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Dressed Coherent States of the Anharmonic Oscillator

D. Enzer and G. Gabrielse
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 22 July 1996)

Driving a damped, anharmonic oscillator produces stable, steady-state excitations according to the
familiar classical description. A quantum mechanical description, however, shows the surprising result
that such excitations are intrinsically unstable, and can be much smaller than classical expectations.
We illustrate by calculating the motion of one electron in a magnetic field. This physically realizable
system is among the simplest of nonlinear systems, being anharmonic because of special relativity and
being damped by the spontaneous emission of synchrotron radiation. [S0031-9007(96)01725-5]

PACS numbers: 03.65.Bz

The damped anharmonic oscillator (DAO) gives inter-
esting quantum interference [1] even when coupled to a
thermal reservoir [2,3]. Classical and quantum analyses
agree that the energy of the undriven DAO damps expo-
nentially at the classical decay rate gc. When a driving
force is applied to the oscillator near its resonance, famil-
iar classical analysis [4] shows the driven DAO is bistable
(after the transients die away on a time scale of g21

c ) with
either a large or a small steady-state excitation. A quantum
analysis is more challenging, and only correlation func-
tions for t ! ` have been obtained analytically so far [5].
The calculation reported here shows the surprising results
that the large driven excitation of a DAO is intrinsically
unstable on a time scale longer than g21

c (but well short of
t ! `), that observable excitations can be orders of mag-
nitude smaller than classical expectations, and that the sta-
ble, classical limit is attained only for a strong driving force
and not for large excitations alone. These features are re-
lated to a metastable quantum distribution which we show
extends into regions of phase space in which the DAO is
classically unstable. These metastable “dressed coherent
states of the anharmonic oscillator” are “dressed” by the
presence of the driving field, and are “coherent states” in
that they oscillate like a classical anharmonic oscillator.
Unlike the familiar coherent states of the harmonic oscilla-
tor [6–8], these states are not minimum uncertainty pack-
ets. They are slightly “squeezed” in amplitude, but are
extended in phase.

A one-electron cyclotron oscillator is an example of a
DAO. Its anharmonicity comes from special relativity, and
it damps via the spontaneous emission of synchrotron ra-
diation. A good approximation has been experimentally
realized with one electron in a 4.2 K Penning trap [9],
and we use typical experimental values to illustrate this
theoretical study. The electron has a cyclotron frequency
vc�g� � vc�g � 2p (150 GHz) for a 5.8 T magnetic
field directed along ẑ. The relativistic factor g � 1 1

K�mc2 (where K�mc2 is the electron’s kinetic energy over
its rest energy) makes the motion anharmonic insofar as
vc�g� depends upon excitation energy. The cyclotron os-
cillator would radiate into free space with a classical damp-

ing rate gc such that gc�2p � 2 Hz, but this spontaneous
emission rate is enhanced or inhibited insofar as the elec-
tron cyclotron oscillator radiates into a surrounding mi-
crowave cavity [10] that is typically at temperature 4.2 K.

The starting point for our quantum analysis is the fa-
miliar harmonic oscillator Hamiltonian Hc � h̄vc�aya 1
1
2 �. The energy eigenstates jn� with n � 0, 1, . . ., often
called number states, are equally spaced in energy by h̄vc.
A coherent state ja� of the harmonic oscillator is a su-
perposition of number states which is an eigenstate of the
lowering operator a with eigenvalue a [6–8]. A coherent
state has a Gaussian spatial distribution which oscillates
just like a classical harmonic oscillator, and is a minimum
uncertainty state which does not spread in time. Its energy
is h̄vc�jaj2 1 1�2� and average principal quantum num-
ber is n̄ � jaj2. For the one-electron cyclotron oscillator
Re�a� � �yx� � 2� y� and Im�a� � 2�yy� � 2�x� so
that a in the complex plane locates a point in phase space.
Figure 1(b) represents a coherent state �a0� with n̄ �
ja0j2 � 50. We plot the square of its projection j�aja0�j2
upon a coherent state ja� for each a in the complex plane.
This is a special case of the Q distribution [7,8,11] for
a pure state with density operator r � ja0� �a0j. As in
an early comparison of (undamped and undriven) classi-
cal and quantum oscillators [12], we use the generalization
Q�a� � �ajrja� to represent mixed states.

FIG. 1. Energy levels of the anharmonic oscillator (a).
Steady-state Q distributions for dressed coherent states of
driven harmonic (b) and anharmonic (c) oscillators with
n̄ � 50, as a function of position in phase space, a, in a frame
rotating with the driving force F.
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The anharmonic oscillator Hamiltonian differs by the
addition of a term quadratic in Hc,

Haho � Hc 2
d

2vc

H2
c

h̄vc
. (1)

Number states are still energy eigenstates, and the
constant d is the difference in the transition frequency
between adjacent pairs of levels [Fig. 1(a)]. For the
one-electron cyclotron oscillator the relativistic anhar-
monic shift per quantum of excitation is extremely small,
with d�vc � h̄vc�mc2 � 1029. Cyclotron frequency
measurements with this accuracy can be imagined, and a
quantum description is indicated, because transitions be-
tween lowest levels are well resolved with gc�d � 1022.

A classical driving force F � F0�x̂ cos�vt� 1 ŷ sin�vt�	
is included by adding

Hdrive �
1
2

h̄VR�ei�vt2p�2�a 1 e2i�vt2p�2�ay	 (2)

to the Hamiltonian. The drive strength is given by the Rabi
“frequency” VR � F0

p
2�mh̄vc. A drive resonant with

number states jn� and jn 2 1� makes population oscillate
between these two levels at frequency Vn � VR

p
n, with

VR thus pertaining to the lowest two states. A suitably
rotating electric field produces such a driving force for the
one-electron cyclotron oscillator, and VR is proportional
to the drive amplitude.

Damping is added using the Markov approximation
to produce a master equation describing the evolution
of a system that is coupled to a reservoir [7,8]. The
one-electron cyclotron oscillator system is coupled with
coupling constant gc to a reservoir which is the QED
vacuum along with blackbody radiation at temperature T .
A density operator r�t� is required because the loss of
coherence to the reservoir changes any system pure states
to mixed states. The master equation is

≠r

≠t
� 2

i
h̄

�Haho 1 Hdrive, r	

1
1
2

gc�2aray 2 ayar 2 raya�

1 N̄gc�ayra 1 aray 2 ayar 2 raay� . (3)

The constant N̄ is a measure of the temperature of the
reservoir. For T � 0 K we have N̄ � 0, while T �
4.2 K gives N̄ � 0.2. When the oscillator is only excited
and deexcited by blackbody radiation and spontaneous
emission, n̄ � N̄ .

With no driving force (i.e., VR � 0), the quantum me-
chanical solution for a DAO is known [1–3]. An initially
peaked Q distribution of a DAO spreads in phase be-
cause anharmonicity makes the lower and higher energy
parts of the distribution rotate at different rates. When
the phase extent exceeds 2p , the ring-shaped distribution
interferes with itself. Damping washes out the interfer-

ence and makes the distribution evolve toward the center
of the phase space. For T � 0 the distribution eventually
becomes the Gaussian distribution of a coherent state cen-
tered at the origin.

With no anharmonicity (i.e., d � 0), the driven motion
of a damped harmonic oscillator (DHO) is also well known
[7]. Transients die out within several damping times, leav-
ing the T � 0 K oscillator in a coherent state of the
harmonic oscillator, as illustrated in Fig. 1(b). This dis-
tribution is stationary in the reference frame which rotates
at the drive frequency v, with a fixed phase (with respect
to that of the classical driving force F) that depends upon
v 2 vc. The dressed (by the drive) coherent state of the
T � 0 K harmonic oscillator is simply a familiar coherent
state of the undriven harmonic oscillator.

When anharmonicity and an external driving force are
both present, we solve the master equation numerically
[13], starting typically from a coherent state of the cor-
responding harmonic oscillator. A finite base of num-
ber states is kept large enough so that the highest energy
state is never populated appreciably. Figure 1(c) shows a
Q function for a strongly driven DAO (with VR � 28d,
v 2 vc � 248.5d, and n̄ � 50) after the transients have
died out on the time scale of g21

c . For time intervals less
than 106g21

c , this wave packet does not change noticeably
(though we shall later see that it does decay on longer time
scales). Because of the anharmonicity, it is spread in phase
compared to its harmonic counterpart [Fig. 1(b)]. It is also
stationary in the frame that rotates with the drive at v,
with a mean phase that depends upon v 2 vc�g�. This
metastable state is what we call a dressed coherent state of
the anharmonic oscillator.

The energy width of the driven anharmonic oscillator’s
wave packet is slightly squeezed (i.e., amplitude squeez-
ing). The energy uncertainty h̄vcDn is given by the fa-
miliar �Dn�2 � ��aya�2� 2 �aya�2. For the one-electron
oscillator we find that Dn is proportional to the “minimum
uncertainty value”

p
n̄ for a coherent state of the harmonic

oscillator, and Dn is independent of drive strength and
small changes in damping. The proportionality constant
is 0.7 for T � 0 K, but is 20% larger for T � 4.2 K.

The phase width Df in Fig. 1(c) is clearly larger than
for a coherent state of a driven harmonic oscillator in
Fig. 1(b), but narrows with increasing drive strength VR

as illustrated in Fig. 2(a). In the absence of an opera-
tor whose average value gives the phase spread, we take
Df to be the half-width of the Q distribution in the
azimuthal direction. (A comparable procedure gives a re-
liable measure of Dn.) Anharmonicity makes the higher
and lower energy parts of the distribution rotate at differ-
ent frequencies, giving Df � �Dn�dtspread. The phase
spreads for a time tspread which is on the order of the period
for “quantum collapse and revival” which is observed (e.g.,
Fig. 3) during the damping to the steady state. The un-
driven DAO revives with period 2p�d [1–3]. However,
the calculation shows that the driven DAO with VR . d
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FIG. 2. Phase width (a) and loss rate (b) for dressed coherent
states of the anharmonic oscillator, for 30 # n̄ # 90 and 3d ,
VR , 38d.

revives on the much shorter time scale p�
p

Vnd, indepen-
dent of Dn. This suggests that Df � Dn

p
d�Vn. The

solid curve in Fig. 2(a) shows a good fit of this equation to
individual calculations (points), with proportionality con-
stant approximately equal to 1.

A most striking difference between the dressed coherent
states of the harmonic and anharmonic oscillators is that
the dressed coherent states of the DHO [e.g., Fig. 1(b)] are
completely stable while the dressed states of the DAO [e.g.,
Fig. 1(c)] are intrinsically unstable. The strongly driven
packet in Fig. 1(c) seems stable, but close inspection shows
it decays at the extremely slow rate of 2 3 1026gc. A
weaker drive VR � 4d, however, allows loss of the driven
excitation at a rate of gc�4 (Fig. 4). The coherently driven
excitation maintains a stable shape, but population is
clearly being lost to a symmetric inner ring which eventu-
ally damps to a peak in the center of phase space. When
the loss rate is low, it is easiest to get this rate directly from
the decay of n̄, and Dn from the operator average value
mentioned. For high loss rates, however, we isolate the
coherently excited part of the density operator to determine
its loss rate and Dn.

The calculated loss rate gloss depends dramatically upon
both the drive strength VR and the level of excitation n̄.
Figure 2(b) shows

gloss�gc ~ e22Vn��d�Dn�2	 � e24VR��d
p

n̄ �, (4)

so that increasing the drive strength by only a factor of 8
decreases the loss rate by 106 (when the same excitation n̄
is maintained by adjusting v). Increasing the excitation n̄
(by adjusting v with VR fixed) also increases the loss rate,
demonstrating clearly that a large excitation by a classical
drive does not necessarily give a stable classical limit.
A sufficiently strong drive is also required. Quantum

FIG. 3. Q distribution for a strongly driven DAO (VR �
28d, v 2 vc � 248.5d) collapses from and revives to a
coherent state of the harmonic oscillator with n̄ � 50 in a short
time p�

p
Vnd.

FIG. 4. Q�a� for a weak drive (VR � 4d, v � vc 2 50.2d)
decays at rate gloss � gc�4 despite a large initial excitation to
n̄ � 50, in sharp contrast to the stability expected classically.

fluctuations are larger for larger excitations n̄. If one
imagines these to be due to an effective stochastic force,
then only when the classical driving force is stronger than
this “fluctuation force” can the classical limit be attained.

Quantum distributions are superimposed upon a clas-
sical stability diagram in Fig. 5. The strong VR � 28d

drive of Fig. 1(c) and Fig. 3 is represented in Fig. 5(a),
and the weak VR � 4d drive of Fig. 4 is represented in
Fig. 5(b). A classical excitation to any point in the shaded
region of phase space remains excited, damping to the
steady-state attractor “A.” Excitations to all other points
in phase space damp to the essentially unexcited attrac-
tor marked “C,” and “B” is an unstable equilibrium point.
Actually, only the beginning of a shaded spiral which con-
tinues encircling itself is shown because the shaded and
unshaded bands get too closely spaced to be visible except
in the magnified views. Superimposed are the (dashed)
contours at which the metastable quantum Q distributions
fall to 10% of their maximum values. The Q distribution
for the strong drive mostly fits inside the classically sta-
ble region in Fig. 5(a), but the broadened distribution for
the weak drive in Fig. 5(b) spills over substantially into
the classically unstable region of phase space. A classi-
cal distribution, broadened by thermal or other stochastic
fluctuations to fill the phase space area of the quantum
distribution, would thus be similarly unstable. A semi-
classical solution for the driven DAO (as proved useful
for the undriven Kepler problem [14]) might provide a
deeper understanding of these features.

FIG. 5. Quantum Q distributions (10% contours are dashed)
superimposed upon classical stability diagrams for a strongly
(a) and weakly (b) driven DAO as described in the text.
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Observable steady-state excitations can be dramatically
smaller than classical expectations because of the quantum
instability. For a given drive strength VR , the maximum
classical excitation is given by

n̄max � K�h̄vc � �VR�gc�2 (5)

when the drive is resonant with the shifted cyclotron
frequency. In sharp contrast, quantum instability adds the
condition [from Fig. 2(b) for gc # d]

n̄qi
max � a�VR�d�2. (6)

The proportionality constant a is a logarithmic function
of the time that an excitation must persist for it to be ob-
served, and is a function of temperature T . If an excitation
must persist on average for 1 s to be observed (i.e., gloss�
gc � 1021), then a � 1.4 for T � 0 K, and 0.7 for 4.2 K.
In this case, the quantum instability condition [Eq. (6)]
limits any observable excitation of the one-electron cy-
clotron oscillator to a remarkable 1024 of the classical
expectation in Eq. (5), since n̄qi

max�n̄max � a�gc�d�2 �
1024. Such a large discrepancy between classical and
quantum descriptions is not observed with ordinary classi-
cal oscillators (e.g., a weight and a slightly overstretched
spring) because typically gc ¿ d for such oscillators, in
which case the extra quantum condition Eq. (6), deduced
for smaller damping, is already less stringent than Eq. (5).

The quantum condition makes some experiments less
straightforward than previously thought—those that seek
to probe the quantum structure of a one-electron oscillator
[9,15] and measure vc at accuracy d. Maintaining a de-
tectable excitation at n̄ � 50 for 1 s, for example, requires
a drive strength VR � 9d. This unfortunately is also the
resolution which can be attained when probing the lowest
states. (The uncertainty principle relates the limited time
spent in the lowest state �V

21
R to an energy uncertainty.)

The apparent cyclotron frequency also shifts. For a width
and shift large compared to d, both a high signal-to-noise
ratio and a model of the shift are required to distinguish
number states and determine vc to accuracy d.

One less straightforward possibility is to achieve a one
d accuracy with a VR � d drive, which is then increased
in strength to make the excitation persist for detection.
Another is to detect an excitation much more quickly,
using another motion of the electron as a 1 bit mem-
ory as has been demonstrated [16]. Detailed calculations
[13,17] confirm these and other possibilities to resolve the
quantum structure, even with stochastic fluctuations in vc

added to eliminate the biggest difference between the cal-
culation discussed so far and experiments at 4.2 K. New
experiments at much lower temperatures (e.g., electrons
recently confined at 50 mK [18]) should remove the com-
plication of fluctuations.

In summary, a quantum calculation of the driven,
damped, anharmonic oscillator coupled to a thermal
reservoir reveals dressed coherent states of the DAO that
differ in crucial respects from their familiar harmonic
counterparts and from classical expectations. Most
striking are their instability, the need for a strong driving
force to approach a stable classical limit, and maximum
observable excitations that can be orders of magnitude
lower than classical expectations for experimentally real-
izable systems. A classical analysis represents a steady
state, driven excitation as a single point in phase space.
Quantum fluctuations make the oscillator occupy a larger
area in phase space, an area extending into regions of
phase space which are classically unstable.
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