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Driven one-particle quantum cyclotron
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A quantum cyclotron is one trapped electron or positron that occupies only its lowest cyclotron and spin states.
A master equation is solved for a driven quantum cyclotron with a QND (quantum nondemolition) coupling to a
detection oscillator in thermal equilibrium, the latter making this an open quantum system. The predicted rate of
a cyclotron and spin quantum jumps as a function of drive frequency, for a small coupling between the detection
motion and its thermal reservoir, differs sharply from what has been predicted and used for past measurements.
The calculation suggests a ten times more precise electron magnetic moment measurement is possible, as needed
to investigate current differences between the most precise prediction of the standard model of particle physics,
and the most accurate measurement of a property of an elementary particle.
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I. MOTIVATION AND OVERVIEW

An intriguing 2.4 standard deviation discrepancy [1–4] re-
cently arose between the Standard model’s (SM) most precise
prediction and the measured value (Fig. 1). The best mea-
surement [3,5] determines the electron magnetic moment in
Bohr magnetons (μ/μB) to 3 parts in 1013—the most pre-
cisely determined property of an elementary particle. The SM
prediction requires Dirac theory, quantum electrodynamics,
hadronic and weak interaction contributions [2]. The part
in 1012 agreement between SM prediction and measurement
that stood for years gave way as a result of a more precise
measurement of the latter. The discrepancy triggered new
theoretical investigations into possible physics beyond the SM
[6–10]. As this work was being reported, a second new α mea-
surement [11] contradicted the first, giving a SM prediction
that disagrees with electron’s measurement by 1.6 standard
deviations, but in the other direction.

A one-particle, quantum cyclotron is at the heart of past
and future measurements [1,3]. A single electron, suspended
indefinitely in a Penning trap, is cooled enough that it initially
occupies only one of the two stable cyclotron ground states,
one with spin down and one with spin up (Fig. 2). Transitions
are driven between these states and a third, the first excited
cyclotron state with spin down. The state of the quantum
cyclotron is detected after the drives are turned off using quan-
tum jump spectroscopy. The angular cyclotron and anomaly
drive frequencies, ωc and ωa, that produce one-quantum tran-
sitions, determine the magnetic moment in Bohr magnetons,

± μ

μB
= 1 + ωa

ωc
= g±

2
. (1)
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The plus and minus signs are for the positron and electron,
and the g-values g±, divided by 2, are other names for the
ratio of moments. The frequency ωc is the electron cyclotron
frequency. The anomaly frequency ωa = ωs − ωc is the dif-
ference between the electron spin precession frequency ωs

and its cyclotron frequency. The anomaly frequency ωa is
directly measured instead of the spin frequency ωs because
the uncertainty in μ/μB is thereby reduced by about a factor
of ωc/ωa ≈ 103 [12]. The resonance line shapes from which
these frequencies are extracted have intrinsically different
shapes.

The use of quantum nondemolition (QND) detection
methods completely evades detection backaction for deter-
mining the quantum state of the cyclotron and spin motion.
Nonetheless, detection backaction still prevented better mea-
surements of the cyclotron and spin transition frequencies
to better determine the magnetic moments. This backaction
produced a very wide and asymmetric quantum jump spec-
troscopy line shape when cyclotron transitions were driven
to determine the cyclotron frequency. Even though resonant
frequencies can be extracted from broad and asymmetric
lines in principle, in practice this causes a susceptibility
to systematic uncertainties. Significant progress in precision
frequency measurements typically takes place only when nar-
rower and more symmetric line shapes are produced. We
recently proposed a very promising method for circumventing
this detector backaction for the frequency measurements [13].
The cyclotron line shape would be much more symmetric,
and orders of magnitude narrower, than for previous measure-
ments.

In this work we describe the quantum calculation that is
carried out to predict the narrow quantum-jump line shapes
[13,40] much more completely. A master equation is solved
for a driven quantum cyclotron with a QND coupling to
a detection oscillator, the latter being coupled to a thermal
reservoir. The predicted quantum jump line shapes are very
different than was predicted for the case when the detection
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oscillator was more strongly coupled to its environment
[14,15]. We also present quantum calculations for (1) driven
anomaly transitions, (2) directly driven spin flips, and (3) spin
flips produced by simultaneous cyclotron and anomaly drives.
The additional calculations make it possible to evaluate and
contrast possibilities for making new measurements of the
electron and positron magnetic moments.

Key to these calculations, and the possibility to measure
the electron and positron magnetic moments much more accu-
rately, is decoupling the detection oscillator from its thermal
environment by a factor of 100 during the time in the mea-
surement when one-quantum transitions are being driven. The
parameters used in the calculation are those realized in a very
recent experimental demonstration of one way that this could
be done [16], while also allowing the necessary coupling to be
restored for quantum state readout.

The outcome of the calculation is that it now seems feasible
to carry out new electron and positron magnetic measure-
ments that are an order of magnitude more accurate than was
previously possible. This would make it possible to investigate
the discrepancies between the most precise prediction of the
standard model of particle physics, and the most accurate
measurement of a property of an elementary particle [1,2].

Details of the quantum system are given in Sec. II. The
Hamiltonian and master equation of the system are presented
in Sec. III. Calculations of single photon excitations of cy-
clotron and anomaly transitions are given in Secs. IV and V,
respectively. Section VI does the same for directly driven spin
flips. Section VII predicts the quantum-jump line shape for
simultaneously applied cyclotron and anomaly drives. Sec-
tion VIII contrasts the relative advantages of the different
methods, and Sec. IX provides a summary.

II. QUANTUM CYCLOTRON

A one-electron quantum cyclotron is at the heart of the
approach being investigated here. An electron or positron in
a Penning trap is confined within a spatially uniform mag-
netic field Bẑ, along with an electrostatic quadrupole potential
[12]. The possibility to use only the ground and first excited
cyclotron states of a single isolated electron has already been
demonstrated and used for measurement [3]. The two lowest
levels of the quantum cyclotron are separated by an energy
h̄ωc, where ωc is the angular cyclotron frequency introduced
above. The spin up (quantum number ms = 1/2) and spin
down (ms = −1/2) states are separated in energy by h̄ωs,
where ωs is the spin precession frequency discussed above.
This one-particle quantum cyclotron has a Hamiltonian

H = h̄ωs
(
a†

s as − 1
2

) + h̄ωc
(
a†

cac + 1
2

)
. (2)

The spin raising and lowering operators are

a†
s |↓〉 = |↑〉,

as|↑〉 = |↓〉, (3)

and a†
c and ac are harmonic raising and lowering operators for

the cyclotron motion [12].
An electrostatic quadrupole potential added to the mag-

netic field makes a Penning trap that can suspend a single
charged particle indefinitely within an extremely high vacuum

[17]. The electron (of charge −e and mass m) oscillates along
the magnetic field direction in a harmonic oscillator potential
energy,

W (z) = 1
2 mω2

z z2 (4)

and ωz is the angular axial oscillation frequency. The elec-
trostatic quadrupole shifts the cyclotron frequency slightly in
a well understood way [12,18] that can be neglected for the
purposes of this calculation.

This axial motion is used to make quantum nondemoli-
tion (QND) measurements of one-quantum spin and cyclotron
transitions [19–23]. A small magnetic bottle gradient, B2z2,
is added to the spatially uniform magnetic field, B0, of the
Penning trap, The addition modifies the axial trapping poten-
tial and shifts the frequency of the axial oscillation. A QND
detection of a one-quantum cyclotron excitation is possible
because it shifts the axial frequency from ωz to ωz + δc, with

δc = eB2

m

h̄

mωz
≈ 2π × (3 Hz) (5)

[12], without changing the cyclotron state. A two-quantum
cyclotron excitation would be 2δc and so on, as will be dis-
cussed later and quantified in Eq. (15). The one-quantum
shift is just large enough to be detectable. The relative shift
is δc/ωz = 1.5 × 10−8 for demonstrated experimental values
[5] [B2 = 1500 T/m2 and ωz/(2π ) = 200 MHz.]. This bot-
tle shift can be decreased in two ways—by decreasing the
magnetic gradient B2 or by increasing the axial frequency, ωz.
Since a next generation experiment [1] uses B2 = 660 T/m2,
we choose the intermediate value B2 = 1200 T/m2 for the
illustrations in this paper.

The magnetic gradient is unfortunately also responsible
for a backaction that broadens the range of frequencies over
which a driven cyclotron excitation or spin flip can occur. The
cyclotron and spin frequencies in Eq. (2) both acquire a small
z2 dependence,

ωc(z) = ωc + eB2

m
z2, (6)

ωs(z) = ωs + g

2

eB2

m
z2, (7)

where the g-value is g+ for a positron and g− for an electron.
A one-quantum axial excitation within the magnetic bottle
gradient shifts the cyclotron frequency by the same δc. A
thermal distribution over n̄z axial states [Eq. (26)] thus makes
the cyclotron frequency fluctuate over a spread of frequencies
that is of order n̄zδc.

Two relativistic shifts must be mentioned, both arising
from the “relativistic mass increase.” The largest is the in-
crease of the effective mass due to the energy of cyclotron
motion [12],

δr = − h̄ωc

mc2
ωc ≈ −2π × (180 Hz). (8)

It is only a 1 part in 109 shift of the cyclotron frequency
per cyclotron quantum, but it is a large shift compared to the
experimental precision that can being attained. The cyclotron
transition frequency between quantum number nc and nc + 1
is shifted by (nc + 1

2 ) δr . The cyclotron frequency between the
ground and first excited cyclotron states with spin down shift
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TABLE I. The frequencies, damping rates, and quantum numbers
used for this calculation are typical for an electron in a Penning
trap [3].

Frequency Damping time Quantum number

spin ωs/2π ≈ 148.5 GHz γ −1
s ≈ 108 s ms = ± 1

2
cyclotron ωc/2π ≈ 148.3 GHz γ −1

c ≈ 5 s n̄c = 0
axial ωz/2π ≈ 200 MHz γ −1

z ≈ 0.2 s n̄z = 10
magnetron ωm/2π ≈ 133 kHz γ −1

m ≈ 1017 s n̄m = 10
anomaly ωa/2π ≈ 170 MHz — —

by half of δr . The shift is thus extremely important in that a
cyclotron drive that excites the first spin-down excited state,
will not excite a cyclotron excitation of the spin-up ground
state. However, for the purposes of this calculation it can
simply be absorbed into ωc.

The second relativistic shift,

δcr = − h̄ωc

2mc2
ωz ≈ −2π × (0.12 Hz), (9)

is about 1000 times smaller. It comes from the increase of
the effective mass due to the zero-point energy of the axial
oscillation. This coupling has much the same effect in cou-
pling the motions to allow QND detection as does a magnetic
bottle [12]. It also produces a corresponding backaction. This
relativistic coupling is neglected here because it is 25 times
smaller than the coupling caused by the magnetic bottle gra-
dient considered above.

A spin flip shifts the angular axial frequency by δs =
(g/2) δc. This is nearly the same size as the corresponding
cyclotron frequency shift because g

2 differs from 1 by only a
part in 1000, and experiments are not able to resolve these
two shifts from each other. The frequency difference ωa =
ωs − ωc is measured rather than ωs [3], and the thousand times
smaller shift, δa = δs − δc, is thus also important.

Table I gives the typical trapped electron frequencies,
damping rates, and quantum numbers used in this calculation.
The spin and cyclotron frequencies are for an electron in a
B = 5.3 T magnetic field, and γc is the rate at which the first
excited cyclotron state radiates spontaneous emission to return
to its ground state. This radiation rate is substantially inhibited
by a surrounding cylindrical trap cavity [5,24,25]. The spin-up
cyclotron ground state radiates with a time constant so long
that we treat it as stable.

The axial frequency depends upon the trap size and the
applied trapping potential [26,27]. Its damping rate γz de-
pends upon the quality factor and inductive reactance of the
damping and detection circuit to which it is coupled [28].
The maximal damping rate in Table I applies during particle
detection. For this calculation, we assume that this rate is
electronically reduced by a factor of 100 during the time that
spin and cyclotron transitions are driven, a number that has
been experimentally demonstrated [16]. The average quantum
number is for thermal equilibrium with a circuit kept at 0.1 K,
the ambient temperature that has been maintained for mea-
surements using a dilution refrigerator [3].

The magnetron orbit of a trapped particle is important
experimentally but not for this calculation. It is a motion at
a much lower frequency. The average quantum number in

TABLE II. Hierarchy of angular frequencies and rates that are in
reach for a new generations of measurements. The numerical values
are frequencies in Hz and times in seconds, with δa/2π = 0.003 Hz
and δ−1

a = 60 s, for example.

Ang. frequency or rate Frequency (Hz) Time constant (s)

δa 0.003 60
γz 0.003 60

n̄zδa 0.03 6
γc 0.03 6

n̄zγz 0.03 6
δc 3 0.06

n̄zδc 30 0.006

the table pertains for the sideband cooling limit [12], and its
radiation damping rate is completely negligible. The broad-
ening due to magnetron motion is smaller than that due to
axial motion by a factor of ωm/ωz ≈ 1/1000, and we drop
the magnetron motion term to simplify the calculation. If
necessary, the Hamiltonian and master equation in Sec. III and
Sec. IV can be naturally generalized to include it.

Tables I and II list the parameters used for this calcula-
tion. They are mostly what has been realized experimentally.
Table I gives frequencies, damping times and quantum num-
ber for the spin, cyclotron, axial an magnetron motion of an
electron or positron in a Penning trap. Table II compares the
important frequency offsets and corresponding time constants.

One motivation for this calculation is evaluating the pos-
sibilities that open if a greatly reduced axial damping rate
pertains while cyclotron and anomaly transitions are driven.
The rate can be electronically switched [16] to the low value in
the table just before drives are applied, to make one-quantum
anomaly and cyclotron transitions with an electron largely
uncoupled from the bath. After the drives are turned off, the
damping rate can be electronically switched to a much larger
values, as needed to detect the particle state and to damp the
axial motion.

III. HAMILTONIAN

The basic Hamiltonian for the quantum cyclotron,

H0 = h̄ωs
(
a†

s as − 1
2

) + h̄ωc
(
a†

cac + 1
2

) + h̄ωz
(
a†

z az + 1
2

)
,

(10)

is the sum of independent spin, cyclotron and axial terms.
The raising and lowering operators for the spin (a†

s and as),
cyclotron (a†

c and ac) and axial (a†
z and az) motions are in-

troduced in Ref. [12], along with relationships to the position
and momentum operators. The eigenstates for H0 are direct
products of independent spin, cyclotron, and axial eigenstates
|ms, nc, nz〉, with

E0(ms, nc, nz ) = h̄ωsms + h̄ωc
(
nc + 1

2

) + h̄ωz
(
nz + 1

2

)
(11)

as the resulting energy eigenvalues, with ms = ±1/2, nc =
0, 1, . . . and nz = 0, 1, . . . . The magnetron motion of a par-
ticle in a Penning trap is neglected because it introduces no
significant complications, and because it can be cooled to a
small radius that does not change during a measurement.
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The addition of a magnetic bottle gradient adds a coupling
term to make the Hamiltonian, H = H0 + V , with

V = h̄

2

[
δs

(
a†

s as − 1

2

)
+ δc

(
a†

cac + 1

2

)]
(a†

z + az )2, (12)

when contributions smaller by order ωz/ωc are neglected. This
is a QND coupling because [H0,V ] = 0. The result is that the
energy eigenstates of H = H0 + V are the same uncoupled
states |nc, ms, nz〉 that are the energy eigenstates of H0. The
magnetic bottle shifts the energy eigenvalues to

E (ms, nc, nz ) = E0(ms, nc, nz )

+ h̄δc
(
nc + 1

2

)(
nz + 1

2

) + h̄δsms
(
nz + 1

2

)
.

(13)

That this coupling makes it possible to detect that quantum
spin and cyclotron states can be seen by rewriting the energy
eigenvalues as

E (ms, nc, nz ) = h̄ωsms + h̄ωc
(
nc + 1

2

) + h̄ω̃z
(
nz + 1

2

)
. (14)

Monitoring the effective axial oscillation frequency

ω̃z = ωz + msδs + (
nc + 1

2

)
δc, (15)

thus reveals the spin and cyclotron states via their quantum
numbers. A feature of the QND detection is that the axial
detection backaction upon these quantum states is completely
evaded. Repeated measurements, made to see if something
else is changing these states, do not in themselves change the
quantum state.

Critical to this work is that the QND coupling V that
completely evades detection backaction in the determination
of the quantum spin and cyclotron states, does not do so for a
measurement of either ωs or ωc. This can be seen by writing
the energy eigenvalues in the alternate form,

E (ms, nc, nz ) = h̄ω̃sms + h̄ω̃c
(
nc + 1

2

) + h̄ωz
(
nz + 1

2

)
. (16)

Despite the QND coupling, the effective spin, cyclotron and
anomaly frequencies all have shifts that go as the axial quan-
tum number

ω̃s = ωs + δs
(
nz + 1

2

)
, (17a)

ω̃c = ωc + δc
(
nz + 1

2

)
, (17b)

ω̃a = ωa + δa
(
nz + 1

2

)
. (17c)

These detection backaction shifts cannot be completely
evaded because a shift due to axial zero point motion re-
mains even if the axial detection motion would be cooled
to its nz = 0 ground state. Because the shifts in this limit
are orders of magnitude smaller than what has been attained,
we focus upon how these zero-point limits can be attained. We
call this “circumventing” detection backaction because of the
possibility to achieve these limits while axial detection states
well above nz = 0 are populated [13].

Electron and positron magnetic moment measurements re-
quire the determination of the cyclotron and the anomaly
frequencies, ωc and ωa. These frequencies can be determined
observing the rate of quantum jumps between the lowest
cyclotron and spin states as a function of the frequency of
external driving forces introduced to make these transitions.
Because the axial detection motion is coupled to a thermal

α

α

FIG. 1. Comparison of the measured electron magnetic moment
[3] with the standard model predictions [2,4,11].

reservoir there is a thermal distribution of axial states. This
spreads out the range of spin, cyclotron and anomaly fre-
quencies at which a spin, cyclotron or anomaly drive causes
one-quantum transitions. The detection backaction thus sig-
nificantly broadens the observed spin, cyclotron, and anomaly
resonance line shapes from which the needed frequencies
must be detected.

Switching from the Schrödinger picture to the interaction
picture transforms away the well-understood spin, cyclotron
and axial motions in the absence of a magnetic bottle. Terms
that go as azaz and a†

z a†
z oscillate rapidly and hence average

to zero in the interaction picture. The resulting interaction
Hamiltonian Ṽ = eiH0t/h̄Ve−iH0t/h̄ is

Ṽ =[
h̄δs

(
a†

s as − 1
2

) + h̄δc
(
a†

cac + 1
2

)](
a†

z az + 1
2

)
. (18)

We continue using the time-independent raising and lowering
operators from the Schrödinger picture (rather than transform-
ing these to the interaction picture). The interaction picture
Hamiltonian has an energy scale set by the tiny bottle shifts,
δc and δs, rather than by the much larger frequencies ωc, ωs

and ωz.
Figure 2 represents the lowest of these quantum energy lev-

els, with spin down states (ms = −1/2) on the left and spin up

FIG. 2. Quantum states of a particle in a Penning trap. Cyclotron
transition and anomaly transition of nz = 0 state are also shown
with dotted lines. Each cyclotron state has infinite number of axial
substates.
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states (ms = 1/2) on the right. The lowest of the infinite ladder
of cyclotron states are shown (nc = 0, 1), as are the lowest
three of the infinite ladder of axial states (nz = 0, 1, 2). For the
driving forces we will consider, the electron will essentially
occupy only the three cyclotron and spin state combinations

|1, nz〉 ≡ ∣∣nc = 0, ms = − 1
2 , nz

〉
,

|2, nz〉 ≡ ∣∣nc = 1, ms = − 1
2 , nz

〉
,

|3, nz〉 ≡ ∣∣nc = 0, ms = + 1
2 , nz

〉
,

(19)

with nz = 0, 1, . . . . These are the basis of time-independent
states used for this calculation. The basis would shrink to only
three states if the axial motion would be cooled to its quantum
ground state.

The electromagnetic drives that oscillate at angular fre-
quencies ωs + εs, ωc + εc and ωa + εa to drive spin, cyclotron
and anomaly transitions are described by the Hamiltonians

Vs(t ) = 1
2 h̄�s[a

†
s e−i(ωs+εs )t + ase

i(ωs+εs )t ], (20)

Vc(t ) = 1
2 h̄�c[a†

ce−i(ωc+εc )t + acei(ωc+εc )t ], (21)

Va(t ) = 1
2 h̄�a[a†

ae−i(ωa+εa )t + aaei(ωa+εa )t ]. (22)

The positive Rabi frequencies �s, �c and �a quantify the
drive strengths, and εs, εc and εa are detunings of the drives
from resonance. In the interaction picture the Hamiltonian
drive terms are

Ṽs(t ) = 1
2 h̄�s[a

†
s e−iεst + ase

iεst ], (23)

Ṽc(t ) = 1
2 h̄�c[a†

ce−iεct + aceiεct ], (24)

Ṽa(t ) = 1
2 h̄�a[a†

ae−iεat + aaeiεat ]. (25)

An anomaly transition is a simultaneous cyclotron and spin
transition. The raising operator for an anomaly transition from
|2, nz〉 to |3, nz〉, for example, requires a†

a = a†
s ac, a lowering

of the cyclotron state followed by a raising of the spin state.
A transition from the spin down ground state to the spin up
ground state is accomplished by a†

aa†
c .

The axial and cyclotron motions are both coupled to a
thermal bath, with damping rates of γz and γc, respectively.
An ambient bath temperature of 0.1 K is assumed because it
has been demonstrated in experiments [5]. The energy for a
one-quantum axial excitation, h̄ωz/kB = 0.01 K in tempera-
ture units, is instead much smaller than 0.1 K. The axial state
is thus a Boltzmann distribution with an average quantum
number

n̄z =
[

exp

(
h̄ωz

kBT

)
− 1

]−1

≈ kBT

h̄ωz
≈ 10. (26)

It may be possible to cool this motion further using cavity
sideband cooling [1], but this is not assumed here. A cyclotron
excitation requires an energy of h̄ωc/kB = 7.1 K that is much
larger than the 0.1 K bath temperature. The result is that

n̄c =
[

exp

(
h̄ωc

kBT

)
− 1

]−1

= 1.2 × 10−32 ≈ 0. (27)

The cyclotron motion essentially remains in its nc = 0 ground
state [19] unless an excitation drive is applied.

For an electron or positron coupled to a thermal bath, a
density operator must be used. The density operator in the
Schrödinger picture, ρ, and the interaction picture, ρ̃ are re-
lated by

ρ̃ = eiH0t/h̄ρe−iH0t/h̄. (28)

Both ρ and ρ̃ can be expanded in the infinite base of time-
independent states in Eq. (19). The diagonal elements are
the probabilities to be in each basis state. These are invari-
ant under a change between the Schrödinger and interaction
pictures. Also invariant are the traces,

Pl =
∞∑

nz=0

〈l, nz|ρ|l, nz〉 =
∞∑

nz=0

〈l, nz|ρ̃|l, nz〉, (29)

that are the total probabilities to be in each of the 3 spin and
cyclotron states. Here, l denotes the label 1, 2, or 3 introduced
in Fig. 2 and Eq. (19).

The Schrödinger picture density operator, ρ, evolves in
time as described by a Lindblad master equation [29–31],

dρ

dt
= − i

h̄
[H0 + V + Vs + Vc + Va, ρ]

− γc

2
(a†

cacρ − 2acρa†
c + ρa†

cac)

− γz

2
n̄z(aza

†
z ρ − 2a†

z ρaz + ρaza
†
z )

− γz

2
(n̄z + 1)(a†

z azρ − 2azρa†
z + ρa†

z az ). (30)

The coherent time evolution is described by the commu-
tator term. The incoherent spontaneous emission from the
cyclotron motion (from the first excited cyclotron state to its
ground state) is described by the nonlinear terms in line two.
(As noted earlier, the heating of the cyclotron motion by the
thermal black-body radiation for low temperature surround-
ings can be neglected.) The coupling of the axial motion and
the thermal bath is described by the last two lines. The bath
temperatures comes in via the average axial quantum number
n̄z of Eq. (26).

The interaction picture density operator, ρ̃, evolves as

dρ̃

dt
= − i

h̄
[Ṽ + Ṽs + Ṽc + Ṽa, ρ̃]

− γc

2
(a†

cacρ̃ − 2acρ̃a†
c + ρ̃a†

cac)

− γz

2
n̄z(aza

†
z ρ̃ − 2a†

z ρ̃az + ρ̃aza
†
z )

− γz

2
(n̄z + 1)(a†

z azρ̃ − 2azρ̃a†
z + ρ̃a†

z az ). (31)

As for the Hamiltonian, we use the time-independent, raising
and lowering operators from the Schrödinger picture. The
damping terms transform to have the same form in both
pictures. Explicit calculation are done using the interaction
picture because it is simpler. H0 is removed, and Ṽs + Ṽc + Ṽa

varies much less rapidly in time than does Vs + Vc + Va.
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IV. DRIVEN CYCLOTRON EXCITATIONS

A. Cyclotron master equation

A weak cyclotron drive, Vc, excites cyclotron states |2, nz〉
from an initial state that is a thermal distribution of spin down,
cyclotron ground states, |1, nz〉. The drive provides no mecha-
nism to flip the spin, so the states |3, nz〉 are not populated.
For a weak drive, �c 	 γc, the probability of a cyclotron
excitation is very small. We neglect the possibility of a second
cyclotron excitation that follows the first, from the excited
state |2, nz〉 to a higher state, because this is much smaller
still. The Hermitian density operator for cyclotron excitation,

ρ̃ = ρ̃11 + ρ̃12 + ρ̃21 + ρ̃22 =
(

ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
(32)

is the sum of four operators, each defined by

ρ̃ jk ≡
∑
nz,n′

z

| j, nz〉〈 j, nz|ρ̃|k, n′
z〉〈k, n′

z|. (33)

Since ρ̃ is Hermitian, ρ̃21 = ρ̃
†
12.

The initial density operator at time t = 0 is diagonal with
respect to the axial quantum numbers,

〈1, nz|ρ̃|1, nz〉 = pnz (T ) =

=
[

1 − exp

(
− h̄

(
ωz − 1

2δa
)

kBT

)]
× exp

(
−nzh̄

(
ωz − 1

2δa
)

kBT

)
≈

[
1 − exp

(
− h̄ωz

kBT

)]
exp

(
−nzh̄ωz

kBT

)
(34)

with Boltzmann factors as its nonzero elements. The approx-
imation is nearly exact because δa 	 ωz. In the weak drive
limit, we would expect this distribution of initial states to
remain essentially unchanged.

The probability P2 from Eq. (29), that the system is excited
by one quantum from its spin-down, cyclotron ground state,

P2 =
∑

nz

〈2, nz|ρ̃|2, nz〉 = Tr[ρ̃22]. (35)

is the sum of the probabilities for excitation to any of the
states |2, nz〉. Either the Schrodinger or interaction picture
density operator can be used since their diagonal elements are
identical.

Determining ρ̃22 requires solving the master equation

d

dt

(
ρ̃11 ρ̃12

ρ̃21 ρ̃22

)
= −i

(
a†

z az + 1
2

)( 0 −δcρ̃12

δcρ̃21 0

)
−i

�c

2

(
i2Im[ρ̃21eiεct ] eiεct (ρ̃22 − ρ̃11)

e−iεct (ρ̃11 − ρ̃22) i2Im[ρ̃12e−iεct ]

)
− γc

2

(−2ρ̃22 ρ̃12

ρ̃21 2ρ̃22

)
− γz

2
n̄z(aza

†
z ρ̃ − 2a†

z ρ̃az + ρ̃aza
†
z )

− γz

2
(n̄z + 1)(a†

z azρ̃ − 2azρ̃a†
z + ρ̃a†

z az ).

(36)

The first line describes time evolution of the density matrix
by Ṽ . The diagonal terms are 0 because |1, nz〉 and |2, nz〉 are
eigenstates of Ṽ for the QND measurement. The nondiagonal
terms represents the differing bottle shift for |1, nz〉 and |2, nz〉.
The second line describes the electromagnetic cyclotron drive.
The third term describes synchrotron radiation from the ex-
cited cyclotron state at a rate γc. The fourth and fifth terms
arise from the axial damping and reservoir excitation. They do
not change Pc because they do not change either the cyclotron
or spin state.

The axial damping terms in the master equation [Eq. (36)]
generate no coherence between axial states. Only axially di-
agonal terms, 〈i, nz|ρ̃| j, nz〉 are nonzero, where i and j are the
labels for the states we consider [Eq. (19)]. The transformation

pi j;nz (t ) = 〈i, nz|ρ̃(t )| j, nz〉 ei(i− j)εct . (37)

makes these coefficients carry all the time dependence. Notice
that the probability to be in each of the cyclotron and spin
states of Eq. (29) is also the trace

Pl =
∞∑

nz=0

〈l, nz|p|l, nz〉, (38)

where p has components pjk , and l denotes 1, 2, or 3 in Fig. 2
and Eq. (19). This is because the diagonal matrix elements
with i = j are equal to the those for the density operator in
the Schrodinger picture and the interaction picture. For the
cyclotron excitation being considered in this section, P3 = 0
because the states |3, nz〉 are never populated.

The differential equations after the transformation are

d

dt
p11;nz (t )

= [−γz(2n̄z + 1)nz − γzn̄z]p11;nz (t )

+ γc p22;nz (t ) − �cIm
[
p12;nz (t )

]
+ γzn̄znz p11;nz−1(t ) + γz(n̄z + 1)(nz + 1)p11;nz+1(t ),

(39a)

d

dt
p12;nz (t )

= {
i
[−εc + δc

(
nz + 1

2

)]
− 1

2γc − γz(2n̄z + 1)nz − γzn̄z
}

p12;nz (t )

− i
�c

2
(p22;nz (t ) − p11;nz (t ))

+ γzn̄znz p12;nz−1(t ) + γz(n̄z + 1)(nz + 1)p12;nz+1(t ),

(39b)

d

dt
p22;nz (t )

= [−γc − γz(2n̄z + 1)nz − γzn̄z]p22;nz (t )

+�cIm
[
p12;nz (t )

]
+ γzn̄znz p22;nz−1(t ) + γz(n̄z + 1)(nz + 1)p22;nz+1(t ).

(39c)

These equations are to be solved for the initial conditions
p12;nz (0) = p22;nz (0) = 0 and p11,nz (0) = pnz (T ). Because the
states |3, nz〉 are never populated, the p jk = 0 when either
j = 3 or k = 3.

022824-6



DRIVEN ONE-PARTICLE QUANTUM CYCLOTRON PHYSICAL REVIEW A 103, 022824 (2021)

Equations (39a)–(39c) is a matrix equation for the vectors
�pi j (t ) with components pi j;nz ,

d

dt
�p11(t ) = R(0, 0, 0) �p11(t ) − �cIm[ �p12(t )] + γc �p22(t ),

(40a)

d

dt
�p12(t ) = R(εc, δc, γc) �p12(t ) − i

�c

2
( �p22(t ) − �p11(t )),

(40b)

d

dt
�p22(t ) = R(0, 0, 2γc) �p22(t ) + �cIm[ �p12(t )]. (40c)

The states |3, nz〉 are never populated so all nonzero ele-
ments of the time-independent matrix are

R(ε, δ, γc)nz,nz−1 = γzn̄znz, (41a)

R(ε, δ, γc)nz,nz = i
[−ε + (

nz + 1
2

)
δ
] − 1

2γc

− γz(2n̄z + 1)nz − γzn̄z, (41b)

R(ε, δ, γc)nz,nz+1 = γz(n̄z + 1)(nz + 1). (41c)

The initial conditions for the vector differential equations
above are �p11(0) = �p(T ) and �p12(0) = �p22(0) = 0.

B. Steady-state cyclotron line shape

After transients have died out in a time

t � γ −1
c , (42)

a weak drive with �c 	 γc produces a steady state in which
driven cyclotron excitation balances the incoherent sponta-
neous emission of synchrotron radiation. Clearly,

P1 = Tr[p11] =
∑

nz

p11;nz (t ) ≈
∑

nz

pnz (T ) = 1, (43)

P2 = Tr[p22] =
∑

nz

p22;nz (t ) 	 1 (44)

and terms involving �p22 are negligibly small compared to
those involving �p11. The resulting steady state, from Eq. (40)
with the time derivatives set to zero and the mentioned ap-
proximation is described by

R(εc, δc, γc) �p12 + i
�c

2
�p(T ) = 0, (45)

R(0, 0, 2γc) �p22 + �cIm[ �p12] = 0. (46)

The latter can be simplified because

∞∑
nz=0

(R(0, 0, 2γc) �p22)nz
= −γcTr[p22], (47)

because axial damping does not change the total population in
states |2, nz〉, and because R(0, 0, 2γc) has a simple structure.

The result is a steady state probability for weak drive cy-
clotron excitation, P2 as defined in Eq. (29), given by

P2 = P(�c, εc, δc), (48)

P(�, ε, δ) ≡ − �2

2γc
Im

[ ∞∑
nz=0

(iR(ε, δ, γc)−1 �p(T ))nz

]
. (49)

We use arguments without subscripts in P(�, ε, δ) because
this function with other arguments will also describes other
steady-state line shapes in what follows.

For the limiting case of a T = 0 bath, n̄z = 0 and �p(T )
collapses to a single element p0(T ) = 1. Only the reciprocal
of R(ε, δ, γc)0,0 = −iε + iδ/2 − 1

2γc contributes to Eq. (49).
The steady-state line shape for a weak drive, P(�, ε, δ), thus
becomes a Lorentzian,

P0(�, ε, δ) =
(

�

γc

)2 (
1
2γc

)2(
ε − 1

2δ
)2 + (

1
2γc

)2 (50)

in the T = 0 limit. The full width at half maximum of this line
shape is γc. The line shape maximum is shifted to ε = δ/2.
That this shift is due to the coupling of zero-point fluctuations
of the axial motion can be seen by setting nz = 0 for the
appropriate frequency in Eq. (17). The steady-state probability
for being excited with a resonant weak drive is (�/γc)2. This
is a very small fraction for a weak drive with � 	 γc.

The symmetric and narrow Lorentzian cyclotron line shape
that would pertain for T = 0 would be ideal experimentally
in some respects. Cavity sideband cooling with a extremely
small γz has been proposed [12] as way to attain this limit.
This calculation, however, is an investigation of what can be
done for a temperature of 0.1 K, an achieved temperature that
is close to but not at this limit.

C. Classical Brownian motion line shape limit

Before the quantum treatment of the coupled spin, cy-
clotron and axial system presented above, the calculated line
shape that was compared to experiment [12,14,15] assumed
the axial detector motion was a classical harmonic oscillation
driven by thermal noise. The Brownian motion line shape that
resulted from a weak drive is given in terms of a line shape
function,

χ (ε, γz, n̄z )

= 4

π
Re

[
γ ′γz

(γ ′ + γz )2

∞∑
k=0

(γ ′ − γz )2k (γ ′ + γz )−2k(
k + 1

2

)
γ ′ + 1

2

(
γc − γz

) − iε

]
,

(51)

in our notation. (The argument ε for χ (ε, γz, n̄z ), like for the
function P of Eq. (49), will be equal to one of εc, εa or εs, as
will be specified in context.) The bath temperature T enters
via

γ ′ =
√

γ 2
z + 4iγzn̄zδ, (52)

since this bath temperature determines n̄z, while δ and ε

are equal to δc (δa) and εc (εa) respectively for cyclotron
(anomaly) transition. The steady state pertains when the tran-
sition rate (π/2)�2χ (Eq. (5.19) of Ref. [12]) equals the
decay rate γc × P(�, ε, δ). Thus

P(�, ε, δ) = π�2

2γc
χ (ε, γz, n̄z ) (53)

is the classical, Brownian motion line shape.
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FIG. 3. Comparison of quantum calculation (solid) and classical
calculation (dashed) with the different γ ′

z s for weak drive (�c =
0.1γc) in cyclotron transition. The two calculations agree when
n̄zγz > δc as illustrated for damping rates γz for (a)–(c) that are 1000,
100, 10 times the value in Table II. The line shape for the γz in the
table is presented later in Fig. 5.

D. Discussion of the quantum cyclotron line shape

The quantum steady-state line shape (solid in Fig. 3) is
very close to the Brownian motion steady-state line shape
(dashed in Fig. 3) when n̄zγz � δc. This was true for the
2008 measurement for which n̄zγz ≈ 6δc (using parameters
from Table III). For weaker axial damping the two line shapes
predict every different results, however.

The master equation for driven cyclotron excitation can
be solved numerically to reveal the time evolution of the
probabilities. It can also be integrated directly to examine the

TABLE III. Hierarchy of angular frequencies and rates used on
the best completed experiments [3,5], to be compared with the pre-
vious table. The axial temperature was also as low as n̄z = 23. The
numerical values are frequencies in Hz and times in seconds.

Ang. frequency or rate Frequency (Hz) Time constant (s)

δa 0.004 40
γz 1 0.16
n̄zδa 0.09 1.7
γc 0.03 6
n̄zγz 23 0.007
δc 4 0.04
n̄zδc 92 0.0017

time(s)

po
pu
la
tio
n

FIG. 4. Time evolution in response to a weak and resonant cy-
clotron drive applied for 10 cyclotron damping times, indicated by
vertical gray lines. The probability to be in the |2, nz〉 states (blue)
reaches a steady state after transients die out on a time scale give by
the cyclotron damping time, 1/γc. The probability to be in the |1, nz〉
states is shown in black with unit probability subtracted out.

effect of power broadening when the weak drive condition
(�c 	 γc) is not satisfied. Both will be illustrated.

Figure 4 illustrates the time evolution for a cyclotron drive
that is weak (�c = 0.1γc, resonant (εc = δc/2) for the realistic
experimental conditions in Table II. The probability to be in
the |2, nz〉 states increases from zero to reach a steady state
for t � 1/γc. The cyclotron damping time 1/γc sets the scale
for the transients to die out. The much larger probability to be
in the initial |1, nz〉 states stays close to unit probability. The
black curve in the figure shows the small decrease from unit
probability needed to conserve probability.

The resonance line shape for cyclotron excitation is ob-
tained by numerically integrating the master equation from
the stated boundary conditions at time t = 0 to time t for
various values of the drive detuning, εc, as illustrated in Fig. 5.
The probability to be in the states |2, nz〉 at time t = 10γ −1

c is
shown for a cyclotron drive that is weak (�c = 0.1γc), for the
realistic experimental conditions in Table II.

The first narrow peak to the left in the figure shows the
probability versus drive frequency for making a cyclotron
excitation from the cyclotron ground state while the axial
motion is in its ground state with nz = 0. The series of narrow
cyclotron resonances, the first evidence of axial quantization,
are for successively higher values of nz going right. Resolving
these narrow peaks becomes possible only for the small axial
damping rate that is now possible experimentally [16]. Each of
the peak corresponds to one quantum excitation of cyclotron
motion for different nz. This quantum line shape is very
different than was observed previously, and it is completely
inconsistent with the classical cyclotron line shape, of course.
The narrow peaks correspond to resolved quantum states of
the axial motion which could not previously be observed. The
left peak is for nz = 0, the next for nz = 1, and so on. There
are many peaks because the average axial quantum number
is n̄z = 10 for the experimental conditions in Table II. The
individual peaks are resolved because two conditions are met.
First, n̄zγz 	 δc, i.e., the width of each axial state, n̄zγz, is
much smaller than the magnetic bottle shift per axial quantum,
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FIG. 5. Quantum cyclotron line shape (solid) with clearly re-
solved axial quantum states (for a weak cyclotron drive with the
larges peak normalized to 1) for the quantum calculation (solid),
but not for the classical Brownian motion line shape (dashed). The
quantum line shape is a huge improvement on the line shape used for
the best measurement (dotted).

δc. Second, γc 	 δc, i.e., the cyclotron damping width is much
smaller than the magnetic bottle shift per axial quantum, δc.

The good news from this calculation for potential mea-
surements is how much narrower the nz = 0 resonance peak
is compared to the cyclotron line shape used for the last
electron magnetic moment measurement (dotted in Fig. 5 with
experimental parameters in Table III). In fact, the linewidth
of the nz = 0 peak is only a factor of 3 larger than the
cyclotron linewidth, γc (Fig. 6). This is consistent with the
indication from Eq. (39c) that the linewidth is of order γc +
2n̄zγz. Cavity-inhibition of spontaneous emission makes γc

very small [25]. A low temperatures makes n̄z small, and the
previously mentioned new method makes γz small [16].

FIG. 6. Cyclotron line shape for the resolved nz = 0 axial state
and a weak drive (solid curve, �c = 0.1 γc) has a full-width at
half maximum of about 3γc. The master equation integrated for
10 cyclotron damping times and the steady-state line shape (solid)
coincide. A 10 times stronger drive (dashed, �c = γc ), only slightly
increases the linewidth.

More good news for possible measurements is that the
nz = 0 peak is quite symmetric about its center frequency.
This is generally a big help in precisely identifying the center
frequency of a resonance. The dotted line in Fig. 5 illustrates
the big contrast to the highly asymmetric classical line shape
used for previous measurements.

The small probability, 3.1 × 10−4, that a weak cyclotron
drive (�c = 0.1γc) will make an excitation within 10 cy-
clotron damping times (53 seconds) is of some concern.
However, increasing the cyclotron drive strength to �c = γc

increases the probability for an excitation to 2.2 × 10−2 while
increasing the full linewidth from 3 to only 3.6 cyclotron
decay widths (solid and dashed curves in Fig. 6). This cy-
clotron linewidth is narrow enough to make possible magnetic
moment measurements that are orders of magnitude more ac-
curate than the current limit (assuming the anomaly frequency
is determined with a similar accuracy). Because the power
broadening is so small, even stronger drives could be used to
track a slowly drifting magnetic field [3].

The offset of the nz = 0 resonance from εc = 0 to εc =
δc/2 is due to the zero point motion of the quantum axial oscil-
lator. Measuring this peak and its neighbor would determine
this offset more accurately than is needed for dramatically
improved magnetic moment measurements, since these two
peaks are spaced by twice the offset. This could be an impor-
tant new option for precisely measuring the offset.

In summary, this quantum calculation demonstrates the ex-
citing possibility to fully resolve the axial quantum structure
in the cyclotron line shape. With the achievable reductions in
axial damping in Table II, a cyclotron resonance for a particle
in its axial ground state can be fully resolved. This will make it
possible to determine the cyclotron frequency (one of two fre-
quencies needed for a magnetic moment measurement) orders
of magnitude more precisely. The broad cyclotron linewidth
(larger than n̄zδc) that limited past measurements is essentially
removed.

V. CALCULATING THE ANOMALY LINE SHAPE

A. Anomaly master equation

An anomaly drive Va will transfer population from a ther-
mal distribution of stable, spin-up, cyclotron ground states,
|3, nz〉 to the unstable states, |2, nz〉. These states will then
decay via the spontaneous emission of synchrotron radiation
to the stable spin-down ground states |1, nz〉. The attractive
feature for measurement is that there is no need to detect an
unstable state population before it decays.

The density operator needed to describe anomaly transi-
tions,

ρ̃ ≡
(

ρ̃22 ρ̃23

ρ̃32 ρ̃33

)
, (54)

does not need to include the stable lower states, |1, nz〉, though
it must include decay to these states. It has the upper and
lower energy states in the same relative matrix locations as
in the previous section. What must be calculated is the loss
of probability from the initial state during the time that the
drive is applied, since this is the probability that a spin-flip
transition takes place.
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The master equation in the interaction representation is
then a lot like Eq. (36), with the indices 1 → 2 and 2 → 3,

d

dt

(
ρ̃22 ρ̃23

ρ̃32 ρ̃33

)
= −i

[
a†

z az + 1

2

](
0 −δaρ̃23

δaρ̃32 0

)
− i

�a

2

(
i2Im[ρ̃32eiεat ] eiεat (ρ̃33 − ρ̃22)

e−iεat (ρ̃22 − ρ̃33) i2Im[ρ̃23e−iεat ]

)
− γc

2

(
2ρ̃22 ρ̃23

ρ̃32 0

)
− γz

2
n̄z(aza

†
z ρ̃ − 2a†

z ρ̃az + ρ̃aza
†
z )

− γz

2
(n̄z + 1)(a†

z azρ̃ − 2azρ̃a†
z + ρ̃a†

z az ). (55)

The term that is different is the cyclotron damping term that
is proportional to γc. This is because the lower rather than
the upper of the two sets of states is unstable. The vanishing
element in the matrix comes because the states |3, nz〉 do not
decay.

The discussion follows essentially the same steps discussed
in the previous section. The differential equations are

d

dt
�p22(t ) = R(0, 0, 2γc) �p22(t ) − �aIm[ �p23(t )], (56a)

d

dt
�p23(t ) = R(εa, δa, γc) �p23(t ) − i

�a

2
( �p33(t ) − �p22(t )),

(56b)

d

dt
�p33(t ) = R(0, 0, 0) �p33(t ) + �aIm[ �p23(t )], (56c)

These equations are to be solved for the initial conditions
�p33(0) = �p(T ) and �p23(0) = �p22(0) = 0.

B. Quasi-steady-state solution

Coherent, driven anomaly transitions can balance the in-
coherent spontaneous emission of synchrotron radiation to
produce a quasi-steady state. For a weak drive (�a 	 γc), the
system remains mostly in its initial state, so

P3 = Tr[p33] =
∑

nz

p33;nz (t ) ≈
∑

nz

pnz (T ) = 1, (57)

P2 = Tr[p22] =
∑

nz

p22;nz (t ) 	 1. (58)

The quasi-steady state pertains in the time range

γ −1
c 	 t 	 γ −1

c

(
γc

�a

)2

. (59)

The time must be long enough for transients to die out. It
must be short enough that Eq. (58) remains valid, with the
upper time limit justified presently. What is detected is the
probability P1 to end up in the spin-down cyclotron ground
state. This probability increases as

dP1

dt
= γcP2 (60)

via synchrotron emission from P2 at rate γc.

For the quasi-steady state, the time derivatives of �p22 and
�p23 are set to zero in Eq. (58), though that of �p33 is not, so that

R(εa, δa, γc) �p23 − i
�a

2
�p(T ) = 0, (61)

R(0, 0, 2γc) �p22 − �aIm[ �p23] = 0. (62)

Because R(0, 0, 2γc) has a simple structure,

P2 = Tr[p22] = − 1

γc

∞∑
nz=0

(R(0, 0, 2γc) �p22)nz
. (63)

Equations (60)–(63) together give a quasi-steady-state rate

dP1

dt
= γcP(�a, εa, δa), (64)

that is, the same function that described the steady state for
cyclotron excitation Eq. (49) multiplied by γc. With anomaly
arguments rather than cyclotron arguments, however, the
function takes an entirely different shape.

When the drive is applied for time td and then turned off,
the probability P1 eventually becomes the integral of dP1/dt at
time td plus P2(td ), because the latter probability is transferred
to the spin-down ground state by spontaneous emission from
the cyclotron excited state. Approximating dP1/dt with the
quasi-steady-state value in Eq. (64) gives

P1;total ≈ (tdγc + 1)P(�a, εa, δa). (65)

This slightly overstates the transition probability because
dP1/dt increases before the quasi-steady-state is established,
but the line shape is approximately right.

The T = 0 limit of the quasi-steady-state anomaly
line shape for a weak drive becomes a Lorentzian,
(tdγc + 1)P0(�a, εa, δa), similar to what was discussed for
cyclotron resonance. On resonance, the quasi-steady-state
probability to be in state |2, 0〉 at T = 0 is (�a/γc)2. This
is extremely small for a weak anomaly drive with �a 	 γc.
For the cases we consider, with temperatures not far from
0, we expect that the rate to transfer population from the
initial |3, nz〉 states to the final |1, nz〉 states goes as this small
probability times the rate γc to decay form |2, nz〉 to |1, nz〉.
The population transfer will be small (as needed to have a
quasi-steady state) as long as the time is short compared to
the inverse of this rate, which gives the upper time limit in
Eq. (59).

C. Discussion of the anomaly line shape

Figure 7 is a numerical solution to the master equation
for an anomaly drive that is weak (�a = 0.1γc) and resonant
(at a drive detuning εa = 5δa) for the realistic experimental
conditions in Table II. The probability P2 increases from zero
to reach a quasi-steady state in several cyclotron damping
times, whereupon the probability P1 increases linearly. The
probability to be in the initial spin-up ground state, P3, de-
creases only slightly from unity to conserve probability.

The resonance line shapes for driven anomaly transitions
in Fig. 8 are for a weak drive (�a = 0.1γc) and the realistic
experimental conditions in Table II. The probability P1;total =
P1(td ) + P2(td ) is plotted versus the detuning εa of the drive
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FIG. 7. Time evolution in response to a weak (�a = 0.1γc) and
resonant anomaly drive (at a drive detuning εa = 5δa) with a cy-
clotron damping times indicated by vertical grid lines.

frequency detuning εa/ω a in ppt

classical Brownian motion line shape

steady-state solution to 
   the master equation

 integrated 
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FIG. 8. (a) Anomaly line shape for spin flip transition induced by
a weak anomaly drive. The integrated solution of the master equation
for time 10/γc (solid) is compared to the quasi-steady-state solution
(dashed) and the classical Brownian motion line shape (dotted).
(b) The integrated and steady-state solutions coincide when normal-
ized to their peak probability. These line shape is much narrower
than the ±300 ppt uncertainty of the best measurement (represented
by the ”error bar”).
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FIG. 9. Comparison of quantum calculation (solid) and classical
calculation (dashed) with the different γ ′

z s for weak drive (�c =
0.1γa) and 10γ −1

c drive time in anomaly transition. The damping
rates γz for (a)–(c) are 1000, 100, 10 times the value in Table II,
respectively.

from ωa. The solid curve is obtained by numerically inte-
grating the master equation for ten cyclotron damping times,
t = 10γ −1

c . The quasi-steady-state solution (dashed) overes-
timates the probability because it takes some time to increase
the transition rate to the steady state. However, the normalized
line shapes in Fig. 8(b) shows that the quasi-steady-state line
shape correctly predicts the shape.

In Fig. 8, the classical Brownian motion line shape (dotted)
is remarkably close to the solution to the master equation
obtained by direct integration (solid), quite unlike the case
for the cyclotron line shape. Figure 9 compares quantum and
classical calculations with three realizable values of γz. For
the best measurement [3], with n̄zγz = 6 × 103δa (Table III),
the two calculations predicts same line shape.

What is so different from the case of the cyclotron line
shape is that the circumvention of detection backaction that
was possible in the cyclotron case is not possible for the
anomaly line shape. The axial quantum states are not resolved
within the anomaly line shape for the realistic parameters of
Table II. The reason is that the anomaly frequency shift per
axial quantum of excitation is about 10 times smaller than
both the cyclotron damping width γc and the axial decoher-
ence width n̄zγz. The anomaly frequency must be extracted
from a resonance line with a calculated linewidth that is about
2.2 γc. The shape is slightly asymmetric with a tail toward
higher frequencies because more populated axial states have
nz > n̄z.
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FIG. 10. Probability of a spin-flips caused by a driven anomaly
transitions for cyclotron and axial reservoir temperatures of 100
(solid), 50 (dashed) and 25 mK (dotted). The black curves are the
experimentally accessible parameters in Table II. The blue curves
are for a tenfold reduction in the cyclotron damping rate below the
value in the table.

The good news that the calculation nonetheless brings for
measurements is that the predicted linewidth (for the realistic
conditions of Table II) is much narrower than previously re-
alized. The “error bar” in the figure corresponds to the ±300
ppt uncertainty (ppt = 1 part in 1012) of the most accurate
measurement to date [3,5]. The full halfwidth of the predicted
line shape is 60% of the error bar, so a modest line splitting of
only a factor of 6 would suffice for a ten times more accurate
measurement of the electron magnetic moment.

D. Temperature and damping dependence

Once the detection backaction is circumvented [13], deter-
mining ωc from the cyclotron line shape should no longer be
the leading impediment to measuring the electron and positron
magnetic moments orders of magnitude more precisely than
has been possible. Since a similar method is not available
for measuring the anomaly frequency ωa, this promises to
be the central challenge for future measurements. The line
shape prediction discussed in the previous section suggests
the possibility for a tenfold improvement if the experimental
parameters that currently seem feasible (Table II) are realized.
The purpose of this section is to search for possible reductions
in anomaly linewidth that may be possible with reductions in
axial temperature, cyclotron damping rate, and axial damping
rate beyond the values in the table.

Figure 10 shows anomaly line shapes for a weak drive
(�a = γc/10) for temperatures of 100 (black solid), 50 (black
dashed) and 25 mK (black dotted). The other parameters used
are from Table II. The most accurate measurement was done
at an ambient temperature of 100 mK [3], with a demonstrated
electron cyclotron temperature of 100 mK and a demonstrated
axial temperature as low as 230 mK. The temperature in the ta-
ble assumes that with better detectors under development, that
the latter temperature can be reduced to the ambient. However,
dilution refrigerators can reach lower temperatures if the heat
load can be made low enough. Also, cavity-sideband cooling
is a possible method to reduce the axial temperature below the

FIG. 11. Probability of a spin-flips caused by a driven anomaly
transitions for a 100 mK temperature bath (solid). If the axial motion
is initially cooled to the T = 0 limit so that only nz = 0 is initially
populated, then the linewidth narrows from ±190 to ±130 ppt,
becomes more symmetric and has a slightly smaller offset frequency.

ambient apparatus temperature [1]. The anomaly line shapes
clearly reduce and the lines become more symmetric for lower
axial temperatures.

The blue curves in Fig. 10 show the large anomaly line
shape reduction that comes from lowering the cyclotron
radiation rate by a factor of ten. The most accurate exper-
iment achieved the low damping rate in the table by using
a microwave cavity to suppress the spontaneous emission
of synchrotron radiation [25] by a factor of about 200. An
lower loss microwave cavity could further reduce the cy-
clotron damping rate to produce the narrower line shapes.
This would slow the measurement because it takes several
cyclotron damping times for the population excited to states
|2, nz〉 to decay to the ground state, but the damping rate could
varied by tuning ωc closer or further from cavity microwave
resonances [5].

Reducing the axial temperature without reducing γc re-
duces the linewidth somewhat. A bigger consequence is that
the doing so reduces the asymmetry of the line shape, which
should make it possible to identify the resonance frequency
more reliably. The effects of the axial damping rate have also
been investigated. Further reductions in the axial damping rate
do not noticeably change any of the curves in Fig. 10.

The possibly to use cavity sideband cooling of the axial
motion has been mentioned as a possible route to narrower
resonance linewidths [1]. Once the cooling is stopped, the
axial motion would then reequilibrate at the bath temperature
at a rate γz. This is not a steady state, of course, but we can
investigate the possibility by directly integrating the master
equation. Figure 11 shows the probability of a spin-flip caused
by a weak anomaly drive (�c = 0.1γc) applied for a 100 mK
temperature bath (solid). For this illustration, the axial motion
is initially assumed to be cooled to the T = 0 limit so that
only the lowest axial quantum state is initially populated. This
causes the linewidth to narrow from ±190 ppt to ±130 ppt
(dashed). The line shape also is more symmetric about its
center, and the offset frequency is smaller. The drive is applied
for time 10/γc in this illustration, which is one axial damping
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FIG. 12. Probability of a spin-flips caused by a driven anomaly
transitions for the typical magnetic bottle in Table II (solid), 10 times
larger bottle (dashed), and 100 times larger bottle(dotted).

time 1/γz. For the parameters, we are using for this illustration
(Table II), the linewidth gets broader for shorter driving times
because of the limited drive duration, so narrower resonances
would come for a smaller γz.

Achieving detection circumvention by resolving the axial
states in the anomaly line shape, just as for the cyclotron line
shape, would require increasing the bottle shift δa per axial
quantum by a factor of 100 or more. This is to make the
bottle shift much larger than both the axial decoherence width
(n̄zγz) and the cyclotron damping width (γc). The solid curve
in Fig. 12 shows the anomaly line shape for the parameters
in Table II. The anomaly line shape broadens for a 10 times
larger bottle gradient. For a 100 times larger bottle, the line
begins to separate into peaks that correspond to individual
axial quantum states. Magnetic bottle gradients of the size
needed have been produced, but only for Penning traps that are
smaller than is otherwise desirable for electron and positron
measurements [32–38]. However, the figure illustrates that re-
solving the axial quantum states is not an advantage in that the
linewidth of the lowest resolved peak is a bit bigger than the
anomaly linewidth already considered. As mentioned above,
the linewidth from both the cyclotron damping and the axial
decoherence broadening do not decrease with bottle gradient
size.

This cursory survey of anomaly line shapes reveals no
obvious way to make a single large additional reduction in
the anomaly linewidth beyond the order of magnitude that has
been discussed.

VI. DIRECTLY DRIVEN SPIN FLIPS

A spin drive Vs transfers population between the spin-down
and spin up cyclotron ground states, |1, nz〉 and |3, nz〉, both
of which are stable. In this section, we apply a spin-flip drive
with a Rabi frequency �s to an initial population in |1〉, with
no cyclotron or anomaly drives (i.e. �c = 0 and �a = 0). If
only one axial detection state was populated this would be the
prototypical “Rabi flopping” of the two states of a spin qubit.
A distribution of axial detection states has a backaction that

makes a superposition of spin frequencies, the effect of which
is calculated and discussed here.

The master equation for the density operator describing
this case, in the interaction representation, is

d

dt

(
ρ̃11 ρ̃13

ρ̃31 ρ̃33

)
= −i

(
a†

z az + 1

2

)(
0 −δsρ̃13

δsρ̃31 0

)
− i

�s

2

(
i2Im[ρ̃31eiεst ] eiεst (ρ̃33 − ρ̃11)

e−iεst (ρ̃11 − ρ̃33) i2Im[ρ̃13e−iεst ]

)
− γz

2
n̄z(aza

†
z ρ̃ − 2a†

z ρ̃az + ρ̃aza
†
z )

− γz

2
(n̄z + 1)(a†

z azρ̃ − 2azρ̃a†
z + ρ̃a†

z az ). (66)

This master equation is the same as for driven cyclotron tran-
sitions [Eq. (36)] except that the state |2〉 is replaced by |3〉
and the damping term γc is replaced by γs ≈ 0 (see Table I).

The master equation can be solved exactly in the same way
as the cyclotron transition. We assume the initial population is
distributed in the state |1, nz〉 with the Boltzmann distribution
as Eq. (34). In vector form, Eq. (66) is

d

dt
�p11(t ) = R(0, 0, 0) �p11(t ) − �sIm[ �p13(t )], (67a)

d

dt
�p13(t ) = R(εs, δs, 0) �p13(t ) − i

�s

2
( �p33(t ) − �p11(t )),

(67b)

d

dt
�p33(t ) = R(0, 0, 0) �p33(t ) + �sIm[ �p13(t )]. (67c)

In general, these equations will be solved for an initial values
of the density operators at t = 0.

Since the damping between the spin states |1〉 and |3〉 is
essentially zero, the steady state is not as obvious as in the
case for cyclotron transitions. The axial decoherence term n̄zγz

in Eq. (67) does not induce transition between |1〉 and |3〉,
but there is still a useful quasi-steady-state solutions for the
“weak” drive limit, �s 	 n̄zγz.

A. Steady state

If the spin-flip drive is applied for a long time, t �
n̄zγz/�

2
s , and n̄zγz �= 0, there is a steady state described by

setting the time derivatives in Eqs. (67) to zero,

R(0, 0, 0) �p11(t ) − �sIm[ �p13(t )] = 0, (68a)

R(εs, δs, 0) �p13(t ) − i
�s

2
( �p33(t ) − �p11(t )) = 0, (68b)

R(0, 0, 0) �p33(t ) + �sIm[ �p13(t )] = 0. (68c)

Summing Eqs. (68a) and (68c) over nz and using

∞∑
nz=0

(R(0, 0, 0) �p11)nz
=

∞∑
nz=0

(R(0, 0, 0) �p33)nz
= 0 (69)
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gives �p13 = 0 and equal populations

∞∑
nz=0

( �p11)nz
=

∞∑
nz=0

( �p33)nz
= 1

2
(70)

of spin up and spin down states. The interaction of the axial
motion with its thermal reservoir produces a spread of Rabi
flopping frequencies, averages out the net Rabi flopping be-
tween the two spin states.

B. Quasi-steady state

A steady state with equal spin up and spin down popu-
lations is not useful for determining the spin frequency ωs.
There is a quasi-steady state, however. For a “weak drive”
with �s 	 n̄zγz that does not appreciably change the initial
Boltzmann distribution �p11 ≈ �p(T ) of axial states, there is an
excitation rate

dP3

dt
= d

dt

[ ∞∑
nz=0

�p33;nz (t )

]
. (71)

The drive must be applied for a time in the range

(n̄zγz )−1 	 t 	
(

�2
s

n̄zγz

)−1

, (72)

long compared to the dephasing time n̄zγz but short compared
to the time for approaching the steady state with equal spin-up
and spin-down populations. Figure 13 shows an example of
the time evolution.

Equation (67c) gives

d

dt
�p33(t ) = �sIm[ �p13(t )], (73)

when a small excitation �p33 ≈ 0 is assumed. The steady state
�p13(t ) comes from solving Eq. (67b),

�p13(t ) = R−1(εs, δs, 0)

[
−i

�s

2
( �p33(t ) − �p11(t ))

]
= i

�s

2
R−1(εs, δs, 0) �p(T ), (74)

for �p11 ≈ �p(T ) and | �p33| 	 1. The transition rate is then

dP3

dt
= �2

s

2
Im

[ ∞∑
nz=0

(iR−1(εs, δs, 0) �p(T ))nz

]
. (75)

This rate is essentially the line shape defined in Eq. (49) except
for the cyclotron damping rate γc and the parameters for spin
flip transition �s, εs and δs.

The directly driven spin flip transition rate in Fig. 14(a) is
very similar to the cyclotron line shape of Fig. 5(a) for same
experimental conditions in Table II. A spin-flip resonance for
every axial quantum state is clearly resolved. The line shapes
for classical calculation [Eq. (51)] and for the best measure-
ment parameters (Table III) are also shown for comparison.
Figure 14(b) compares the line shape for spin flip (solid line)
compared to the one for the cyclotron transition (dashed line)
with the parameters in Tab. II. Since the magnetic bottle
parameters are related by δs = g/2 × δc ≈ 1.001δc, the tran-
sition rate line shape for spin flip [Eq. (75)] is much the

FIG. 13. The probabilities for spin up (red) and and spin down
minus 1 (black) in (a), and for the derivatives of these probabilities
(b) as a function of time for a spin flip drive tuned to the nz = 0
cyclotron resonance, with Rabi frequency �s/(2π ) = 0.01 Hz and
other parameters in Table II. The horizontal grids are spaced by
(n̄zγz )−1 The vertical grids show quasi-steady-state values.

same as the cyclotron line shape. The only difference from
the small damping rate γs ≈ 0 appears when focusing on the
nz = 0 peak [Fig. 14(b)]. Because of the negligible spin-flip
damping rate, the full width at the half maximum of the
peak 2n̄zγz is slightly narrower than the cyclotron’s linewidth
γc + 2n̄zγz. The spin transition line shape peaks can be made
even narrower by reducing γz further. The possibility to use
the spin-flip transition probability is discussed and compared
to alternatives in Sec. VIII.

VII. TWO-DRIVE SPIN FLIPS

A. Master equation

Spin flips (from the spin down ground state |1〉 to the spin
up ground state |3〉) can also be driven using simultaneously
applied cyclotron and anomaly drives (�c > 0 and �a > 0
with �s = 0) [40] instead of the direct spin flip drive dis-
cussed in Sec. VI. A practical advantage is that the stable final
state would remain unchanged as long as is needed to detect
it. This was true for the anomaly transitions considered above,
but not for cyclotron transitions that must be detected before
cyclotron decay. A quantum calculation is needed to ascertain
whether two photon transitions would be less sensitive to slow
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FIG. 14. (a) Quantum spin-flip line shape (solid) for a weak
drive with the largest peak normalized to 1 and for the classical
Brownian motion line shape (dashed). The line shape used for the
best measurement (dotted) is also shown. (b) Normalized probability
of a spin-flip transition (solid) compared to the cyclotron transition
(dashed). The horizontal scale is εs/δs for the spin transition and
εc/δc for the cyclotron transition.

drifts of the magnetic field insofar as the spin and cyclotron
motion will experience the same average magnetic field.

The three sets of states in Eq. (19) are involved in flip-
ping the spin via the two drives. The density operator in the
interaction picture can be written in terms of operators pjk

proportional to the operators ρ̃ jk of Eq. (33), such that

ρ̃ =
⎛⎝ p11 p12eiεct p13ei(εc+εa )t

p21e−iεct p22 p23eiεat

p31e−i(εc+εa )t p32e−iεat p33

⎞⎠. (76)

The transformation puts the master equation in the form

d

dt

⎛⎝p11 p12 p13

p21 p22 p23

p31 p32 p33

⎞⎠
= −i

⎛⎝ 0 εc p12 (εc + εa)p13

−εc p21 0 εa p23

−(εc + εa)p31 −εa p32 0

⎞⎠
− i

(
a†

z az + 1
2

)⎛⎝ 0 −δc p12 −δs p13

δc p21 0 −δa p23

δs p31 δa p32 0

⎞⎠

− i�c

2

⎛⎝i2Im[p21] p22 − p11 p23

p11 − p22 i2Im[p12] p13

−p32 −p31 0

⎞⎠
− i�a

2

⎛⎝ 0 −p13 −p12

p31 i2Im[p32] p33 − p22

p21 p22 − p33 i2Im[p23]

⎞⎠
−γc

2

⎛⎝−2p22 p12 0
p21 2p22 p23

0 p32 0

⎞⎠
− γz

2
n̄z(aza

†
z p − 2a†

z paz + paza
†
z )

− γz

2
(n̄z + 1)(a†

z az p − 2az pa†
z + pa†

z az ). (77)

All time dependence is now within the components pi j .
For a thermal distribution of initial axial states, the op-

erators pi j are axially diagonal, with diagonal components,
pi j;nz = 〈i, nz|pi j | j, nz〉. The master equation is then given by
the differential equations,

d

dt
p11;nz (t )

= [−γz(2n̄z + 1)nz − γzn̄z]p11;nz (t )

+ γzn̄znz p11;nz−1(t ) + γz(n̄z + 1)(nz + 1)p11;nz+1(t )

−�cIm
[
p12;nz (t )

] + γc p22;nz (t ), (78a)

d

dt
p22;nz (t )

= [−γc − γz(2n̄z + 1)nz − γzn̄z]p22;nz (t )

+ γzn̄znz p22;nz−1(t ) + γz(n̄z + 1)(nz + 1)p22;nz+1(t )

+�cIm
[
p12;nz (t )

] − �aIm
[
p23;nz (t )

]
, (78b)

d

dt
p33;nz (t )

= [−γz(2n̄z + 1)nz − γzn̄z]p33;nz (t )

+ γzn̄znz p33;nz−1(t ) + γz(n̄z + 1)(nz + 1)p33;nz+1(t )

+�aIm[p23;nz (t )], (78c)

d

dt
p12;nz (t )

=
[

i

(
−εc + δc

(
nz + 1

2

))
− 1

2
γc − γz(2n̄z + 1)nz − γzn̄z

]
p12;nz (t )

+ γzn̄znz p12;nz−1(t ) + γz(n̄z + 1)(nz + 1)p12;nz+1(t )

− i
�c

2

(
p22;nz (t ) − p11;nz (t )

) + i
�a

2
p13;nz (t ), (78d)

d

dt
p23;nz (t )

=
[

i

(
−εa + δa

(
nz + 1

2

))
− 1

2
γc − γz(2n̄z + 1)nz − γzn̄z

]
p23;nz (t )
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+ γzn̄znz p23;nz−1(t ) + γz(n̄z + 1)(nz + 1)p23;nz+1(t )

− i
�a

2

(
p33;nz (t ) − p22;nz (t )

) − i
�c

2
p13;nz (t ), (78e)

d

dt
p13;nz (t )

=
[

i

(
−(εc + εa) + δs

(
nz + 1

2

))
− γz(2n̄z + 1)nz − γzn̄z

]
p13;nz (t )

+ γzn̄znz p13;nz−1(t ) + γz(n̄z + 1)(nz + 1)p13;nz+1(t )

− i
�c

2
p23;nz (t ) + i

�a

2
p12;nz (t ). (78f)

The general time-dependent solution of these equations has
initial conditions p11,nz (0) = pnz (T ), with pi j,nz (0) = 0 all
other i and j.

In terms of R(ε, δ, γc) from Eq. (41) and vectors �pi j with
components pi j;nz = 〈i, nz|pi j | j, nz〉, the vector equations of
motion are

d

dt
�p11(t ) = R(0, 0, 0) �p11(t )

−�cIm[ �p12(t )] + γc �p22(t ), (79a)

d

dt
�p22(t ) = R(0, 0, 2γc) �p22(t )

+�cIm[ �p12(t )] − �aIm[ �p23(t )], (79b)

d

dt
�p33(t ) = R(0, 0, 0) �p33(t )

+�aIm[ �p23(t )], (79c)

d

dt
�p12(t ) = R(εc, δc, γc) �p12(t )

− i
�c

2
( �p22(t ) − �p11(t )) + i

�a

2
�p13(t ), (79d)

d

dt
�p23(t ) = R(εa, δa, γc) �p23(t )

− i
�a

2
( �p33(t ) − �p22(t )) − i

�c

2
�p13(t ), (79e)

d

dt
�p13(t ) = R(εc + εa, δs, 0) �p13(t )

− i
�c

2
�p23(t ) + i

�a

2
�p12(t ). (79f)

The initial conditions are �p11(0) = �p(T ), with �pi j (0) = 0 for
all other i and j. Small, non-resonant excitations to more
highly excited states are neglected. For the parameters being
considered in this work, we found that simultaneously solv-
ing 900 differential equations determine the solution to the
master equation numerically for cyclotron and anomaly drives
applied at the same time.

B. Quasi-steady state

A quasi-steady state is produced when weak cyclotron and
anomaly drives, with

�c 	 γc, (80)

FIG. 15. Time evolution driven by weak and resonant cyclotron
and anomaly drives applied for 10 cyclotron damping times, the latter
indicated by vertical gray lines. The probability to be in the |2, nz〉
states (blue) reaches a steady state after transients die out on a time
scale give by the cyclotron damping time, 1/γc. The probability to
be in the initial |1, nz〉 states, with unit probability subtracted out, is
shown in black. The probability to be be driven to the final |3, nz〉
states is shown in red.

�a 	 γc, (81)

are applied for a time t in the range

γ −1
c 	 t 	 γc/�

2
a. (82)

The time must be long compared to the cyclotron damping
time to allow transients to dies out. It must be short compared
to the time it takes to transfer an appreciable population to the
spin up spin states.

Figure 15 illustrates the time evolution for weak drives
(�c = �a = 0.1γc) that are resonant, and for the realistic ex-
perimental conditions in Table II. The sum of the probabilities
to be in the states |l, nz〉

Pl =
∞∑

nz=0

pll;nz (83)

[from Eqs. (29) and (38)] is plotted for l = 1, 2, 3. The drives
are turned on at time t = 0 and the time evolution shown
continues for ten cyclotron damping period, to t = 10/γc.
The probability P2 to be driven into the |2, nz〉 states (blue)
increases from zero to reach a quasi-steady state after the
transients die out in several cyclotron damping times 1/γc.
The probability P1 to remain in the initial |1, nz〉 states, minus
unit probability, is shown in black. It remains at essentially
unit probability, decreasing only slightly to conserve proba-
bility. The much smaller probability (solid red) to transition
to the cyclotron ground states with spin up, |3, nz〉, gradually
increases at first, and then increases linearly for much of the
10/γc time evolution. The solid red curve in Fig. 16 illustrates
how it is the derivative dP3/dt that reaches a quasi-steady
state.

An approximate analytic expression for the quasi-steady-
state rate

dP3

dt
= d

dt

∞∑
nz=0

p33;nz (t ) = �aIm

[ ∞∑
nz=0

p23;nz (t )

]
, (84)
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FIG. 16. Rate dP3/dt for simultaneously applied weak cyclotron
and anomaly drives (�c = �a = γc/10) that are resonant. The quasi-
steady state estimate (dashed) slightly overstates the transition rate.

comes from summing Eq. (79) over all axial states and sim-
plifying using

∑∞
nz=0 (R(0, 0, 0) �p33)nz

= 0. The quasi-steady
state is also described by

�p11 = �p(T ), (85a)

R(0, 0, 2γc) �p22 + �cIm[ �p12] = 0, (85b)

R(εc, δc, γc) �p12 + i
�c

2
�p11 = 0, (85c)

R(εa, δa, γc) �p23 − i
�a

2
( �p33 − �p22) − i

�c

2
�p13 = 0, (85d)

R(εc + εa, δs, 0) �p13 + i
�a

2
�p12 = 0. (85e)

The first of these equations states that �p11 then remains at
the initial thermal equilibrium value, �pnz (T ). The remaining
equations assume |p11;nz | � |p22;nz |, |p11;nz | � |p13;nz |, and
|p12;nz | � |p32;nz |, and the time derivatives of �p12, �p22, and
�p23 are neglected. The drives must also be applied for a
time t � (n̄zγz )−1, so that the time derivative of �p13 can be
neglected because of the decoherence of the superposition of
axial states at a rate n̄zγz. (This last condition does not hold
when there in only one axial state in the T → 0 limit.)

The solutions to these linear equations are

�p12 = −i
�c

2
R(εc, δc, γc)−1 �p(T ), (86a)

�p22 = −�cR(0, 0, 2γc)−1Im[ �p12], (86b)

�p13 = −i
�a

2
R(εc + εa, δs, 0)−1 �p12, (86c)

�p23 = 1

2
R(εa, δa, γc)−1[i�c �p13 − i�a �p22 + i�a �p33]. (86d)

The last of these equations does not yet describe a steady state
because it depends upon the growing �p33.

Equation (86d) can be substituted into Eq. (84) to allow an
estimate of how rapidly �p33 grows in time. The time dependent
parts are

d

dt

∞∑
nz=0

p33;nz = �2
a

2
Im

[
i

∞∑
nz

(R(εa, δa, γc)−1 �p33)nz

]
+ C,

(87)

FIG. 17. The two-drive line shapes change dramatically as a
function of the axial damping rate, γz. Contours of the quasi-steady
state dP3(εc, εa )/dt are shown as a function of the scaled detunings
from ωc and ωa of the cyclotron and anomaly drives. Parameters
other than γz are from Table II.

with C represents terms which do not depend upon time
for t � γ −1

c . Roughly speaking, �p33 (i.e., the diagonal
elements of p33) approaches its steady state with a rate going
as �2

a|R(εa, δa, γc)−1|. The magnitude of the transformation
matrix roughly goes as its eigenvalues, n̄zγz + γc > γc. This
means that the time constant is longer than �2

a/γc, more than
a thousand seconds with realistic parameters in Table II. For a
realistic drive time t 	 (�2

a/γc)−1, the last term in Eq. (86d)
can be neglected, as needed to make a steady-state equation.

The quasi-steady-state spin-flip rate as a function of detun-
ings dP3(εc, εa)/dt is thus

dP3(εc, εa)

dt
= �2

a�
2
c

8
Im

[ ∞∑
nz=0

(iR(εa, δa, γc)−1 �W )nz

]
,

(88a)

�W = −2R(0, 0, 2γc )−1Im[iR(εc, δc, γc)−1 �p(T )]

− R(εc + εa, δs, 0)−1R(εc, δc, γc)−1 �p(T )

(88b)

using Eqs. (84) and (86a)–(86d). The first term in �W describes
sequential one photon transitions [Fig. 18(b)]. The second
term in �W , depending as it does upon R(εc + εa, δs, 0), adds
the effect of direct two photon transitions [Fig. 18(c)].

Figure 16 compares this quasi-steady-state derivative
(dashed) from the complete solution (solid). The derivative
rises to almost the quasi-steady-state value and then begins to
decrease.
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FIG. 18. (a) The quasi-steady-state line shape dP3(εc, εa )/dt for
the resolved peak corresponding to nz = 0 in Fig. 17(f). The the
contours shown are at 75%, 50%, and 25% amplitudes relative to
the peak value. The anomaly and cyclotron drive frequencies are
given in terms of the scaled detunings of these frequencies from
ωa and ωc. The interior black lines indicate the drive frequencies
scanned in Figs. 19 and 20. (b) and (c) shows the contribution from
the first and second terms in Eq. (88b), respectively. The colors
indicate the amplitude relative to the peak value in (a). The dotted
line, εc + εa = δs/2, indicates when the cyclotron and anomaly drive
frequencies sum to the resonance ωs + δs/2.

C. Line shapes for simultaneous cyclotron and anomaly drives

Quasi steady-state line shapes dP3(εc, εa)/dt are illustrated
in Figs. 17 and 18 as a function of the anomaly and cyclotron
drive frequencies. The vertical scale is the detuning εa of the
anomaly drive from ωa, scaled by δa. The horizontal scale is
the detuning εc of the cyclotron drive from ωc, scaled by δc.
The contours are for probabilities of making a transition from
the initial spin-down ground states to spin-up states.

The dependence of the line shapes upon the axial damp-
ing rate γz is illustrated in Fig. 17. Except for this damping
rate, the experimental parameters from Table II are used. As
the axial damping rate is lowered, the contributions from
individual axial quantum states become resolved as resolved
“islands” in Fig. 17(f), for the lowest axial damping realized
in the laboratory so far [16] while yet allowing quantum jump
spectroscopy.

The narrowest transition peak in Fig. 17(f), corresponding
to nz = 0, are potentially the most useful for measuring an
electron or positron magnetic moment. Figure 18(a) shows
the contour of dP3(εc, εa)/dt . The contours shown are at

FIG. 19. Cyclotron resonance line shape that is a horizontal slice
through the maximum spin-flip probability of the contour plot in
Fig. 18(a). The quasi-steady-state line shape (dashed) has the same
shape as is numerically calculated (solid) but with a slightly different
amplitude.

75%, 50% and 25% of the peak amplitude. The anomaly
and cyclotron drive frequencies are specified as scaled de-
tunings of these frequencies from ωa and ωc. Figure 18(b)
and 18(c) shows the decomposed contributions from the first
and second terms in Eq. (88b). The dotted line shows where
εc + εa = δs/2, which corresponds to the sum of two drive
frequencies being equal to ωs + δs/2. The sum of (b) and (c)
gives the tilted contour in (a). The drives for this example are
weak, with �c = �a = γc/10, and the realistic experimental
parameters of Table II) are used. Notice that the peak of the
contour slightly deviates from εc + εa = δs/2. The anomaly
resonance does not resolve into separate peaks for various nz,
and the composite peak is thus shifted from εa = δa/2.

A significant challenge to using two drives is the extremely
small transition rates. The maximum rate is for a cyclotron
drive detuning εc = δc/2 (Fig. 19) and a anomaly detuning
of about εa = 0.2γc = 2δa (Fig. 20). Weak drives, with �c =

FIG. 20. Anomaly line shape that is a vertical slice through the
maximum spin-flip probability of the contour plot in Fig. 18(a).
The quasi-steady-state line shape (dashed) has the same shape as is
numerically calculated (solid) but with a slightly different amplitude.
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�a = γc/10, applied for a time t = 10/γc ≈ 53 s, a time
long enough for cyclotron transients to die out, avoids power
broadening of the resonance lines. However, the transition
probability in time t is then approximately given by dP3

dt × t .
The challenge is that the maximum transition probability is
then about 2.5 × 10−5 (Fig. 16). This is a factor of 103 times
smaller than the peak cyclotron excitation rate for the one-
drive case, and is likely too small to be useful. A careful study
will thus be required to determine the drive strengths and dura-
tions that can be used to get an acceptable rate and broadening.
This seems possible, and such transitions have been used in
experiments to prepare the desired spin state for measurement
[3]. However, numerical solutions of the differential equations
will be required since the weak drive limit will not apply.
The optimisation, when it is well motivated, would take some
time to carry out given the size of the parameter space, even
though we have demonstrated that it is feasible with the codes
available.

An intriguing possibility is that measurements made using
simultaneous cyclotron and anomaly drives might be much
less sensitive to magnetic field drifts because an cyclotron
excitation and an anomaly transition would both take place
before the field could drift much. (Considerable time passed
between the measurements of these frequencies in past mea-
surements.) A study of this possibility would also require
using the numerical solutions of the differential equations
along with a realistic model of linear or quadratic magnetic
field drift. Again, although we have demonstrated that this
should be possible, it would take considerable time to carry
this out.

VIII. PROSPECTS FOR ELECTRON AND POSITRON
MAGNETIC MOMENT MEASUREMENTS WITH

SIGNIFICANT ACCURACY IMPROVEMENTS

A. First possibility

As discussed in Sec. II, two extremely precise frequency
measurements must be made to use the quantum cyclotron to
determine the electron or positron much more precisely. For
all measurements so far, the anomaly and cyclotron frequen-
cies have been measured, and

±μ/μB = 1 + ωa/ωc (89)

has been used to deduce the magnetic moment in Bohr magne-
tons. A 3 × 10−14 measurement, ten times more precise than
existing measurements, requires that the frequency ratio be
measured to 3 × 10−11.

For a cyclotron frequency measurement at 150 GHz, the
largest impediment to an improved measurement is the de-
tection backaction width n̄zδc that is of order 30 Hz and 2 ×
10−10. Fortunately, our proposal to circumvent detector back
action [13] elaborated in this work provides a way to keep
this backaction from contributing to the uncertainty of a new
measurement. We showed that the remaining cyclotron line
shape is very symmetric, with widths coming from cyclotron
damping width γc and axial decoherence n̄zγz. In Sec. IV, we
saw that these contribution together were about 3 time the
cyclotron damping width, a width of 0.1 Hz and fractional
width of 6 × 10−13. These values are a factor of 50 smaller
than is needed for the contemplated measurement.

With the cyclotron detection backaction circumvented, the
anomaly frequency uncertainty becomes the largest challenge.
The three linewidth contributions are γc from cyclotron decay,
n̄zγz from axial state decoherence, and n̄zδa from detection
backaction, the latter contributing asymmetry to the line
shape. These are all comparable in size at about 0.03 Hz
which, because the cyclotron frequency is 1000 times smaller
than the anomaly frequency, is a much larger fractional
uncertainty of about 2 × 10−10. The desired measurement un-
certainty thus seems attainable if the anomaly frequency can
be extracted from the resonance line shape with an uncertainty
ten times smaller than these contributions to the anomaly line
shape. This work thus suggests that a ten times improved
measurement should be possible.

B. Second possibility

Because the uncertainty in the anomaly frequency now
seems to be the largest challenge for an improved mea-
surement, we consider the option of instead determining the
magnetic moment from the ratio of the spin and cyclotron
frequencies,

±μ/μB = ωs/ωc. (90)

A direct spin-flip drive (Sec. VI) or simultaneous cyclotron
and anomaly drives (Sec. VII) to determine ωs. The daunting
challenge is that this frequency ratio must then be determined
to the desired precision in the electron and positron magnetic
moment of 3 × 10−14, a factor of 1000 better than for possi-
bility one above.

For the cyclotron linewidth of of 0.1 Hz and fractional
linewidth of 6 × 10−13 noted above, the cyclotron frequency
would need to be extracted to a precision that was at least
30 times narrower than the anticipated linewidth. This may
not be an unreasonable linesplitting given that the line shape
should be symmetric about the cyclotron frequency once the
detection backaction is circumvented.

Directly driving spin flips to determine the spin frequency
to the same precision would also be required, the first time
that this would be realized with a quantum cyclotron. A two
photon cyclotron plus anomaly transition would be an alterna-
tive. As for the cyclotron line shape, detection backaction that
would make the resonance line shape broad and asymmetric
can be circumvented. Because the two spin states are effec-
tively stable, there would be no contributions to the line width
from decay of an unstable state though the axial decoherence
width n̄zγz would persist. This is an alternative route to a new
measurement, in principle.

C. Magnetic field instability

The quantum calculations support the viability of both
of the measurement possibilities outlined above. For the
immediate future, however, measurements will almost cer-
tainly rely upon the first possibility—measuring an electron
or positron’s anomaly and cyclotron frequencies. The reason
is that the magnetic field produced by the best of supercon-
ducting solenoids drifts in time. The demonstrated drift rates
(about 1 part in 1010 per hour [39]) is slow enough to make
it possible to alternate determinations of the anomaly and
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cyclotron frequencies rapidly enough to make a new mea-
surement. This source of systematic uncertainty had to be
carefully managed already in past measurements [5].

To obtain the same precision using the second measure-
ment possibility, alternating instead measurements of the spin
and cyclotron frequencies, requires measuring these frequen-
cies 1000 times more rapidly or producing a much more
stable magnetic field. The source of laboratory magnetic field
instability and its reduction, whether by better solenoid design
or shielding against changes in magnetic flux, is an interesting
and important topic but it is beyond the scope of this calcula-
tion.

IX. SUMMARY AND CONCLUSIONS

A quantum calculation is carried out for a driven one-
electron quantum cyclotron with a quantum nondemolition
(QND) coupling to a harmonic detection motion. The quan-
tum spin and cyclotron motions have a QND coupling to a
quantum axial detection motion, which in turn is coupled to a
thermal reservoir. External drives are applied to produce one-
quantum transitions between the lowest spin and cyclotron
states.

A master equation is used to describe the driven motion of
this open quantum system. Convenient steady-state solutions
and resonance line shapes for weak drives are presented, il-
lustrated and discussed. Numerical solutions reveal the time
evolution and check the steady-state line shapes. Calculations
of driven cyclotron excitations and driven anomaly transitions
are presented, along with calculations for directly driven spin
flips and spin flips driven by simultaneous anomaly and cy-
clotron drives. For a next generation of measurements, the
first two of these four drive options turn out to be the most
promising. For weakly driven cyclotron and spin excitations,
the predicted steady-state line shapes for experimental param-
eters that have recently become accessible, are very different
than the Brownian motion prediction used to interpret past
measurements.

An exciting result is the emergence of extremely narrow
quantum resonances that appear within the cyclotron reso-
nance line, corresponding to resolved quantum states of the

axial detection oscillator. These symmetric lines are about 100
time narrower than the broad and asymmetric cyclotron line
shape that has been the biggest obstacle to a new generation
of magnetic moment measurements. Resolving these narrow
peaks circumvents the detection backaction that would other-
wise cause broad and asymmetric cyclotron resonance lines,
reducing it to what is caused by only the zero-point motion
of the detection motion, even many more detection states are
populated. The circumvention opens the way to the much
more precise measurements of the cyclotron frequency that
are needed to determine the electron and positron magnetic
moments.

Given the new method to measure the cyclotron frequency
extremely accuracy, measuring the anomaly frequency pre-
cisely will become the biggest challenge to more precise
magnetic moment measurements. The anomaly line shape
cannot be resolved into narrow symmetric peaks that cor-
respond to individual quantum states of the axial detection
motion. Nonetheless, the calculations suggest that an anomaly
line shape can be produced that will make possible measure-
ments that are perhaps an order of magnitude more precise.
An initial survey of the effect of changing experimental pa-
rameters (e.g., cyclotron damping rate and lower ambient
temperature) upon the anomaly line shape identifies possible
future upgrade paths, though none of these by itself is a large
step.

The electron and positron magnetic moments are the
most precise predictions of the Standard model of particle
physics—the fundamental mathematical description of phys-
ical reality. Whether the current discrepancy between the
measured electron magnetic moment and the Standard model
prediction is a hint of physics beyond the Standard model is
not yet known, but it warrants investigation. The calculation
and methods in this work indicate how this may be possible.
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