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The most accurate determination of the fine structure constant « is
a”! = 137.035999084 (51} [0.37 ppb). This value is deduced from the
measured electron g/2 (the electron magnetic moment in Bohr magne-

tons) using the relationship of o and ¢/2 that comes primarily from.
Dirac and QED theory. Less accurate by factors of 12 and 21 are deter-

minations of & from combined measurements of the Rydberg constant,
two mass ratios, an optical frequency, and a recoil shift for Rb and Cs
atoms. Helium fine structure intervals have been measured well enough
to determine o with nearly the same precision — if two-electron QED
calculations can be sorted out. Less accurate measurements are also
compared. '
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6.1. Introduction

The fundamental and dimensionless fine structure constant « is defined (in
SI units} by
1 €
o= T o
The well known value a~! =~ 137 is not predicted within the Standard
Model of particle physics. o
The most accurate determination of & comes from a new Harvard mea-
surement {7, 8] of the dimensionless electron magnetic moment, g/2, that
is 15 times more accurate than the measurement that stood for twenty
vears [9]. The fine structure constant is obtained from g/2 using the theory
of a Dirac point particle with QED corrections [10-15}. The most accurate
a, and the two most accurate independent values, are given by

(6.1)

o~ 1(HO08) = 137.035 999 084 (51) [0.37 ppb]  (6.2)
o~ '(Rb08) = 137.035 999 45 (62) [4.5 ppb) (6.3)
a~1(Cs06) = 137.036 000 O (11) (8.0 ppb].  (6.4)
Fig. 6.1 compares the most accurate values.
. ppb
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| v Harvard g/2 2008
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(@ '-137.03)/107°
Fig. 6.1. The most precise determinations of c.

The uncertainties in the two independent determinations of a are within
a factor of 12 and 21 of the e from g/2. They rely upon separate mea-
surements of the Rydberg constant [16, 17}, mass ratios [18, 19}, optical
frequencies [20, 21], and atom recoil {21, 22]. Theory also plays an impor-
tant role for this method, to determine the Rydberg constant (reviewed in
Ref. [23]) and one of the mass ratios [24].
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In what follows, the importance of the fine structure constant is dis-
cussed first. Determining o from the measured electron g/2 comes next,
starting with an operational summary of how this is done, and finishing
with an overview of the status and reliability of the theory. Determining
o from the combined measurements mentioned above is the next topic.
The possibility to determine a with nearly the same precision from atomic
fine structure is then considered. Helium fine structure intervals have been
measured with enough accuracy to do so, [1-4, 25] if inconsistencies in the
needed two-electron QED theory (5, 6] can be cleared up. Other methods
that are important for historical reasons are mentioned, and followed by a
conclusion.

6.2. Importance of the Fine Structure Constant

The fine structure constant appears in many contexts and is important for
many reasons.

(1) The fine structure constant is the low energy electromagnetic cou-
pling constant, the measure of the strength of the electromagnetic
interaction in the low energy limit.

{(2) The fine structure constant is the basic dimensionless constant of

" atomic physics, distinguishing the energy scales that are important

for atoms. In terms of the electron rest energy, m.c*:

(a) The binding energy of an atom is approximately a®m.c?.

(b) The fine structure energy splitting in atoms goes as a*m.c?.

(c) The hyperfine structure energy splitting goes as
(me/M)a'm,c?, like the fine structure splitting except re-
duced by an additional ratio of an electron mass to the nucleon
mass (M).

(d) The lamb shift in an atom goes as aSm.c?

MeC”.

(3) The fine structure constant is also important for condensed matter
physics, the condensed matter and atomic energy scales being sim-
ilar. Important examples include the quantum hall resistance and
the oscillation frequency of a Josephson junction.

{4) The fine structure constant is important and central to our in-
terlinked system of fundamental constants [23]. Its role will be
enhanced if a contemplated redefinition of the SI system of units
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(to remove the dependence upon an artifact mass standard) is
adopted [27].

(5) Measurements of the muon magnetic moment (28], wmade to test
for possible breakdowns of the Standard Model of particle physics,
require a value for . Small departures from the Standard Model
would only be visible once the large a-dependent QED contribution
to the muon g value is subtracted out.

(6) Comparing o values from methods that depend differently upon
QED theory is a test of the QED theory. '

6.3. Most Accurate & Comes from Electron g/2

6.3.1. New Harvard measurement and QED theory

The most accurate determination of the fine structure constant utilizes
s mew measurement of the electron magnetic moment, measured in Bohr
magnetons {7},

g/2 = 1.001159 652 18073 (28) [0.28 ppt]. ~ (6.5)

This 2008 measurement of g/2 (Chapter 5) is 15 times more precise than
. the 1987 measurement [9] that had stood for about twenty years. The high
precision and accuracy came from new methods that made it possible to
resolve the quantum cyclotron levels [29], as well as the spin levels, of one
electron suspended for months at a time in a cylindrical Penning trap [30].

The electron g/2 is essentially the ratio of the spin and cyclotron fre-
quencies. This ratio is deduced from measurable oscillation frequencies in
the trap using an invariance theorem [31]. These frequencies are measured
using quantum jump spectroscopy of one-quantum transitions between the
lowest energy levels {8]. The cylindrical Penning trap electrodes form a
microwave cavity that shapes the radiation field in which the electron is
located, narrowing resonance linewidths by inhibiting spontaneous emis-
sion [29, 32], and providing boundary conditions which make it possible to
identify the symmetries of cavity radiation modes [7, 33]. A QND (quan-
tum nondemolition) coupling, of the cyclotron and spin energies to the
frequency of an orthogonal and nearly harmonic electron axial oscillation,
reveals the quantum state [29]. This harmonic oscillation of the electron
is self-excited [34], by a feedback signal [35] derived from its own motion,
to produce the large signal-to-noise ratio needed to quickly read out the
quantum state without ambiguity.
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Within the Standard Model of particle physics the measured electron
9/2 is related to the fine structure constant by

=146 (2) £ (2400 (2)'+0u(2) o (2)'
+ ...+ Ghadronic + Gweak. (6.6)

Dirac theory of the electron provides the leading term on the right. Fig. 6.2
compares the size of the measured g/2 (gray) with its measurement uncer-
tainty (black) to size of this leading Dirac term and other theoretical con-
tributions (gray). The uncertainties (black) of the theoretical contributions
arise from the uncertainty for the coefficients.

ppt ppb ppm

Harvard g/2
1

Cola/n)
~Cyla/m)?
Calar/m)°
—Cgla/my*

107 107" 10 9% 103 1
contributiontog/2 =1+ a

Fig. 6.2. Contributions to 9/2 for the experiment {top bar), terms in the QED series
(below), and from small distance physics (below). Uncertainties are black, The inset
light gray bars represent the magnitude of the larger mass-independent terms (A1) and
the smaller A, terms that depend upon either Me /My OF Me/mo. The even smaller Az
terms, functions of both mass ratios, are not visible on this scale.

Quantum electrodynamics (QED) provides the expansion in the small
ratio o/ ~ 2x 1073, and the values of the coefficients Cf. The first three of
these, C'3 [10], Cy [11-13), G4 [14] are exactly known functions which have no
theoretical uncertainty. The small uncertainties in C4 and Cy, completely
negligible at the current level of experimental precision (Fig. 6.2), arise
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because Cj and Cs depend slightly upon lepton mass ratios.

Cy = 0.500 000 000 000 00 {exact) (6.7)
Cy = — 0.328 478 444 002 90 (60) | (6.8)
Ce = 1.181 234 016 827 (19) - (6.9)
Cs = — 1.914 4 (35) | ' (6.10)
Cio= 0.0 (4.6). (6.11)

There is no analytic solution for Cy yet but this coefficient has been caleu
lated numerically {15].- Unfortunately, C1g has not yet been calculated; the
quoted bound is a simple extrapolation from the lower-order Cy [36].

Very small additional contributions due to short distance physics have
also been evaluated [37, 38],

Ohadronic = 0.000 000 000 001 682 (20) (6.12)
Gwea = 0.000 000 000 000 030 (01). (6.13)

'The hadronic contribution is important at the current level of experimental
precision, but the reported uncertainty for this contribution is much smaller
than is currently needed to determine o from 9/2. See Chapters 8 and 9
for further details.

The most precise value of the fine structure constant comes from using
the very accurately measured electron g/2 (Eq. (6.5)) in the Standard Model
relationship between g/2 and a (Eq. (6.6)). The result is

o~ (HO8) = 137.035999 084 (33) (39) [0.24 ppb} [0.28 ppb),
= 137.035999 084 (33) (12) (37) [0.24 ppb] [0.09 ppb] [0.27 ppb),
= 137.035999 084 (51) [0.37 ppb). (6.14)

The first line shows experimental (first) and theoretical (second) uncer-
'tainties that are nearly the same. The second line separates the theoretical
uncertainty into two parts, the numerical uncertainty in Cs (second) and
the estimated uncertainty for Cjo (third). The third line gives the total
0.37 ppb uncertainty. A graphical comparison of the experimental and
theoretical uncertainties in determining o from ¢/2 is in Fig. 6.3.

The crudely estimated theoretical uncertainty in the uncalculated Cio
currently adds more to the uncertainty in o more than does the measure-
ment uncertainty for g/2. As a result, the factor of 15 reduction in the
measurement uncertainty for g/2 results in only a factor of 10 reduction in
the uncertainty in «.
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Fig. 6.3. Experimental uncertainty (black) and theorgtical uncertainties (gray) that
determine the uncertainty in the a that is determined from the measured electron g/2.

Figure 6.1 compares our o~ '(H08) to other accurate determinations
of a. The fine structure constant is currently determined about 12 and 21
times more precisely from g/2 than from the best Cs and Rb measurements
(to be discussed). No other a determination has error bars small enough
to fit in this figure. Comparing our o with the most accurate independent
determinations is a test of the Standard Model prediction in Eq. (6.6),
along with the theoretical assumptions used for the other determinations.
More accurate independent o values would improve upon what is already
the most stringent test of QED theory.

6.3.2. Status and reliability of the QED theory

The electron g/2 differs from 1 by about one part in 10° as a result of the

- QED corrections to the Dirac theory. How uncertain and how rellable is

the QED theory that is needed to accurately determine o from g/2? Given

the complexity of the theory, and mistakes that have been discovered in
the past, how likely is it that additional mistakes wili either appreciably

change o in the future, or go undetected?

In this section we summarize the status of calculations of the O} coeffi-
cients, the current values of which are already listed in BEqs. 6.7-6.11. The
history and method of the calculations are discussed in Chapters 3 and 4.
We illustrate how impressive analytic calculations have made it easy to now
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evaluate the lowest order coefficients (Cy, Cy and Cg) to an arbitrary pre-
cision with no theoretical uncertainty, provided that no mistakes have been
made. Numerical calculations and verifications of Cg, and the prospects for
numerical calculations of Cip, are also surhmarized.
There is no theoretical uncertainty in the Dirac unit contribution to
9/2 in Eq. (6.6). There is also no theoretical uncertainty in the leading
' QED correction, Cy(a/7), insofar as long ago a single Feynman diagram
was evaluated analytically to determine (' exactly [10].
The Cj coefficient is the sum of a mass-independent term and two much
smaller terms that are functions of lepton mass ratios,
Cy =AY ¢ Ag@(gz) + Ag@(gﬁ). (6.15)
14 T
The mass-independent term is larger by many orders of magnitude. This
pure number, involving 7 Feynman diagrams, is given by [11-13, 39]

197 72 3 2
AW 2L, T 9 - 16)
! 144 + 17 T 1¢0) 7 (2 (6.16)
= —0.328478 965579193 . .. (6.17)

where ((s) is the Riemann zeta function (Zeta[s] in Mathematica).

There is no theoretical uncertainty in this contribution, which can easily
be evaluated to any desired precision. Of course, this is only true if there are
no mistakes in the analytic derivation. The original result [40] had an error
in the evaluation of an integral. This was corrected some years later [12]
(and then confirmed independently [11]) after the initial result did not agree
with a numerical calculation. This was the first of several instances where
independent evaluations allowed the elimination of mistakes, as we shall
see.

The mass-dependent function Ag‘)(x) is an analytical evaluation of one
Feynman diagram [41]. In a convenient form [42] it is given by

AN (1 /z) = - -g-g- - lgg_r_l + 2?4 + 3In(z)] + -;'5(1 — 5z2)
% (@) (")~ Liy(x) + L
X [_é- — In(x) n(1 +:t:) — Lix(x) + 12(—}:)]
+ zt [7—73— ~ 21n(x) ln(% —z) — Lig(xz)J . (6.18)

The dilogarithm function is a special case of the polylogarithm (Poly-
Log[n,x] in Mathematica); it has a series expansion Li,(x) = 372 xk/k»
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that converges for the cases we need. The exactly calculated mass-
dependent function is evaluated as a function of two lepton mass ratios [23,
43], '

My /me = 206.768 276 (24) (6.19)
My /e = 3 477.48 (57). (6.20)

There is no theoretical uncertainty in the mass-dependent terms
| ASD (me/m,) = 5.197 387 71 (12) x 107, (6.21)
A (me/m.) = 1.837 63 (60) x 10~°. (6.22)

The uncertainties are from the uncertainties in the measured mass ratios.
When multiplied by (a/m)? these are very small contributions to g9/2. The
first of these two contributions is larger than the current experimental pre-
cision (Fig. 6.2) while the second is not. The uncertainties in both terms
are so small as to not even be visible in Fig. 6.2.

‘The higher order coefficients, C}. with k = 6,8,10,..., are each the sum
of a constant and functions of mass ratios,

Ce = AT + A7 (2) + A (Z2) 1 4P

Me M,
my . my m

). (6.23)

The leading mass-independent term, Agk)_, is much larger than the small
mass-dependent corrections. In fact, for k > 8, the mass-dependent cor-
rections should not be needed to determine « from g/2 at the current or
foreseeable measurement precision in 9/2 owing to their very small values.

For sixth order the mass-independent term requires the evaluation of 72
Feynman diagrams. An analytic evaluation of this term, mostly by Remiddi
and Laporta [14], is

 _ 8 5., 215 239 , 28250
AT = gmlB) = 5<) 360" 1 5184
139 298 17101 ,
+ T ¢(3) 3 T In(2)—;————-~810 T
100 0.1 In%(2) #%In%2)
-+ ~—3—' [qu("é') +. 74 — 54 (6.24)
= 1.181 241 456 587 ..., (6.25)

This remarkable analytic expression, easily evaluated to any desired numer-
ical precision with no theoretical error, is very significant for determining
@ from g/2 insofar as it completely removes what otherwise would be a
significant numerical uncertainty.
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Is the remarkable analytic expression free of mistakes? The best confir-
mation is the good agreement between the extremely complicated analytic
derivation and a simpler but computation-intensive numerical calculation,
Agﬁ) = 1.181 259 (40) [44]. This result used the best computers available
many years ago; it could (and should) now be greatly improved. An earlier
numerical evaluation led to the discovery and correction of a mistake made
in an earlier analytic derivation of a renormalization term [44]. This further
illustrates the importance of checking analytic derivations numerically.

An exact analytic calculation of the 48 Feynman diagrams that deter-
mine the mass-dependent function A{®’ has also been completed [45, 46},
However, the resulting expressions are apparently too lengthy to publish in
a printed form. Instead, expansions for small mass ratios are made available

AP = 3" v o (r). (6.26)
k=1

The expansions make it easy to calculate the two most important mass
dependent contributions to the precision at which the measurement uncer-
tainty in the mass ratios is important for any foreseeable improvements in
the mass ratio uncertainties. Functions fy and f; are from Ref. [46), f5 is

from Refs. [45] and [47], and fs is from Ref. [42].
23In(r) | 3¢(3) 2r? 74957

falr) = =55 2 45 97200° (6:27)
43371n*(r) = 209891In(r) = 1811¢(3) 191972
falr) = — 55880 476280 2304 68040
451205689
~ 533433600° (6.28)
2807In*(r) = 665641ln(r)  3077¢(3)
folr) =~ 500 2976750 5760
1696772 246800849221 (6.29)
907200  480090240000° '
55163In°(r) | 24063509989 1In(r)  9289¢(3)
falr) = - 594000 172889640000 23040
2
© 34001972 896194260575549 (6.30)

24948000  2396250410400000° )
‘These expansions have been compared to the exact calculations to verify the

claim that their accuracy is much higher than any experimental uncertainty
that will likely be reached [42].
.With the current values of the mass ratios,
AP (m,/m,) = —7.373 941 58 (28) x 105, (6.31)

AL (me/m,) = —6.581 9 (19) x 10~8, (6.32)
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The uncertainties arise from the measurement imprecision in the mass ra-
tios, not from any theoretical uncertainty. The term that depends upon
both mass ratios [42],

AP (e fmy, mefm.) = 1.900 45 (62) x 10™13 (6.33)

is oo small to be important for the electron 9/2 in the foreseeable future,
or to even have its uncertainty visible in Fig. 6.2. '

For the current and foreseeable experimental precisions, only the mass-
~independent term is required in eighth order. Kinoshita and his collabora-
tors have reduced the 891 Feynman diagrams to a much smaller number of
master integrals, which were then evaluated by Monte Carlo integrations
over the course of ten years. The latest result is [15]

Cs = AP = ~1.9144 (35), (6.34)

The uncertainty is that of the numerical integration as evaluated by an
integration routine [48], limited by the computer time available for the
integrations. A caleulation of this coefficient to 0.2% is a remarkable result
that is critical for determining o from a/2. :

Checking the eighth-order coefficient to make sure that it is correctly
evaluated is a formidable challenge. There is no analytic result to compare
(vet). Only the collaborating groups of Kinoshita and Nio have had the
courage and tenacity needed to complete such a challenging calculation..
The complexity of the calculation makes it very difficult to avoid mistakes.
The strategy has been to check each part of the calculation by using more

“than one independent formulation [49].

Our 2006 measurement of 9/2 came while the theoretical checking was
underway. At this point we published a value of o along with a warning
that the theoretical checking for eighth order was not yet complete [50]. In
2007, a calculation using an independent formulation reached a precision
sufficient to reveal a mistake [15] in how infrared divergences were handled
In two master integrals. When the mistake in Cs was corrected, the o
determined from g/2 shifted a bit [50).

One could take the moral of the 2007 adjustment to be that the sheer
complexity of the high order QED calculation makes it impossible to be cer-
tain that they are done correctly. I take the opposite conclusion, choosing
to be reassured that the theory is checked so carefully that even a very small
mishandling of divergences can be identified and corrected. Now that the
eighth order calculation is completely checked by an independent formula- _
tion, to a level of precision that the theorists deem is sufficient to detect
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mistakes, it seems much less likely that another substantial change in o
will be necessary. The check will be even better when the new calculation .
reaches the numerical precision of the calculation being checked.

An evaluation of, or at least a reasonable bound on, the tenth-order coef-
ficient, Cyg = A(lm}, is needed as a result of the level of accuracy of our 2008
measurement of g/2. A calculation is not easy given that 12672 Feynman
diagrams contribute. The estimated bound suggested in the meantime (37,

Cio = 0.0(4.6), (6.35)

takes the uncalculated coefficient to be zero with an uncertainty that is an
extrapolation of the size of the lower order coefficients. This crude estimate
is not so convincing. It is especially unsatisfying given that it now limits
the accuracy with which & can be determined from the measured g/2, as
illustrated in Fig. 6.3.

6.3.3. How much better can a be determined?

Fig. 6.3 shows the experimental and theoretical contributions to the uncer-
tainty in the o determined from g/2. This uncertainty is currently divided
nearly equally between measurement uncertainty in g/2 and theoretical un-
certainty in the Standard Model relation between g/2 and c. The largest
theoretical uncertainty is from the uncalculated Cig, followed by numerical
uncertainty in Cg.

The first calculation of Cyp = Agw) is now underway [15, 51, 52} It
has already produced an automated code that was checked by recomputing
the eighth-order coefficient. (This is the independent calculation that in
2007 reached the precision needed to expose a mistake in the calculation of
Cs [15].) No limit or bound will apparently be available until the impressive
calculation is completed at some level of precision because many contribu-
tions with similar magnitudes sum to make a smaller result. A completed
calculation of Cyg will likely reduce the theoretical uncertainty enough so
that the uncertainty in « would approach the 0.26 ppb uncertainty that
comes from the measurement uncertainty in g/2.

The uncertainty in Cg can be reduced once the uncertainty in Cjo has
been reduced enough to warrant this. More computation time would reduce
the numerical integration uncertainty in Cg. A better hope is that parts or
all of this coefficient will eventually be calculated analytically. Efforts in
this direction are underway [53].

1t thus seemmns likely that the theoretical uncertainty that limits the accu-
racy to which o can be determined from g/2 can and will be reduced below
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0.1 ppb. The corresponding good news is that it also seems likely that the

uncertainty in « from the measurement of g/2 can also be reduced below

0.1 ppb. With enough experimental and theoretlcal effort it may well be
possible to do even better.

6.4. Determining « from the Rydberg, Two Mass Ratios and
fi/M for an Atom

All the determinations of & whose uncertainty is not muech larger than 20
times the uncertainty of the o from g/2 are compared in Fig. 6.1. The values
not from g/2 in this figure do not come from a single measurement. Instead,
each requires the determination of four quantities from a minimum of six
precise measurements, each measurement contributing to the uncertainty
in the « that is determined. Theory, including QED theory, is essential to
determining two of the measured quantities.

The definitions for & and the Rydberg constant R, taken together yield -

a? = —R L (6.36)
Me :
No accurate measurement of /i/m, for the electron.is available. However,
a precisely measured /i/M, for a Cs or Rb atom (of mass M) can be used
along with two measurable mass ratios, 4,(e) and A,(z),
2 .. _4_7T Roo Ar(m) _ﬁ'_
A’r(e) M:r:
The speed of light, c, is defined in the SI system of units.

The first of the needed mass ratios, A,(e) = 12m, /M (}2C), is the elec-
tron mass in atomic mass units {(amu). The second is the mass of Cs or
Rb in amu, Ar(z) = 12M(z)/M (*2C}. Determining the Rydberg constant
accurately requires the precise measurements of two hydrogen transition fre-
quencies (and less accurate measurements of other quantities). Determining
h/M. for Cs and Rb requires the measurement of an optical frequency w
and an atom recoil velocity v, or equivalent recoil frequency shift, w,..

The fractional uncertainties that contribute to the uncertainty in o are'
listed in Table 6.1 for Cs, and in Table 6.2 for Rb, in order of increasing
precision. Owing to the square in Eq. (6.37) the fractional uncertainty in
o is half the fractional uncertainty of the contributing measurements.

The Rydberg constant describes the structure of a non-relativistic hy-
drogen atom in the limit of an infinite proton mass. Real hydrogen atoms, of
course, have fine structure, Lamb shifts, and hyperfine structure. The pro-
ton has a finite mass. The Dirac energy eigenvalues must be corrected for

(6.37)
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Table 6.1. Measurements determining o(C's).

Measurement Ao/a References
quantity  ppb ppb
wr 15, 7.7 [ 122]]
Aq(e) 04 0.2 [ 23, 54])
Ar(Cs) 0.2 0.1 [f18]]
w  0.007 | 0.007 [ [20]]
Reo _ 0007 | 0.004 | [[16, 17, 23]]
Best a(Cs) ' 8.0 f {22])

Table 6.2. Measurementgs determining af Rb).

Measurement Aa/a References
quantity ppb ppb
we 9.1 | 46 [ [21]]
Ar{e) 04 0.2 [ [23, 54))

A-(RB) 0.2 0.1 [ 18}
: w 0.4 0.4 f [21]]

Reo 0007 | 0.004 | [[16, 17, 23]]
Best a{Rb) 4.6 [ [21]}

relativistic recoil, QED Selfienergy effects, and QED vacuum polarization.
Corrections for nuclear polarization, nuclear size and nuclear self-energy are
important at the precision with which transition energies can be measured.

The theory needed to determine the Rydberg constant from meastre-
ments is described in a Seven-page section of Ref. [23] entitled “Theory
relevant to the Rydberg constant.” The accepted value of the Rydberg
comes from a best fit of the measurements of a number of accurately mea-~
sured hydrogen transitions [16, 17}, the proton-to-electron mass ratio [19],
the size of the proton, etc. to the intricate hydrogen theory for each of
the hydrogen transitions, using more precisely measured values for every
quantity that is not determined best by fitting. A full discussion of this
process and a complete bibliography for all the measurements and calcula-
tions that make important contributions Is beyond the scope of this work.
Tables 6.1 and 6.2 thus show the currently accepted uncertainty for the Ry-
dberg constant [23) rather than the uncertainties from all the contributing
measurements, '
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The measured electron mass in amu, A,(e), relies equally upon precise
measurements [19, 54] and upon bound state QED theory [24], using

Mg __ Obound 1 "—_U_E
M 2 qlew,’ (6.38)

where g/e is the integer charge of the ion in terms of one quantum of
charge. Measurements are made using a 2C%*+ (or 1807+) jon trapped in
a pair of open access Penning traps [55], a type of trap we developed for
accurate measurements of q/m for an antiproton. Spin flips and cyclotron
excitations are made in one trap and then transferred to the other for
detection in a strong magnetic gradient. The spin frequency w, of the
electron bound in an ion is measured. The cyclotron frequencies w, of the
lon is deduced from the measurable oscillation frequencies of the trapped ion
using the Brown-Gabrielse invariance theorem [31, 56]. This determination
of the electron mass in amu could not take place without an extensive QED
calculation of the g value of an electron bound into an ion [24]. A less
accurate measurement of the electron mass in amu does not rely on QED
theory [57]; it agrees with the more accurate method.

The needed mass ratios, A.(z), are from measurements (18] using iso-
lated ions in a orthogonalized hyperbolic Penning trap [58], a trap design
we developed to facilitate precise measurements. Ion cyclotron frequencies
are deduced from oscillation frequencies of the ions in the trap using the
same invariance theorem {31, 56). lon cyclotron energy is transferred to the
axial motion using a sideband method that allows cyclotron information to
be read out by a SQUID detector that is coupled to the axial motion of an
ion in a trap. Ratios of ion frequencies give the ratios of masses in a simple
and direct way that is insensitive to theory. Ratios to of M, to the carbon
mass, as needed to get amu, came from using ions like COf and several
hydrocarbon ions as reference ions.

The basic idea of the /i/M, measurements for Cs and Rb is that when
an atom absorbs a quantum of light from a laser field, or is stimulated to
emit a quantum of light into a laser field, then the atom recoils with a
momentum Mzv, = hk, where for a laser field with angular frequency w we
have k = w/c. Thus /M, is determined by the measured optical frequency
of the laser radiation, w, and by the atom recoil velocity v.. The latter can
- be accurately measured from the recoil shift w, in the resonance frequency
caused by the recoil of the atom. ‘

The laser frequency is measured a bit differently for Cs and Rb. For Cs
the needed frequencies are measured with a precision of 0.007 ppb, much
more accurately than will likely be needed for some time, using an optical
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comb to directly measure the frequency with respect to hydrogen maser
and a Cs fountain clock [20]. For Rb, a diode laser is locked to a stable
cavity, and its frequency is compared using an intermediate reference laser
to that of a two-photon Rb standard [59)].

The largest uncertainty in determining « using Eq. (6.37) is the uncer-
tainty in measuring the atom recoil velocity vy, or equivalently the recoi
shift w, = 1M,v?/h. This measurement uncertainty is much larger thar
the measurement uncertainty in R, A.(e), A.(z), and w, and is thus
the limit to the accuracy with which « can currently be determined by
this method. The availability of extremely cold laser-cooled atoms has led
to significant progress by two different research groups. First came a Cs
measurement at Stanford [22] in 2002. More recently came 2006 and 2008
measurements of slightly higher precision with Rb atoms at the LKB in
Paris [21, 59].

The Cs recoil measurement [22] and the most accurate of the Rb mea-
surement {21] both measure the atom recoil using atom interferometry.
The so-called Ramsey-Bordé spectrometer [60] configuration that is used
in both cases was developed to apply Ramsey separated oscillator field
methods at optical frequencies. Pairs of stimulated Raman /2 pulses pro-
duced by counter-propagating laser beams [61] split the wave packet of a
cold atom into two phase-coherent wave packets with different atom veloci-
ties. A series of N Raman 7 pulses then add recoil kicks to both parts of the
atom wave packet. When a final pair of Raman 7 /2 pulses make it possible
for the previously separated parts of the wave packet to interfere, the inter-
ference pattern reveals the energy difference, and hence the recoil frequency
difference, for the wave packets in the two arms of the interferometer.

The measured phase difference that reveals v, and w, goes basically
as N, where N is the number of additional recoil kicks given to the wave
packets in both arms of the spectrometer. The experiments differ in the way
that they seek to make N as large as possible. The initial Cs measurement
used a sequence of 7 pulses to achieve N = 30. The most accurate of the
Rb measurements achieved N = 1600 using a series of Raman transitions
with the frequency difference between the counter-propagating laser beams
being swept linearly in time. This can equivalently be regarded as a type
of Bloch oscillation within an accelerating optical lattice [62].

An improved apparatus is under construction in the hope of improving
the 2008 measurement of the Rb recoil shift on the time scale of a year or
two. Although no Cs recoil measurement has been reported since 2002, an
improved apparatus has been built. A goal of soon measuring the Cs recoil
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shift accurately enough to determine a to sub-ppb accuracy was mentioned
in a recent report on improved beam splitters for a Cs atom interferome-
ter [63)].

6.5. Other Measurements to Determine Ie"

6.5.1. Determining a from He fine structure

Surprisingly none of the accurate measurements determine o by measuring
- atomic fine structure intervals. Helium fine structure intervals have been-
measured precisely enough so that two-electron QED theory could deter-
-mine « from the interval at about the same precision as do the combined
Rydberg, mass ratios and atom recoil measurements. Helium. is a better
candidate for such measurements than is hydrogen because the fine struc-
ture splittings are larger, and the radiation lifetimes of the levels are longer -
s0 that narrow resonance lines can be measured. Unfortunately, theoretical
inconsistencies need to be resolved. '
The most accurate measurements of three 23P He fine structure inter-
vals [1-4, 25] are in good agreement as illustrated in Fig. 6.4. Our Harvard
‘laser spectroscopy measurements [25]) have the smallest uncertainties,

fi2 =2291175.59 £0.51 kHz  [220 ppb)] (6.39)
fo1 = 29616 951.66 +0.70 kHz [ 24 ppb] (6.40)
foz = 31908 126.78 £0.94 kHz [ 29 ppb]. (6.41)

The figure shows good agreement between measurements of the largest
intervals; these are best for determining &. The measurements of the small
interval also agree well. This interval is less useful for determining o but is
a useful check on the theory.

Because a fine structure interval frequency f goes as Roa? to lowest
order, and the Rydberg is known much more accurately than o, a fractional
uncertainty in f translates into a fractional uncertainty for e that is smaller
by half - if the theory would contribute no additional uncertainty. The 24
ppb fractional uncertainty in the fo; that we reported back in 2005 would
then suffice to determine o to 12 ppb, a small enough uncertainty to allow
this value to be plotted with the most precise measurements in Fig. 6.1.

A big disappointment is that Fig. 6.4 reveals two serious problems with
calculations done independently by two different groups (5, 6]. (See Chap-
ter 7.} The calculated interval frequencies (using « from g/2) are plotted
below the measurements in the figure. The first problem is that the two
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Fig. 6.4, Most accurate measured [1-4] and calculated (5, 6] *He fine structure intervals
with standard deviations. Directly measured intervals (black filled circles) are compared
to indirect values (open circles) deduced from measurements of the other two intervals.
Uncorrelated errors are assumed for the indirect values for other groups.

calculations do not agree, raising questions as to whether mistakes have
been made. It is not hard to imagine mistakes given that the two-electron
QED theory gives interval frequencies that are the sum of a series in powers
of both @ and In o. The convergence is not rapid, and the many terms to be
summed present a significant bookkeeping challenge. The second problem
is that both theories disagree with the measurements, for both the large and
small intervals. The measurements from 2005 and earlier, though they have
an accuracy that would suffice to be one of the most precise determinations
of v, cannot be used until the theory issues are resolved.

A serious difficulty with two-electron QED theory seems surprising given
how successful one-electron QED theory has been in its predictions. Is
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there a fundamental problem or is this a case of mistakes? Until the two
calculations agree the latter explanation is hard to discount, and neither
calculation agrees with experiments.

A problem with the measurements is the other possibility, though the-
good agreement between measurements with very different systematic ef-
fects would suggest otherwise. One caution is that the most accurate mea-
surements determine to 700 Hz the center of resonance lines that are slightly
bigger than 1.6 MHz natural linewidths. “Splitting the line” to a few parts
in 10% of the linewidth is challenging, requiring as it does that systematic
shifts and distortions of the measured resonance lines be either insignifi-
cant or well understood. It is hard to believe that a helium fine structure
measurement could ever approach the accuracy of the current a from g/2.

After we published our measurement of the helium fine structure inter- -
vals we narrowed our laser linewidth to below 5 kHz and stabilized it to
an iodine clock using an optical comb that we built to bridge between the
very different frequencies of our clock and the 1.08 um optical transitions
that we measured. We also greatly improved the signal-to-noise ratio in
our measured resonance lines. Within a couple of hours we could get close
to 100 Hz resolution for ail three intervals, and we could do this in an auto-
mated way during the mechanically and electrically quiet nighttimes with
none of us present.

However, at the new level of precision that we were exploring we encoun-
tered systematic frequency shifts that suggested to us that we had pushed
saturated absorption measurements in a discharge cell as far as they should
reasonably be pushed. Given the large amount of line splitting already be-
ing done, and the theoretical inconsistencies, we decided not to replace the
cell with a helium beam. Instead, several years ago we shut the experiment
down - perhaps the first discontinued optical comb experiment — and de-
cided to pursue measurements of the electric dipole moment of the electron
instead.

6.5.2, Historically important methods

In Fig. 6.1 there is a factor of more than 20 between the sizes of the uncer-
tainties for the most accurate determinations of a that have already been
discussed above. All other measurements of o have larger error bars that
will not fit on this scale. Several additional measurements fit on the 8 times
expanded scale of Fig. 6.5, though the error bars for the most accurate de-
terminations of & from g/2 are then too small to be visible.
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Fig. 65, Less accurate measurements of o compared upon an expanded scale. The
uncertainties in the two most accurate determinations of a are too small to be visible
on this large scale,

A summary and discussion of traditional measurements of o« is in
Ref. [23]. The work includes the value deduced from the quantum Hall
resistance [64], a value that essentially agrees with the more accurate deter-
minations of o insofar as these lie almost within its one standard deviation

erTor bars.

A measurement using neutrons [65] that is similar in spirit to the de-
scribed Cs and Rb measurements is also plotted. Different mass ratios are
required, of course, but an even more important difference is that /M, is
deduced from the diffraction of cold neutrons from a Si crystal. The lattice
spacing in 5i is thus crucial, and there is an impressive range of differing
values for this lattice constant [23]. A recommended value [23] is used for
the figure but given the range of measured lattice constants it is not so
surprising that this value of « does not agree so well with more accurate
measurements.

Values from muonium hyperfine structure measurements (23, 43] and
from messurements of the AC Josephson effect (with related measure-
ments [23]) are also plotted because of their importance in the past. It is
not clear why the latter solid state measurement disagree so much with the
more accurate values.
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6.6. Conclusion

Combined measurements of the Rydberg constant, two mass ratios, a laser
frequency, and an atom recoil frequency together determine o using Cs
atoms to 8.0 ppb, and using Rb atoms to 4.6 ppb. Efforts are underway to
improve both sets of measurements encugh to determine o to 1 ppb.

Helium fine structure measurements are now accurate enough to de-
termine o at nearly the same precision, but with completely different sys-
tematic uncertainties. Unfortunately, the two-electron QED theory needed
to relate fine structure intervals to o heeds to be clarified before this can
happen.

New measurements of the electron magnetic moment g/2, along with
QED calculations, determine the fine structure constant much more accu-
rately than ever before, to 0.4 ppb. The uncertainty in o will be reduced,
without the need for a more accurate measurement of g/2, when a first
calculation of the tenth-order QED coefficient is completed. It seems rea-
sonable to reduce the experimental and theoretical contribution to determi-
nations of o from g/2 to 0.1 ppb or better in efforts now underway, though
this will take some time.

Acknowledgments

Useful comments on this manuscript from F. Biraben, D. Hanneke, T'. Ki-
noshita, S. Laporta, W. Marciano, P. Mohr, H. Mueller, M. Nio, M. Passera,
E. de Rafael, E. Remiddi, and B. L. Roberts are gratefully acknowledged. -
Support for this work came from the NSF, the AFOSR, and from the Hum-
boldt Foundation. _ .

References

[1] G. Giusfredi, P. de Natale, D. Mazzotti, P. C. Pastor, C. de Mauro, L. Fal-
lani, G. Hagel, V. Krachmalnicoff, and M. Inguscio, Can. J. Phys. 83, 301-
309, (2005).

[2] J. Castillega, D. Livingston, A. Sanders, andD Shiner, Phys. Rev. Lett. 84,
4321-4324, (2000). _

{3] C. H. Storry, M. C. George, and E. A. Hessels, Phys. Rev. Lett. 84, 3274—
3277, (2000).

[4] M. C. George, L. D. Lombardi, and E. A. Hessels, Phys. Rev. Lett. 87T,
173002, (2001).

[5] G. W.F. Drake, Can. J. Phys. 80, 1195-1212, (2002).

[6] K. Pachucki, Phys. Rev. Lett. 97, 013002, (2006).



216

7]

(8]

(9]
)
[11]
(124
[13]
[14]
(15]
(16}

(17]

(18]

[19]

[20]
21]
(22)

[23]
(24}

[25}

[26]

(27)

[28]
[29]
(30]

31)
132]
[33]

Determining the Fine Structure Constant
Chapter 6 in "Lepton Dipole Moments"
G. Gabrielse

G. Gabrielse

D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801,
(2008).

B. Odom, D. Hanneke, B. D'Urso, and G. Gabrielse, Phys. Rev. Lett. 897,
030801, (2006). )

R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Lett.
59, 26-29, (1987).

J. Schwinger, Phys. Rev. 73, 416L, (1948).

C. M. Sommerfield, Phys. Rev. 107, 328, (1957).

A. Petermann, Helv. Phys. Acta. 30, 407, (1957).

C. M. Sommerfield, Ann. Phys. (N.Y.). 5, 26, (1958).

S. Laporta and E. Remiddi, Phys. Lett. B. 379, 283, (1996).

T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Letl. 99,
1104086, (2007).

T. Udem, A. Huber, B. Gross, J. Reichert, M, Prevedelli, M. Weitz, and
T. W. Hinsch, Phys. Rev. Lett. 79, 2646-2649, (1997). .

C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, . Nez, L. Julien,
F. Biraben, O. Acef, J. J. Zondy, and A. Clairon, Phys. Rev. Lett. 82, 4960-
4963, (1999).

M. P. Bradley, J. V. Porto, S. Rainville, J. K. Thompson, and D. E.
Pritchard, Phys. Rev. Lett. 83, 4510-4513, (1999}).

G. Werth, J. Alonso, T. Beier, K. Blaum, S. Djekic, H. Héaffner, N. Her-
manspahn, W. Quint, 8. Stahl, J. Verdd, T. Valenzuela, and M. Vogel, Int.
J. Mass Spectromn. 251, 152, (2006).

V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bar-
tels, and L. Hollberg, Phys. Rev. 4. 73, 032504, (2006).

M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Hkélifa, C. Schwob,
F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 101, 230801, (2008). -
A. Wicht, J. M. Hensley, E. Sarajlic, and §. Chu, Phys. Scr. T102, 82-88,
(2002).

P. J. Mohr, B. N. Taylor, and D. B. Newall, Rev. Mod. Phys. 80, 633, (2008).
K. Pachucki, A. Czarnecki, U. Jentschura, and V. A. Yerokhin, Phys. Rev.
A. 72, 022108, (2005).

T. Zelevinsky, D. Farkas, and G. Gabrielse, Phys. Kev. Lett. 95, 203001,
{2005).

G. Giusfredi, P. de Natale, D. Mazzotti, P. C. Pastor, C. de Mauro, L. Fal-
lani, G. Hagel, V. Krachmalnicoff, and M. Inguscio, Can. J. Phys. 83, 301-
309, (2005).

I. M. Mills, P, J. Mohr, T. J. Q_uinn, B. N. Taylor, and E. R. Williams, .

Metrologie. 43, 227, (2006).

G. W. Bennett and et al.,, Phys. Rev. D. 73, 072003, (2006).

S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287-1290, (1999).

G. Gabrielse and F. C. MacKintosh, Intl, J. of Mass Spec. and Ton Proc.
57, 1-17, (1984).

L. 8. Brown and G. Gabrielse, Phys. Rev. A. 25, 2423-2425, (1982).

G. Gabrielse and H. Dehmelt, Phys. Rev. Lett. 55, 67-70, (1985).

J. Tan and G. Gabrielse, Phys. Rev. Lett. 67, 3090-3093, (1991).




[34]

(35]

[36]
(37}
(38}

(39}
[40]
[41]

[42]

[43]

[44]
[45]
46}
[47]
[48]
[49]
[50]

(51}
[52]
(53]
54}
[55]

[56]
[57]

Determining the Fine Structure Constant '
Chapter 6 in "Lepton Dipole Moments"
G. Gabrielse

Determining the Fine Structure Constant . 217

B. D'Urso, R. Van Handel, B. Odom, D. Hanneke, and G. Gabrielse, Phys.
Rev. Lett. 94, 113002, (2005).

B. D’Urso, B Odom, and G. Gabrielse, Phys. Rev. Lett. 90 (4), 043001,
(2003).

P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72, 351-495, (2000).

P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 77, 1-107, (2005).

A. Czarnecki, B. Krause, and W. J. Ma.rc1ano, Phys. Rev. Lett. 76, 3267-
3270, (1996).

A. Petermann, Nucl. Phys. 5, 677, (1958).

R. Karplus and N. M. Kroll, Phys. Rev. 77, 536, (1950).

H. H. Elend, Phys. Rev. Lett. 20, 682, (1966). 21, 720(E) (1966).

M. Passera, Phys Rev. D. 75, 013002, (2007).

W. Liu, M. G. Boshier, O. v. D. S. Dhawan, P. Egan, X. Fei, M. G
Perdekamp, V. W. Hughes, M. Janousch, K. Jungma.nn D. Kawall, F. G.
Mariam, C. Pillai, R. Prigl, G. z. Put]itz, I. Reinhard, W. Schwarz, P. A.
Thompson, and K. A. Woodle, Phys. Rev. Lett. 82] T11-714, (1999).

T. Kinoshita, Phys. Rev. Lett. 75, 4728, (1995).

S. Laporta, Nuovo Cim. A. 106A, 675-683, (1993).

S. Laporta and E. Remiddi, Phys. Lett. B. 301, 440-446, (1993).

J. H. Kiihn, et al., Phys. Rev. D. 68, 033018, (2003).

G. P. Lepage, J. Comput. Phys. 27, 192-203, (1978).

T. Kinoshita and M. Nio, Phys. Rev. Lett. 90, 021803, (2003).

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rew.
Lett. 97, 030802, (2006). ibid. 99, 039902 (2007).

T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Nucl. Phys. B740,
138, (2006).

T. Aoyama, M. Hayaka.wa, T. Kinoshita, and M. Nio, Phys. Rev. D. 78,
113006, (2008).

S. Laporta and E. Remiddi, (private communication).

T. Beier, H. Haffner, N. Hermanspahn, S. G. Karshenboim, H.-J. Kluge,
W. ant 3. Stahl, J. Verdd, and G. Werth, Phys. Rev. Lett 88, 011603,
(2002).

G. Gabrielse, L. Haarsma, and S. L. Rolston, Intl. J. of Mass Spec. and Ion
Proc. B8, 319-332, (1989). ibid. 93, 121 1989.

G. Gabrielse, Int. J. Mass Spectrom. 279, 107, (2009).

D. L. Farnham, R. S. Van Dyck, Jr., and P. B. Schwinberg, Phys. Rev. Lett.
75, 3598-3601, (1995). .

G. Gabrielse, Phys. Rev. A. 27, 2277-2290, (1983).

P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob,
F. Nez, L. Julien, and F. Biraben, Phys Reuv, Lett 96, 033001, (2006).
Phys. Rev. A 74, 052109 (2006).

C. Bordé, Phys. Lett A. 140, 10, {1989).

D. 8. Weiss, B. C. Young, and S. Chu, Phys. Rev. Leit. 70, 2706—2709
(1993).

E. Peik, M. B. Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Phys. Rev.
D. 55, 2289, (1997).




Determining the Fine Structure Constant
Chapter 6 in "Lepton Dipole Moments"
G. Gabrielse

218 G. Gabrielse

[63] H. Miiller, S. Chiow, Q. Long, S. Herrmann, and S. Chu, Phys. Rev. Lett
100, 180405, (2008).

[64] A. M. Jeffery, R. E. Elmquist, L. H. Lee, J. Q. Shields, and R. F. Dziuba
IEEE Trons. Instrum. Meas. 46, 264, (1997).

[65] E. Kriiger, W. Nistler, and W. Weirauch, Metrologia. 36 (2), 147-148
(1999). ‘





