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Density and geometry of single component plasmas
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Abstract

The density and geometry of p̄ and e+ plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H̄)
formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time,
using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal,
and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and
geometries within non-idealized, realistic trapping potentials.
© 2007 Elsevier B.V. All rights reserved.
Two methods now produce slow antihydrogen (H̄). The first
method, used most often, produces H̄ in a nested Penning trap
[1] during the positron cooling of antiprotons [2]. H̄ formation
is established by either detecting H̄ field ionization [3,4] or by
detecting p̄ annihilation and e+ annihilation in coincidence [5].
A second H̄ production method [6], uses lasers to control a two-
step charge exchange process [7]. Common to both methods are
single component plasmas of p̄ and e+—the density and geom-
etry of which must be determined reliably if the H̄ production
is to be understood and optimized.

In this Letter two very different methods to determine the
density and spatial profile of single component plasmas are
compared for the first time. Electrons are used as a more read-
ily available substitute for e+ plasmas. One method utilized
the charge deposited when the plasma is sent through an aper-
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ture [8]. Here we collect charge on a central disk and two aper-
tures that precede it (Fig. 1(d)), and correct for a small angle
θ between the trap axis and the magnetic field direction. The
second method is measuring a frequency of a quadrupole oscil-
lation of the plasma [9–14].

We use both methods in an extended form that avoids re-
lying upon the simplifying assumption that the plasmas have
a spheroidal shape, an assumption that is valid only when the
single component plasma is located within a pure electrosta-
tic quadrupole. This assumption is sometimes made (e.g. [15,
16]) because the plasma characterization is greatly simplified
by internal oscillation frequencies of spheroidal plasmas that
are known analytically [9,10]. However, the extended plasmas
we use within cylindrical trap electrodes are not located within
a pure quadrupole potential, and are thus a good test of the
two generalized methods. For the aperture method we self-
consistently solve Maxwell’s and Poisson’s equations assum-
ing thermal equilibrium to determine the plasma geometries
and densities for potentials actually applied to the trap elec-
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Fig. 1. Overview of the trap electrodes (a) and detection methods ((b)–(d)) used
to characterize single component plasmas. A non-destructive resonant tech-
nique (b) measures the number of particles in a plasma. A non-destructive
technique based on plasma modes (c) and a destructive method based on charge
counting (d) determine the plasma shape and density.

trodes [17]. For the quadrupole oscillation frequency method,
we use particle-in-a-cell methods to determine the frequency of
oscillations around this equilibrium density and geometry [18,
19]. While the possible effect of realistic potentials has been
considered separately for the aperture method [8] and for the
quadrupole oscillation method [13,18], this is the first test of
whether the two very different methods give consistent plasma
characterizations.

Traps for confining e− are formed by biasing a stack of 38
cylindrical electrodes (Fig. 1(a)) that are aligned as well as pos-
sible with a B = 5.4 T magnetic field, B ẑ. The electrodes are
located within a vacuum enclosure kept at 4.2 K via thermal
contact with liquid helium. Plasmas of up to 10 million e− are
loaded into the trap from a field emission point. They thermally
equilibrate with the 4.2 K environment via synchrotron radia-
tion and via the damping of currents they induce in a tuned cir-
cuit that is resonant at the frequency of their oscillatory motion
along the magnetic field direction. Trapped e− are counted non-
destructively using radio-frequency techniques [20] (Fig. 1(b)),
and by releasing the trapped particles and measuring the charge
deposited as these charges strike electrodes.

A single-component plasma with particles of charge q and
mass m in an axially symmetric Penning–Malmberg trap has a
thermal equilibrium density,

(1)n(ρ, z) = n0 exp

[
−qφ(ρ, z) + 1

2mωr(ωc − ωr)ρ
2

kT

]
,

in cylindrical coordinates. This Maxwell–Boltzmann distrib-
ution for temperature T rigidly rotates around the magnetic
field axis ẑ at a frequency ωr [10]. Here, n0 is the central
density and ωc = qB/m is the free-space cyclotron frequency.
The electrostatic potential φ(ρ, z) is the combined potential of
the external trap along with the self-potential of the plasma—
a self-consistent solution of Poisson’s equation: ∇2φ(ρ, z) =
−qn(ρ, z)/ε0.

For a given plasma temperature and magnetic field, the
geometry and density of a trapped plasma in a Penning–
Malmberg trap is thus fully determined by two parameters—the
Fig. 2. Plasmas in (a) an ideal Penning trap with quadrupole electric field and in
(b) an actual cylindrical electrode. For T > 0 the plasma half-length and radius
are taken to correspond to density n0/2.

central density n0 and the plasma rotation frequency ωr . Alter-
nately, we can characterize the plasma using any two parame-
ters that are independent combinations of these two. Options
include the plasma’s axial extent (zp), radial extent (ρp), aspect
ratio (α = zp/ρp), number of particles in the plasma (N ), or
alternative dynamical parameters discussed below.

For a plasma in thermal equilibrium at T = 0 K within the
pure quadrupole potential of an idealized Penning trap, these
equations result in a spheroid of constant density, n0 (e.g.
Fig. 2(a)). For T > 0 K, the density at the boundary of the
spheroid goes to zero over a Debye length. Any departure from
a quadrupole potential distorts the plasma shape away from a
spheroid (e.g. Fig. 2(b)). A stack of ring electrodes, however
they are biased, can only produce a quadrupole potential near
the central axis, so non-spheroidal plasmas are certainly to be
expected whenever plasmas extend over an appreciable fraction
of the trap radius.

The non-ideal anharmonic trapping potential is accounted
for by solving the self-consistent Maxwell–Boltzmann and
Poisson equations for the combined potential of the trap and the
particle charge density. We use the iterative code EQUILSOR,
provided to us by Spencer [17], to calculate possible configu-
rations of a single component plasma made up of N charged
particles. To parameterize the different possible plasma con-
figurations for a given N we choose to use the radius of the
plasma ρp .

Measuring N and ρp would give us the two parameters
needed to determine which of the calculated plasma distribu-
tions pertains for our plasma. Indeed, we do measure N . How-
ever, ρp is not so easy to measure directly. The two methods we
use to characterize the density and geometry of a single compo-
nent plasma are thus distinguished by what is measured as an
alternative to ρp .

To measure N we apply a fast 6 V pulse with a rise time less
than 4 ns to remove the potential well that confines the plasma.
After the charged particles leave the trap, N3 of them strike a
flat electrode with a 3.56 mm aperture, N2 pass through to strike
the next flat electrode which has a 2.54 mm aperture, and N1
pass through both apertures to strike the flat plate behind them.
Positive biases prevent secondary electrons from leaving each
electrode. Charge sensitive preamplifiers (Amptek A250) deter-
mine the number of charges striking each electrode (Fig. 3), and
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Fig. 3. Typical responses from ejecting a plasma of 4.8 million electrons onto
the three Faraday cups.

N = N1 + N2 + N3. With N determined, two measured charge
ratios N1/N and N2/N remain to be used to characterize the
plasma.

The first of the two methods that we compare makes use
of these two measured charge ratios to determine the single
additional plasma parameter (the plasma radius ρp or a more
convenient alternative) that we need to fully determine the
density and geometry of the plasma. Also determined is the
misalignment angle θ between the electrode axis and the mag-
netic field. Because the released charges travel along magnetic
field lines about 16.5 cm to the Faraday cups, a misalignment
of only θ = 0.25◦ brings an on-axis particle in the plasma to
a radial displacement of 0.7 mm by the time it reaches the
apertures—a displacement greater than 10% of the electrode
radius.

Fig. 4(a) illustrates the importance of determining the mis-
alignment angle θ . For each plasma we measure the total num-
ber of particles, N , as discussed above. For this N we self-
consistently calculate the possible 4.2 K plasma configurations
using realistic trapping potentials, assuming that the e− radi-
ate synchrotron radiation to come into thermal equilibrium at
4.2 K. (An approximate analytical treatment of the temperature
effect [21] suggests that changing the assumed temperature be-
tween 4.2 K and 0 K changes the deduced aspect ratio α by
only 0.1%.) We then choose the plasma configuration that pro-
duces the observed N1/N for each of three assumed θ values.
Fig. 4(a) then compares the measured N2/N to what is calcu-
lated for the selected plasma configuration, illustrating that one
of the three small misalignment angles is better than the other
two.

Since the trap misalignment does not change during our
measurements we determine the best value of θ from all of our
plasma samples. We use the calculated family of plasma con-
figurations for each measured N and then iterate to find the
configuration and θ that best match the measured N1/N and
N2/N . The histogram of θ values so determined (Fig. 4(b)) is
approximately a Gaussian peaked at θ = 0.25 ± 0.03◦.

With this θ , the half-lengths, radii, aspect ratios and den-
sities of the plasma configurations are redetermined from the
same data by identifying the calculated plasma configuration
that would best produce the measured charge ratio, N1/N .
The determined misalignment angle θ is small enough to only
decrease the deduced aspect ratio by about 5% from what
Fig. 4. (a) Comparison of the calculated Faraday cup N2/N to the measured
N2/N for different angles of the trap axis relative to the magnetic field axis.
(b) Histogram of deduced misalignments angle θ .

Fig. 5. (Color online.) (a)–(d) Plasma parameters measured using the plasma
mode method and the segmented Faraday cup method are compared, with the
diagonal line corresponding to perfect agreement. The agreement between the
two methods is clearly much better when a spheroidal plasma shape (red points)
is not assumed. Typical uncertainties are indicated.

would be determined assuming perfect alignment for our ex-
amples.

Measured plasma characteristics are represented by the val-
ues on the x-axis and the black points in Fig. 5, which we will
discuss after summarizing the quadrupole frequency method to
which we compare these values. The difference between each
black point and the red point directly above it in Fig. 5 is the in-
accuracy that would result from assuming that the plasma is a
spheroid. The typical uncertainties shown represent the repro-
ducibility of repeated measurements (assumed independent of
cloud size). The 100 kHz linewidth of the quadrupole resonance
and the 5000 electron uncertainty in the Faraday cup counting
account for approximately half of the uncertainty, with the re-
mainder apparently due to variations from one loaded plasma
to another.

The second method to determine single component plasma
configurations requires two measured frequencies, ωz and ω2,
along with the measured N . Possible oscillations of a spher-
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Fig. 6. Plasma response for the (a) center-of-mass mode (peaked at ωz) and
(b) quadrupole mode (peaked at ω2).

oidal plasma are classified with integers (�,m), with � > 0,
|m| < �, and m = 0 modes being axially symmetric about ẑ. The
(1,0) mode is the familiar oscillation of the plasma’s center of
mass along ẑ that is called either the axial or bounce frequency,
ωz = ω1. The (2,0) mode is a quadrupole mode in which the
plasma aspect ratio oscillates at ω2. The oscillation frequencies
for these idealized, spheroidal plasmas are known analytically
in the low temperature limit [9]. The (�,0) modes have frequen-
cies, ω�, given by

(2)1 − ω2
p

ω2
�

= k2

k1

Pl(k1)Q
′
l (k2)

P ′
l (k1)Ql(k2)

,

where

(3)k1 = α√
α2 − 1 + (ωp/ω�)2

, k2 = α√
α2 − 1

,

Pl and Ql are Legendre functions of the first and second kind,
respectively, P ′

l = dPl(z)/dz, Q′
l = dQl(z)/dz, and ωp =√

q2n0/(ε0m) is the plasma frequency.
A network analyzer (Hewlett–Packard 8753D) weakly drives

two electrodes (at about −70 dBm) near the plasma (Fig. 1(c)),
with the frequency range and relative phase applied to the two
electrodes, as appropriate to excite ωz and ω2, respectively. An
excited oscillation mode induces a current through a 4.2 K,
50 	 resistor attached to the electrodes. The voltage across
this resistor is amplified by +40 dB at room temperature, and
is then detected by the same network analyzer. The transmis-
sion peaks when the drive is resonant with either the familiar
axial frequency ωz (Fig. 6(a)) or the quadrupole resonance fre-
quency ω2 (Fig. 6(b)), provided that trap and cable resonances
are normalized out. Even for very low drive powers we observe
particle losses at some frequencies of the drive that excites the
quadrupole mode for some well depths and particle numbers,
situations we avoid since these resonant effects are not yet well
understood.

The equations relating ω2/ωz to the plasma characteristics
are only approximate when realistic trapping potentials are
used. Center of mass and quadrupole mode frequencies are
first predicted numerically for a series of plasmas with vary-
ing number, radius, and trapping potential depth. These results
are then used as a basis for interpolating the measured mode
frequencies and particle numbers back to the actual plasma pa-
rameters. A self-consistent numerical calculation is performed
by first calculating the equilibrium density profile for the given
plasma parameters, as described above. The density profile is
then perturbed to excite the quadrupole mode by axially elon-
gating it by 1%. A Fourier transform of the center-of-mass
motion and axial elongation calculated with a particle-in-cell
simulation (provided by Spencer [18,19]) provides the frequen-
cies that pertain for realistic potentials.

Fig. 5 compares the density and geometry of single compo-
nent plasmas of electrons as measured using the plasma modes
method and the Faraday cup aperture method. In each case, the
quadrupole mode frequency was first measured, and the parti-
cles were then pulsed onto the Faraday cup apertures. The plas-
mas contained between 2 and 7 million e− held at well depths
between 7 and 10 V (corresponding to axial frequencies be-
tween 28 and 33 MHz). The red points illustrate the importance
of using a realistic trapping potential and plasma temperature,
rather than making the simplifying assumption that the plasmas
are spheroidal, an assumption that only is valid for a perfect
quadrupole trapping potential.

The characterization of the positron plasmas is arguably
more significant for antihydrogen experiments than the distri-
bution of antiprotons, in that a relatively small number of an-
tiprotons is distributed within a much larger positron plasma.
The measurement of antiproton plasma parameters is more
challenging. This has been done using the aperture method
when this method was applied in a way that allowed the non-
destructive measurement of the number of antiprotons that
passed through an aperture [8]. More care must be taken when
all the antiprotons annihilate on the Faraday cups as would hap-
pen in this experimental configuration, since the p̄ annihilations
release charged annihilation products with high energies. With
the quadrupole mode method we have not yet achieved the sen-
sitivity required for relatively small numbers of antiprotons.

In conclusion, the density and geometry of a single com-
ponent plasma that are deduced from two very different meth-
ods are compared for the first time. An aperture method and
an internal oscillation frequency method agree well, even for
plasmas that occupy an appreciable fraction of trapping vol-
ume within the electrodes of the Penning trap, and despite the
residual misalignment of the magnetic field and the trap elec-
trodes, which is measured. However, we explicitly show that the
plasma characteristics would have been inaccurately deduced if
we had made the simplifying assumption that the plasmas in the
Penning trap were spheroidal. Instead, self-consistent calcula-
tions in realistic trapping potentials are used to delineate possi-
ble plasma configurations, and the frequencies of their oscilla-
tions about the equilibrium configuration. The measurements,
of particle loss through an aperture, and of an oscillation fre-
quency, then determine which of the plasma configurations per-
tains. The consistency between the two methods demonstrates
the possibility to use either method to determine the density and
geometry of single component plasmas, as is needed to quanti-
tatively understand and optimize antihydrogen production.
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