electron was located was discovered to be
significantly modified by the metal electrodes of the Penning trap
(Gabrielse and Dehmelt, 1985) represented in Fig. 1. Electron cyclotron
motion around a vertical magnetic ficld B = 6 Tesla is at frequency”

B
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FiG. 1. Hyperbolic Penning trap in which the inhibited spontancous emission of a
one-electron cyclotron oscillator was first observed. (From Gabriclse and Dehmelt, 1985.)
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FIG. 2. Measured energy decay of a one-electron cyclotron oscillator in the hyperbolic
trap as a function of time for two cyclotron frequencies. Spontaneous emission is clearly
inhibited in both examples compared with the decay rate of 75ms in free space. (From
Gabrielse and Dehmelt, 1985.)
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Instead, Fig. 2 shows an observed decay of cyclotron energy (Gabriclse
and Dehmelt, 1985) for a single electron in the trap, which is decidedly
less by a factor of 3, the first observation of inhibited spontaneous
emission within a microwave cavity.® Corresponding cavity shifts of
measured frequencies, calculated (Brown et al., 1985a,b, 1988) but not
yet observed, were estimated to be the largest experimental uncertainty
(Van Dyck er al, 1987b; Van Dyck, 1990) based upon the calculations.
To complicate this serious problem, so little was known about the
radiation field within trap cavities that the uncertainty estimate is itself
rather suspect. Also, the traditional hyperbolic electrode geometries such
as those shown in Fig. 1 do not allow easy calculation (Brown ef al., 1988)
or even a ready classification of the standing-wave fields in cavity
radiation modes. Even if mode eigenfrequencies were known, the field
configuration and hence the coupling of a centered electron to any
particular cavity mode (if any) would not be known.
New experiments (Tan and Gabrielse, 1991, 1993) show how to change
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FiG. 3. An orthogonalized cylindrical trap cavity has a spatially uniform magnetic field
along the vertical axis.

the cavity-modified vacuum from a serious interruption into an advan-
tage. The key (Section II) is a trap (Fig. 3} that is a good approximation
to an ideal cylindrical cavity (Fig. 4). Geometrical tricks (Gabrielse and
MacKintosh, 1984) allowed us to obtain an electrostatic quadrupole
potential of sufficient quality to observe a single trapped electron (Tan
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and Gabrielse, 1989) with a signal-to-noise ratio as good as in the
hyperbolic traps used earlier. A new technique, with parametrically
pumped electron oscillators, allows the frequencies and quality factors for
radiation modes of a trap cavity to be cleanly observed and measured for
the first time. Frequencies of more than 100 observed modes below
166 GHz correspond to those of an ideal cavity to typically 1% or better.
This makes it possible to identify the standing-wave fields using familiar
classifications (Jackson, 1975} (e.g., TE;,s). Some of these field configura-
tions couple to an electron’s cyclotron motion at the trap center. Others
should allow rapid change of cyclotron damping (Section IIL.B), sideband
cooling of an electron to very low (mK) temperatures (Section II1.C), and
directly driven spin flips. The cavity-modified vacuum is an advantage .
insofar as measured linewidths are narrowed when the electron cyclotron
oscillator radiates less than in free space. This is arranged by tuning the
magnetic field so that the electron cyclotron frequency is not resonant
with the resonant frequency of a cavity mode that couples to the electron.
Simple theory yields damping rates (e.g., Fig. 5a) and frequency shifts
(e.g., Fig. 5b), which can be experimentally confirmed and used to avoid
attendant frequency shifts, making possible a new generation of measure-
ments of the electron magnetic moment (Section III.A). The simple
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FiG. 5. Characteristic dependence of an oscillator’s damping rate y (a) and frequency
shift Aw (b), as a function of its detuning & from the resonant frequency of a coupled cavity
mode (or LCr circuit).
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theory of the interaction between an electron oscillator and a single mode
of the radiation field is summarized in Section IV.

Although the importance of cavity shifts for measurements of the
clectron magnetic moment was demonstrated only recently, the basic
notion that the couplings of two oscillators can shift both the damping
rate and oscillation frequency of the oscillations is certainly very familiar.
(The electron cyclotron motion and an electromagnetic cavity mode are
the coupled oscillators here.) Long ago, for example, it was mentioned
that the spontaneous emission of an atom placed in a cavity could be
inhibited (Purcell, 1946). Further discussions of cavity-induced modifica-
tions to atom damping rates came later (Kleppner, 1981), with clear
realization of the problems that the frequency shifts would present for
precise measurements of resonance frequencies (Kleppner, 1971). In fact,
soon after the observation of inhibited spontaneous emissicn in a trap
cavity, similar effects were observed with Rydberg atoms traveling
between parallel conducting plates (Hulet er al., 1985) and in another
Penning trap (Van Dyck er al., 1987b; Van Dyck, 1990). Related studies
with Rydberg atoms continue.*” Some additional evidence for the
presence of cavity modes in a hyperbolic trap has also been observed
(Van Dyck et al, 1987a), but it remains difficult to interpret since
signal-to-noise ratio was poor, no Lorentzian lineshapes were established,
and no information about the standing-wave field configuratons (and
hence the coupling to a trapped electron) could be deduced.

The well-characterized, standing-wave fields of the cylindrical trap
cavity revive interest in cavity shifts of an electron’s spin precession
frequency. Theoretical studies first suggested that the cavity-modified
vacuum could be responsible for shifts large enough to be observable
(Fishbach and Nakagawa, 1984a). Boulware and Brown (1985) con-
tradicted the initial claim. Many other theoretical papers are written
(Fishbach and Nakagawa, 1984b; Boulware et af, 1985; Svozil, 1985;
Kreuzer and Svozil, 1986; Tang, 1987; Kreuzer, 1988; Barut and Dowling,
1989). The latest work seems to support the contradiction of the initial
claims, even though opposing conclusions have never been resolved as
completely as might be desired. The theoretical studies share the
common difficulty of making a calculable model (e.g., a spin near a
conducting plate or plates) that is also a reasonable approximation to an
electron in a trap cavity. It remains to study theoretically the resonant
interaction of a spin with one of the high Q modes of the cylindrical trap
cavity that couple most strongly to a spin. If it is experimentally
demonstrated that cavity shifts of the cyclotron frequency are well
understood (Section IIL.A), cavity shifts of the spin frequency could then
be investigated experimentally as well.
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II. Cylindrical Penning Trap Cavity
A. IpeEAL CyLINDRICAL CAVITY

In the following sections we show how it is possible to suspend a single
electron near the center of a Penning trap cavity that closely approxim-
ates an ideal cylindrical cavity of height 2z, and radius p, (Fig. 4). The

goal is precise understanding and control of the electron—cavity inter-
~ action, and this requires well-characterized standing-wave fields within
which the electron can be localized. Traditional hyperbolic Penning traps
formed cavities for which it has not yet been possible to even classify the
standing-wave fields. In marked contrast, the radiation modes of a simple
cylindrical cavity are classified in a familiar way as either transverse
magnetic or transverse electric modes. The eigenfrequencies v,,,, are
given by (Jackson, 1975)

_ 2 2
2V ipp = € (%) + (g_zr) R 4

where c is the speed of light. For transverse magnetic modes TM,,,,,,, the
Zmn is the nth zero of the mth order Bessel function J,(x) and

p=0,1,2,.... For transverse electric modes TE,,,,, the ¥, is the nth
zero of the Bessel function derivative J,,(x) and p=1,2,.... In both
cases, m=0,1,...andn=1,2,._..

The electromagnetic fields for each of the standing-wave modes are
simple analytic functions (Jackson, 1975). This makes it straightforward
to calculate the interaction of particlar cavity radiation modes with a
single electron localized in the trap cavity. Of particular interest are the
standing-wave modes that couple to electron cyclotron motion, which is
perpendicular to the axis of the cylinder and typically near to it. Such
coupling requires an electric field perpendicular to the cylinder axis. This
is provided by either TE,,, or TM,,,, standing-wave modes, provided that
the electron is not localized in an axial standing wave minimum. For
example, the transverse electric fields of TE,,, modes near the symmetry
axis of the cavity are simple sine and cosine functions of the z coordinate
(relative to the center of the cavity). The quantum number p indicates the
number of standing-wave maxima (antinodes) that fit between the two
endcaps. For modes with odd p, components of the transverse electric
field,

E, =E, cos(%’i)e_“"‘, (5)

2o
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F16. 6. Representation of the transverse electric field for TE,,, modes: (a) in the
midptane for odd p and (b) along the z axis for even p.

have a maximum in the midplane as illustrated in Fig. 6(a). These odd p
modes, with their electric field maxima near the trap center, couple
strongly to electron cyclotron motion at the center of the trap. These
modes are thus particularly suited for driving a centered cyclotron
oscillator with an external microwave source. They provide efficient
damping of electron cyclotron motion as well, but they also cause
associated frequency shifts, as we shall see. For the related modes with p
even, the electric field vanishes in the midplane (Fig. 6b)

= Fcin[ P2\, i
E =FE, sm( % )e . (6)
The even p modes thus do not couple to the cyclotron motion of an
electron at the center of the cavity. Spatially displacing the electron from
node to antincde, however, provides a way to rapidly couple and
uncouple the electron and cavity, turning the cyclotron damping from on
to off (Section III.B). Moreover, the spatial gradients near the nodes are
suited for sideband cooling thermal motions of the electron along the
cavity axis (Section IIL.C). '

B. OBSERVING A SINGLE ELECTRON

Electrons can be suspended and studied within a cavity if the cavity walls
are split to allow them also to serve as the electrodes of a Penning trap. A
single electron can be suspended and studied if, in addition, the potential
produced by voltages applied to the trap electrodes is a high quality
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electrostatic quadrupole. This results in harmonic oscillations of the
trapped particles at a well-defined and precisely measurable frequency.
Traditionally, such a quadrupole potential was produced using metal
electrodes painstakingly shaped along the hyperbolic equipotentials of
the desired electrostatic quadrupole. The Penning trap used to observe
inhibited spontaneous emission for the first time (Fig. 1) is one example.
A single electron was stored 10 months in this hyperbolic trap and was
used to observe the relativistic hysteresis and bistability of a single
electron at extremely low, meV energies (Gabriclse ef al, 1985),
illustrating the sensitivity that is relevant.

In more detail, the desired electrostatic quadrupole potential can be
wrilten as
ZZ _ pz /2

V=W

C2 ] (7)
where V; is the potential applied to the electrodes, d is an appropriate
trap dimension, and C, is a dimensionless constant that depends upon the
electrode geometry. The axial dimension z is the distance from the center
of the trap along the magnetic field direction, and p is the corresponding
radial coordinate. A trapped particle of charge g and mass m oscillates
harmonically in this potential, along the magnetic field direction, at axial
frequency w, given by

gV
wi= m—dg C,. (8)

Typically, the axial oscillation frequency is monitored precisely, with
small shifts in this frequency used to derive information about the
cyclotron motion of the trapped electron. For a harmonic oscillation,
small amplitude fluctuations do not change the oscillation frequency. A
single trapped electron can be observed and studied precisely when it
oscillates harmonically, when the additions to the electrostatic quad-
rupole are small.

To approximate an ideal cylindrical cavity, the trap cavity in Fig. 3 was
precisely constructed with small slits (0.015cm) that incorporate choke
flanges (A/4 at 164 GHz). Although this cylindrical geometry is a greatly
improved way to understand and control the radiation field in the trap
cavity, it is a much less straightforward way to produce the high quality
electrostatic quadrupole potential. The trap cavity has its vertical axis £
along the axis of a 6 Telsa magnetic field from a superconducting
solenoid. Small slits perpendicular to the magnetic field divide the
oxygen-free high-conductivity copper cavity walls into two endcap
electrodes (at z, above and below the trap center), a ring electrode (with
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radius p,), and two compensation electrodes. A judicious choice of the
ratio po/z, yields a crucial orthogonalization property (Gabrielse and
MacKintosh, 1984). Leading deviations that are unavoidably added to the
desired electrostatic quadrupole potential in Eq. (7),

1 Z4_323P2+%P4
AV =G
1 ze_§z4p2 g2p4__p
+5 C 3 , ©)

can be tuned (by adjusting potentials on the compensation electrodes) so
that |C,| <107 and C¢=~ —10"", with negligible change in the strength
C,V, of the desired electrostatic quadrupole. The axial oscillation of a
single electron can thus be observed at a fixed axial oscillation frequency
w, while the trap is tuned to make the oscillation more harmonic.

Once the potential is tuned, the motions of a trapped electron in a
cylindrical trap are the same as in a hyperbolic trap. The three familiar
motions (Brown and Gabriclse, 1986) include a cyclotron orbit around
magnetic-field lines (at frequency w¢/2x <170 GHz), a harmonic axial
oscillation along the magnetic field direction £ (at frequency
w,/2n =63 MHz), and a circular magnetron motion (at a much lower
frequency w,, = 12 kHz), which is not important for the cavity electrody-
namics. The cyclotron frequency in the trap w( is shifted slightly from the
cyclotron frequency w, for an electron in a magnetic field alone, but this
difference is also not important for these studies. Figure 7 shows a driven
axial resonance for a single trapped electron that is less than 4 Hz wide.
With this signal-to-noise ratio, a shift in the axial resonance frequency of
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Fic. 7. Driven axial resonance of one electron in a cylindrical Penning trap.
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1 Hz out of 64 MHz is easily resolved, a resolution that is as good as has
been obtained in hyperbolic traps.

C. OsBserviING CaviTy Rabpiation Mobpes 0-166 GHz

Despite great attention to making a cylindrical Penning trap cavity that is
a good approximation to an ideal cylindrical cavity, the small slits, holes,
and uncontrolled imperfections unavoidably shift the radiation eigenfre-
quencies of the trap cavity from those of an ideal cylindrical cavity. The
hope is that the shifts are small, so that measured eigenfrequencies can
still be used to identify the modes. Furthermore, small shifts would
indicate that the standing-wave fields in the trap cavity are essentially the
simple analytic forms already discussed.

A technique using synchronized electrons in the trap (Tan and
Gabrielse, 1991, 1993) allows us to observe the actual modes of the trap
cavity in situ, after the electrodes have contracted from being cooled to
4 X. A simplified model of the detection system is depicted in Fig. 8. The
parametrically excited electron oscillators (modeled in Fig. 8 by massive
balls attached to springs) are bound near the midplane of the trap cavity
(represented by the parallel-plate conductors). The restoring force of the
springs is modulated with strength # and at frequency wy, and hence the
axial oscillators have spring ‘“‘constants™

ma?[1 + A cos(wgt)]. (10)I

The oscillatory motions of the electrons induce a current through the
resistor connected between the two plates (representing the endcaps of
the trap cavity). The voltage drop across this resistor is amplified,
squared, and filtered to give a signal that is proportional to the energy in
the axial center-of-mass (CM) motion. Under appropriate conditions this
signal is coherent with the drive, a manifestation of interesting nonlinear
dynamics and cooperative behavior that is discussed in Tan and Gab-
rielse, 1991, 1993, but is outside the scope of this chapter.

3 siga

|

FiG. 8. Simplified model of parametrically excited electron oscillators and detection
electronics.
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FIG. 9. Drive frequency versus strength for the parametric pump showing the region of
Mathieu instability (cross-hatched).

To probe the microwave cavity modes, it suffices to observe that there
is a well-defined region in the parameter space (h, w4) of the parametric
pump wherein the signal is sensitive to radiative cooling by the trap
cavity. This region is cross-hatched in Fig. 9. Figure 10(b) shows the
measured frequency response with the pump strength held fixed at a
value above the threshold. This family of superimposed resonances is
obtained by varying the detuning between the cavity-mode frequency
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FiG. 10. (a) Cavity resonance observed by monitoring the axial center-of-mass energy
while driving parametrically at @, = 2w, . The magnetic field is swept slowly in time to vary
w!. (b) Parametric axial resonances for indicated detunings of the cylcotron and cavity
mode frequencies. The electrons are cooled less efficiently as this detuning is increased.
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FiG. 11. Simplified diagram of the experimental apparatus for cavity-mode detection.

and the electron cyclotron frequency. It clearly shows that the signal
grows with increasing radiative cooling and reaches a maximum when the
cyclotron frequency is swept into resonance with the cavity mode. Cavity
modes arc thus conveniently detected by fixing the pump frequency at
wg=2w@, and monitoring the axial CM energy, while the cyclotron
frequency is being swept, as illustrated in Fig. 10(a).

A simplified overview of the apparatus is shown in Fig. 11. The trap is
sealed in a high-vacuum envelope, which is cryopumped via thermal
contact with a liquid helium bath. The magnetic field is generated by a
superconducting solenoid designed for precise studies with nuclear
magnetic resonance. Since the cyclotron frequency is proportional to the
magnetic field, we sweep the current in the superconducting solenoid up
to 5.9 Tesla (slowly, because the solenoid inductance is 200 Henries) in
order to tune the cyclotron oscillators into resonance with one cavity
mode after another. A measure of the current in the solenoid and the
signal from the electron oscillators are digitized simultaneously and
stored in a computer. (A conversion from measured solenoid current to
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cyclotron frequency is obtained by exciting an electron cyclotron res-
onance with a microwave source.) A full spectrum for 0 to 166 GHz is
shown in Fig. 12 and takes about 10 hours to obtain. The extraordinary
sensitivity of the synchronized motion of the electron oscillators to
radiative cooling via energy transfer to the modes of the trap cavity
allows us to observe even weakly coupled cavity modes (e.g., those with
nodes in the midplane), presumably because the electrons occupy a
volume extending slightly away from the center of the trap. Isolated
resonances have Lorentzian lineshapes, as illustrated by the data points
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and Lorentzian fits for the two modes in Fig. 13. Thermal cycling of the
trap apparatus up to 300K and back to 42K changes the observed
resonance frequencies by less than 0.1%.

The TEg,, modes are unusual in that these azimuthally symmetric
modes are singlets, unlike m >0 modes, which are doubly degenerate. In
the observed spectrum, however, TE,,, resonances with even p appear
near the frequencies expected for an ideal cylinder in Eq. (4), but they
appear as doublets. Modes with p even have a node in the midplane of
the trap and are thus decoupled from the cyclotron motion of electrons
located exactly at the center of the trap. The periodic axial motion of the
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electrons, driven by the parametric pump, makes the electrons sample the
standing-wave field away from the node at the center of the trap. The
microwave field experienced by the oscillating electrons is thus amplitude
modulated, which produces the observed sidebands. Plotting the fre-
quency separations for the doublets (Fig. 14) shows clearly that the
splittings are twice the axial oscillation frequency, as would be expected.
All even p modes, regardless of m value, give similar motional splitting in
the spectrum, as illustrated in Fig. 15(a). The motional effect is different
(and typically smaller) for odd p modes, since these have a maximum of
the standing-wave field at the center of the trap. Nevertheless, for
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FiG. 13. Lorentzian lineshapes fit to observed cavity modes that are well separated from
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sufficiently large oscillations and for large p, small sidebands are observed
at 2v, to either side of the strong central peak as illustrated in Fig. 15(b).

With motional sidebands understood, the measured frequencies corres-
pond well to those for a perfect cylindrical cavity, offering the possibility
of identifying resonant modes of a trap cavity for the first time. The
azimuthally symmetric TE modes with /n = 0 have high Q values and are
not shifted much by the slits because induced surface currents flow
parallel to the slits, allowing the effective trap dimensions to be
determined in situ at 4 K to within 6 pm, as shown in Fig. 16. A best fit of
Eq. (4) to 12 measured eigenfrequencies for such modes yields a rms
frequency deviation of 0.08% and dimensions pg=0.4559(6) cm and
7o =0.3838(6) cm, in good agreement with our expectations based upon
machining tolerances and expected thermal contraction. Taking the
observed width at half maximum divided by the resonant frequency to be
Q7 the mean Q is 20,000 with an rms spread of 6500.

For other field symmetries of experimental interst, Fig. 17 shows
percentage deviations of measured and calculated resonant frequencies.
There is good agreement. The most important modes (Brown et al.,
1985b; Brown and Gabrielse, 1986; Gabrielse er al., 1990), those with p
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FiG. 16. The fit of measured TE,,, mode eigenfrequencies to those calculated for an
ideal cylinder in Eq. (4), in situ at 4K, determines effective dimensions of the trap cavity to
within 6 pm.

odd and m =1, have nonvanishing transverse electric fields at the cavity
center and hence couple directly to the small cyclotron orbit of an
electron. The strong coupling resuits in the largest observed resonance
signals (i.e., largest peak area in Fig. 12) for the 29 of these modes that
we observe. Frequency deviations are typically 1%, which is larger than
for the TEy,, modes in the foregoing, as expected. Nonetheless, the shifts
are still typically five times smaller than the average mode spacing,
though mode overlap gets more likely as the mode density increases at
higher frequencies. The mean Q is 1300, with a spread of 1100 and a
highest Q of 3700.

Isolated modes fit well to Lorentzian lineshapes, as has been illustr-
ated, with exceptions in two interesting cases. First, for modes with
standing-wave nodes in the midplane of the trap, the axial oscillation in
the linear gradient near the node plane canses motional sidebands as
discussed. The second exception is the modification of the lineshape when
an electron cloud and a cavity mode are strongly coupled. The coupling
increases in proportion to the square of the number of electrons N and in
proportion to Q0. When N and Q are sufficiently large, the coupling time
for the cloud and mode is therefore shorter than the decay time for the
cavity mode itself. To illustrate the lineshape modification, Fig. 18(a)
shows the observed resonance for TE, s, which fits well to a Lorentzian
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FiG. 17. Comparison of observed and calculated eigenfrequencies for series of cavity
modes of particular experimental interest.

lineshape, with a small number of electrons. The number of electrons is
increased in Fig. 18(b), resulting in broadening of the line, especially at
its base. With further increase in trapped electrons, the observed
resonance is split, as shown in Fig. 18(c).

IIl. New Generation of Electron Measurements
A. MaGNETIC MOMENTS WITHOUT CAVITY SHIFTS

Cavity shifts presently limit the precision of the measured magnetic
moments of the electron and positron, as we have seen. Inhibited
spontaneous emission in the cyclotron motion has been observed in these
experiments, with cyclotron decay time longer than in free space. The
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FiG. 18. The Lorentzian lineshape {2) is modified to the strongly coupled lineshapes in
(b) and {c) as the number of electrons N is increased to increase the electron-cavity
coupling.

corresponding frequency shift that must be present (illustrated in Fig.
5b), however, has not been determined because the microwave properties
of the hyperbolic trap are virtually unknown experimentally and are
difficult to deal with even in principle. Consequently, the latest measure-
ments of the magnetic moment for the electron and positron,

a(e™) = 0.001 159 652 188 4 (14) (40), (11)
a(e™) = 0.001 159 652 187 9 (14) (44), (12)

are reported with the largest uncertainty (40) due to cavity shifts (Van
Dyck et al., 1987b; Van Dyck, 1990). This uncertainty, considered as the
“most probable” cavity shift in the cyclotron frequency, was crudely
estimated using our calculations for a cylindrical cavity model, which is
not a very satisfying approximation to a hyperbolic trap cavity.

QED calculations of the electron’s anomalous magnetic moment have
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been pushed to nearly the same accuracy (Kinoshita, 1990b). As
mentioned earlier, however, QED relates measured a values to measured
values of the fine structure constant «. For comparision with the
measured a values, the QED calculation and the measured fine structure
constant together give an anomalous magnetic moment

a = 0.001 159 652 140 0 (53) (41) (271). (13)

The uncertainties of (53) and (41) come from numerical calculations of
the expansion coefficients c; and c, in Eq. (1), respectively. The largest
uncertainty (271) comes from uncertainty in the fine structure constant as
measured using the quantum Hall effect. In the future, it may be possible
to determine & more accurately using (Taylor, 1991)

, 2R.MNa)M, h
ar = — _
¢ M, m,M(Na)

(14)

provided that #/M(Na) can be measured accurately using atom inter-
ferometry as is hoped (Kasevich and Chu, 1991). The latest adjustment of
fundamental constants is based in part on a somewhat more precise
determination of & obtained by combining the QED calculation (assum-
ing the exact validity of QED) with the measurement of a to obtain

a~'(QED) = 137.035 992 22 (94). (15)

The uncertainty in this QED determination of the fine structure constant
is 7X 107" if the shift estimate turns out to be accurate.

Controlling the interaction of an electron cyclotron oscillator with the
cavity-modified vacuum will be crucial for higher precision tests of QED.
Better @ measurements in trap cavities of unknown microwave propertics
appear difficult and unlikely. For example, using lossy materials and
electrodes would make a hyperbolic trap cavity approximate the free-
space vacuum (and thus avoid shifts due to unknown standing-wave
fields). The cyclotron damping width would also be as large as in free
space, however, making precise frequency measurements more difficult.
To relate the uncertainty Aw. in measuring the cyclotron frequency to the
resulting uncertainty Ag in the measured anomalous magnetic moment a,
we note that

W — We

a= (16)

wWe

can be regarded as a definition of g, where w, is the electron’s spin
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precession frequency. Since @ ~ 102 is small,

Az 1Aw,
= 17)
a a o,

For B =5.9 Telsa, without line splitting, the cyclotron frequency could
therefore (in principle) be measured to 8 X 107, from Egs. (2) and (3) in
(16). Setting Aw, equal to the free-space linewidth yields Aa/a =8 X 1077,
The experimental error currently quoted (Van Dyck er al., 1987b; Van
Dyck, 1990) is already much smaller.

The cylindrical cavity, with identified p odd, m =1 modes, is a greatly
improved environment for experiments with a centered, one-electron
cyclotron oscillator. To illustrate this point, a 10-GHz span of experimen-
tal interest is displayed in Fig. 19. Of the modes in this span, only TM,;
and TE,;s couple to the cyclotron motion of one electron at the center of
the trap. TE,, and TE.5, do not couple to one centered electron but are
suited for sideband cooling of the axial motion (Section III.C). Both the
damping rate y for an electron’s cyclotron motion (for small enough
damping—Grabrielse and Dehmelt, 1985) and the cavity shift of its
frequency Av could be measured as a function of v, with one trapped
electron, but this would take a very long time. To a good approximation
(Gabrielse et al, 1990), however, coupling to the Mth of these cavity
modes (with resonant frequency v,,) yields the explicit forms

_ Owm
2
2nAv=1AM (@) ou __1

3 1+ (QMSM)Z = 5 YO (19)
The constants A, are precisely known (equivalent to those tabulated
{Gabrielse ef al,, 1990} as elaborated in Section B¥) because the field
configurations of these modes are known. Both vy and Av are functions of
the “detuning” 8, = 2(v{— va}/vs (which is accurately controlled and
measured} and the quality factor for the mode ,,. These explicit forms,
with v,; and Q,, from the measurements described earlier (summing over
nearby modes as necessary and including manageable renormalization
corrections neglected here (Gabrielse ef al, 1990)) can be used to
compute the frequency shift (Fig. 19b) and damping rate (Fig. 19¢) for a
centered electron. The hope is to compare these with several specific
measurements with one eleciron and then to deduce the cyclotron
frequency (i.e., the magnetic field) at which the electron’s cyclotron
frequency is not shifted by the cavity. The damping width is 50 times
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Fic. 19. Observed cavity modes in a 10-GHz spectrum (a). Corresponding frequency
shifts (b) and damping rates (c) for one electron at the center of the cavity are calculated
using measured Q values and resonant frequencies along with calculated coupling constants.
The dashed line in (b} includes only the effect of TM,,; and TE, 5, which are the modes in
the figure that couple to the cyclotron motion of a centered electron. The solid line also
includes the effect of nearby coupled modes not in this span.

narrower than in free'- space at this unshifted cyclotron frequency. The
likelihood for thereby improving the measurement accuracy is very high.

B. Rarm ConTrROL OF E1RCTRON-CAaviTY COUPLING

The simple standing-wave pattern of m = 1 modes can be used to change
the cyclotron damping rate rapidly without changing the magnetic field
(which would take months to restabilize sufficiently for high precision
experiments). This is possible because the coupling between the cyclotron
oscillator and a cavity mode vanishes at a node of the standing wave. An
electron can be moved up and down by adding an antisymmetric electric
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FiG. 20. (a) Antisymmetric potential across endcaps displaces electrons along the z axis.
(b) Representation of transverse electric field component near the z axis for a p =3 mode.

potential V,, across the endcaps (Fig. 20a). Figure 20(b) represents the
magnitude of a component of the transverse electric field of a TE,,;
mode along the z axis. If an electron is displaced from the center of the
trap (where its coupling with the cavity mode is strongest) along the z
axis by a quarter wavelength to the nearest node, then its interaction with
the standing wave is switched off.

Electronic control of the electron—cavity coupling is demonstrated in
Fig. 21. The peak in Fig. 21(a) is due to coupling of TEy-; to an electron
cloud near the trap center. TE,; has 7 antinodes between the endcaps,
with A/4 =550 um. For Fig. 21(b), the electron cloud is displaced by

T Centered M4 = 550 microns -
s F -
@ i TEoz? p=7 7
“ 1@ i
L] L) L] L] I T T L] T I L) T T L} I T L] T L) =

- Displaced by 510 microns .

IE L. —
_g)o [ [ v, | ]
[ (b) _/E-_ _/I\ |

T T T T I 1 T T T ‘ T L} L} L} I L) T T ':q

-100 -50 0 S50 100

Cyc. freqg. - 155,105 MHz

FiG. 21. (a) Observed resonance for TEg,, (A/4=3550 um) with a centered electron
cloud. {b) Motional doublet observed when the electrons are displaced from the center by
Az =510 um.
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510 um from the trap center along its axis. Proximity to the node causes
the resonant peak in Fig. 21(a) to disappear. Instead, a pair of peaks
scparated by 2w, appear in the spectrum because the electrons are
oscillating at frequency w, through the node at z = A/4.

C. SIDEBAND COOLING OF AXiaL MoTION

The axial motion of a trapped electron is dissipated as Joule heating of a
resistor connected between appropriate electrodes, cooling the axial
motion into thermal equilibrium with the resistor. Even at 4 K, thermal
axial motions are highly undesirable in efforts to study the relativistic,
quantum structure of the cyclotron oscillator, because the thermal energy
is coupled into the cyclotron motion via several mechanisms.

To bring the axial motion to a much lower temperature, the electron
would be decoupled from the resistor, and a sideband cooling technique
(Wineland and Dehmelt, 1975; Brown and Gabrielse, 1986) would be
employed. Modes with even p and m =1 (e.g., in Fig. 19), when driven at
v,—v,, produce the proper oscillatory spatial gradients required to
transfer the axial enmergy into the cyclotron motion. The cyclotron
excitation in turn dissipates the transferred thermal energy into the cavity
via modes with odd p and m =1. It should be possible to cool the
undamped axial motion to an extremely low temperature limit (Brown
and Gabrielse, 1986).

I, = (v/vIL. (20)

With the frequencies used here, this would be an unprecedented (and
extremely useful) axial temperature of 2 mK for T, =4.2 K. Because the
field intensity builds up within the high @ cavity, much less drive power
should be required that was estimated for propagating plane waves
(Brown and Gabrielse, 1986). These same modes have a transverse
magnetic field at the cavity center and could thus be used to directly flip
an electron spin (when driven at ). Off-resonance cyclotron excitations
by the strong spin flip drive are suppressed, because these modes do not
couple directly to the cyclotron motion.

IV. Electron—Cavity Interactions

The dynamics of one cyclotron oscillator localized in the midplane (near
the center) of a cylindrical, microwave cavity is governed by

mv— (e/c)BXxv=eE", (21)
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Fig. 22. Electromechanical model of electron—cavity interaction.

where v=p is the velocity in the midplane. The transverse electric field
E", in the dipole approximation, is due to radiation standing-wave modes
with m =1 (i.e., TE,,, and TM,,,,), generated as the accelerating ¢lectron
radiates into the cavity. Thus, Eq. (21) indicates that the cavity standing
waves act back upon the cyclotron oscillator. The calculations are
classical, sinceit has been shown that within a high level of accuracy the
exact apparatus of quantum electrodynamics yields the classical results
(Boulware and Brown, 1985).

The essential features of this interaction are also contained in a simpler
electromechanical model (Fig. 22) appropriate when one cavity mode is
considered.® In this model, the selected Mth cavity mode is represented
by a series LCr tuned circuit. Such a tank circuit is resonant at angular
frequency wy = (LC)™"? with damping width 'y, =r/L. The electron
oscillator is represented as a charge e and mass m on a spring with spring
constant m(w/)’. The electron oscillation z(f) excites a current O(¢) in the
tuned circuit. The oscillating current in the tuned circuit, in turn,
produces an RF electric field that acts back on the electron. The
interaction potential for these two coupled oscillators is given by

V= - 5L 020 @)

where the dimensionless coupling x =1 for a capacitor with infinite
parallel plates (separated by 2z,). Using familiar Lagrangian equations,
we find that, analogous to Eq. (21),

] 5+ @]z~ [ 5L Jow, %)
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The excitation of the tuned circuit is described by
a? d Kq
L[—+I‘ —+ 2] t =-[—--~] 7). 24
22t Tt @’ |00 =~ 7% Je) @4

We can neglect Johnson noise {(which represents the 4 K radiation of the
cavity in thermal contact with the liquid helium bath).

In the weak-coupling regime (wherein the cavity field decays due to
wall losses in a time shorter than required for the electron to reabsorb the
radiation), the tuned circuit effectively damps the electron oscillation z(z)
at rate -y and shifts its resonant frequency to &/. Since the cavity modes
typically have high quality factors (Q ~ 10° or higher), the damping and
frequency shift take the simple forms

1
=Y, 2
Y 701_'_82; (5)
M L (26)
BT W= Yol 5%

In terms of the effective resistance R = L/(rC), the maximum damping
rate ¥, is given by

Kq] R

=|l—=|— 27
v=|52]2 @27)
The resonant frequencies of the tuned circuit and electron motion are w,,
and w., respectively, when the interaction is turned off. The unperturbed
resonance frequency of the two oscillators are related by a detuning &
defined by

If the electron osciflator and the LCr circuit are tuned to the same
unperturbed resonance frequency (i.e., § = 0), there is no frequency shift,
but the dampling rate is at its maximum. When & # 0, the dampling rate
is reduced, but the resonant frequency of the electron oscillator is shifted,
The maximum frequency shifts ++v,/4 occur near resonance, at detunings
& = £1, The characteristic shapes for vy and Ae are shown in Fig. 5 and
are clearly evident in more detailed calculations.

Since o~ R ~ @), the maximum damping and maximum frequency
shift are larger when the quality factor Qj, = wy,/T, is larger. To display
the Q dependence explicitly, we write

2o 20,24, 29

War Wy
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thereby defining the coupling strength A,,.” This definition also allows the
use of a simple form for the electron’s frequency shift and damping rate,

Z _ a)()lM)z
2 wrtiely— ey

Aw—i (30)

which can be generalized to include interactions with more than one
cavity mode by summing the right-hand side over the mode index M.

For Eq. (30) and its generalization to be quantitatively useful, the
coupling constants A3, = A2, have been caiculated for regular cavities of
interest (Gabrielse et al., 1990). In particular, for the cylindrical cavity,
the mode index M is identified here with the two quantum number
n=0,1,2,...and I=1,2,3,.... When the magnetic field is along the
symmetry axis of the cavity, these two indices identify the subset of cavity
modes that couple to a cyclotron oscillator located at the center of the
cavity. Two types of modes couple to the cyclotron motion, and for both
it is convenient to use k,=(n +1/2)x/z,. For TE (transverse electric)
modes,

rec® 2 z
= Cz 2 o 3 (31)
Zopp @7 — L y(ay)
2
Wk, = (k,% + “—;)cz, (32)
Po

where «a; (defined by Ji(a,) =0) is the /th zero of the derivative of the
first order Bessel function. For TM (transverse magnetic) modes that
couple to electron cyclotron motion,

2 2.2
2 Tl 2k 1

= . 33

! 2ps @hs Jo(Br) (33)
2

w2, = (kf, + B—;)CZ, (34)
Po

where B, (given by Ji(8,)=0) is the Ith zero of the first order Bessel
function. The quantum numbers n and / that we use to label the cavity
modes that couple to the electron are simply related to common
conventions for labeling all the modes of a cylindrical cavity. For
example, in the textbook by Jackson (1975) the origin of the coordinate
system is translated to the center of the bottom endcap, and the TE and
TM modes identified in the foregoing are labeled as TE, ;,,.; and the
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TM;i 12,41, ¥espectively. Couplings for other cavity geometries of interest
are found in an earlier work (Gabrielse er al., 1990).

Unfortunately, the simple theory is afflicted with problems arising from
the self-field interaction. To see this, we note that the standing-wave field
is actually composed of two contributions

ET=E. +E, (35)

the self-ficld E,. s radiated directly by the oscillator (as if into free space)
and the reflected field E’, which is reflected from the cavity walls. The
back reaction of a self-field upon the accelerating charge that is radiating
is well known to lead to difficulties and divergences in classical electricity
and magnetism® (inherited by QED in addition to divergences of its
own). In our particular situation, the real part of the mode sum

-y Ye At
Aw iy=w-—w. i w%w2+imFM—w%4 (36)
diverges when the sum includes all the cavity modes. For a correctly
renormalized calculation, the self-field term is replaced by a radiation
damping term for radiation into free space (with damping rate y.) and
only the transverse reflected field E’ acts back upon the cyclotron
oscillator, so that Eq. (21) is rewritten as

V— @, XV+ (v 2)v=(e/m)E’. (37

Only in special cases is it possible to separate the reflected field and the
self-field that together make up the standing wave. The high degree of
symmetry for a spherical cavity (Brown er al, 1986; Dchmelt, 1984)
makes the removal of the self-field relatively simple because the
free-space radiation from the oscillator at the center contains only
outgoing spherical waves, easily distinguished from the reflected waves. A
cylindrical cavity (Brown et al, 1985a,b) has less symmetry, but the
separation can still be accomplished by using image charges to satisfy the
cavity boundary conditions. The reflected field is thus clearly distin-
guished as the field of the images. For a hyperbolic cavity (which
corresponds to the trap within which the electron’s magnetic moment was
measured) a separation of self and reflected fields is completely intract-
able. Finite mode sums as donc in the simple model are the only
possibility. Conditions of a modified mode sum and a complete calcula-
tion for the cylindrical cavity are used to estimate the optimal number of
terms to be included in the finite mode sum, even though the mode
density is significantly higher in a hyperbolic cavity.

The usefulness of the simple theory is limited especially when the
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electron cyclotron oscillator is not near to resonance with a high @ cavity
mode. A detailed discussion of how the divergences arise and can be
partially circumvented in this model has been presented (Brown et al.,
1988; Gabrielse et al, 1990). In general, the contribution from any
off-resonant (Mth) mode to the frequency shift Aw of the electron
oscillator, going as 3(Ax)*/(@. — @y) (independent of Q,,), is overstated
slightly due to self-field in the standing wave. The overstated contribu-
tions add up as the contributions from many modes are included. Optimal
use of the simple mode sum model thus requires a careful choice of the
number of cavity modes included in the sum. Beyond a certain number of
terms, the real part of the mode sum will start to diverge. Eventually, the
mode sum over an infinite number of such small contributions diverges. It
is difficult to establish the optimum number of terms of the accuracy of
the truncated mode sum except by comparision with a calculation that
avoids the divergences entirely (Brown, et al,, 1988). A modified mode
sum formula was obtained (Brown et al., 1988), which converges for the
case of a cylindrical cavity and can be used to obtain the unshifted
cyclotron frequency to 1 part in 10°.

V. Summary and Future

The most accurate tests of quantum electrodynamics have been seriously
interrupted by modifications to the QED vacuum by the cavity formed by
the metal electrodes of a Penning trap. A new cylindrical Penning trap
cavity has standing-wave radiation modes that can be classified in a
familiar way and described by simple analytic expressions. Geometric
tricks make it possible to suspend and study a single electron localized in
this cavity. A new technique, utilizing the coherent response of trapped
electrons that are parametrically pumped, makes it possible to measure
resonant frequencies and quality factors for more than 100 radiation
modes, in situ at 4K. In addition to the interesting studies of the
nonlinear dynamics of the cooperative electron motions that have been
initiated, this is the first time that the radiation field in a trap cavity has
been understood. The electron—cavity interaction is understood well
enough to offer the possibility of cooling an electron’s motion to
subtantially lower temperatures, for example, and of avoiding the cavity
shifts of measured electron frequencies that have been plaguing measure-
ments of the electron’s magnetic moment. A new generation of tests of
QED can now be undertaken that are not limited by either radiation
damping width or by cavity shifts.
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Notes

1. The most recent and accurate calculation is in Kinoshita, 1990.

2. We will use frequency v or angular frequency « = 2av depending on which is more
conveinient. B

3. Cavity-like cffects were observed eatlier with fatty acid molecules near the surface of a
conducting plate (Drexhage, 1974).

4, Reviewed in Haroche and Kleppner, 1989,

3. Reviewed in Hinds, 1990.

6. It is customary in microwave electronics to present information in the form of
equivalent circuits. See, for example, Beringer, 1948,

7. This is the definition of (A,,)* used in Brown er af., 1985b. It is smaller than the
dimensionless (A,,)° used in Brown ef al., 1988, by a factor of w}7./2-

8. See, for example, Panofsky and Phillips, 1962; also Chapter 17 of Jackson, 1975.

References

Barut, A. O., and Dowling, J. P. (1989). Phys. Rev. A 39, 2796.

Beringer, R. (1948). In Principles of Microwave Circuits, C. G. Montgomery, R. H. Dicke,
and E. M. Purcell, eds., MIT Rad. Lab. Series 8, McGraw, New York, p. 207.

Boulware, D. G., and Brown, L. S. (1985). Phys. Rev. Lent. 55, 133.

Boulware, D. G., Brown, L. §., and Lee, T. (1985). Phys. Rev. D 32,729,

Brown, L. S., and Gabrielse, G. (1986). Rev. Mod. Phys. 58, 233.

Brown, L. S., Gabriclse, G., Helmerson, K., and Tan, J. {1985a). Phys. Rev. Lett. 55, 44.

Brown, L. 8., Gabriclse, G., Helmerson, K., and Tan, I. (1985b). Phys. Rev. A 32, 3204.

Brown, L. S., Helmerson, K., and Tan, J. (1986). Phkys. Rev. A 34, 2638.

Brown, L. S., Gabrielse, G., Tan, J., and Chan, K. C. D. (1988). Phys. Rev. A 37, 4163.

Conti, R., Newman, D., Rich, A., and Sweetman, E. (1984). In Precision Measurements and
Fundamental Constants 1f, B. N. Tayler and W. D. Phillips, eds., Spec. Publ. 617, U.S.
National Bureau of Standards, p. 207.

Dehmelt, H. G. (1984). Proc. Natd. Acad. Sci. U.S.A. 81, 8037; Erratum, ibid. 82, 6366
(1985).

Drexhage, K. H. (1974). In Progress in Optics, Vol. 12, E. Wolf, ed., Elsevier Science
Publishers B. V., Amsterdam, p. 165,

Fishbach, E., and Nakagawa, N. {1984a). Phys. Lett. 149B, 504.

Fishbach, E., and Nakagawa, N. (1984b). Phys. Rev. D 30, 2356.

Gabrielse, G., and Dehmelt, H. G. (1985). Phys. Rev. Let. 55, 67.



ONE ELECTRON IN A CAVITY 299

Gabrielse, G., and MacKintosh, F. C. (1984). Int. J. Mass Spectrom. Ion Process 57, 1.

Gabrielse, G., Dehmelt, H., and Kells, W. (1985). Phys. Rev. Lett. 54, 537.

Gabrielse, G., Tan, J., and Brown, L. 8. (1990). In Quanium FElectrodynamics, T. Kinoshita,
ed., World Scientific, Singapore, p. 389.

Haroche, S., and Kleppner, D. (1989). Physics Today (January), p. 24.

Hinds, E. A. (1990). Adv. Atom. Mol. Opt. Phys. 28, 231.

Hulet, R. G., Hilfer, E. S., and Kleppner, D. (1985). Phys. Rev. Lem. 55, 2137.

Jackson, J. D. (1973). Classical Elecirodynamics, 2nd ed., Wiley, New York.

Kasevich, M., and Chu, S. (1991). Phys. Rev. Lert. 67, 181.

Kinoshita, T. (ed.) (1990a). Quantum Electrodynamics, World Scientific, Singapore.

Kleppner, D. (1971). In Atomic Physics and Astrophysics, M. Chrétien and E. Lipworth,
eds., Gordon and Breach, New York, p. 5.

Kleppner, D. (1981). Phys. Rev. Ler. 47, 233,

Kreuzer, M. (1988). J. Phys. A 21, 3285,

Kreuzer, M., and Svozil, K. (1986). Phys. Rev. D 34, 1429,

Panofsky, W. K. H., and Phillips, M. (1962). Classical Electricity ad Magnetism, 2nd ed.,
Addison-Wesley, Reading, Mass., Chapters 21 and 22,

Purcell, E. M. (1946). Phys. Rev. 69, 681.

Svozil, K. (1985). Phys. Rev. Lett. 54, 742,

Tan, J., and Gabrielse, G. (1989). Appl. Phys. Lett. 55, 2144.

Tan, J., and Gabrielse, G. (1991). Phys. Rev. Lett 67, 3090.

Tan, }., and Gabrielse, G. (1993). Phys. Rev. A, (in press).

Tang, A. C. (1987). Phys. Rev. D 36, 2181,

Taylor, B. N. (1991). Private communication.

Van Dyck, R. 8., Jr. (1990). In Quantum Electrodynamics, T. Kinoshita, ed., World
Scientific, Singapore, p. 322.

Van Dyck, R. S., Ir,, Moore, F. L., Farnham, D. L., Schwinberg, P. B., and Dehmelt, H. G.
(1987a). Phys. Rev. A 36, 3455,

Van Dyck, R. S, Jr., Schwinberg, P. B., and Dehmelt, H. G. (1987b}. Phys. Rev. Lett. 59,
26.

Wineland, D., and Dehmetlt, H. (1975). Int. J. Mass Specirom. Ion Phys. 16, 338; Ematum,
ibid., 19, 251 (1975).



