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The cavity shifts in the cyclotron motion of a charged particle in a hyperbolic Penning trap are
described using a numerical evaluation of the cavity-mode structure. The frequency shifts are about
half as large in the hyperbolic cavity as in a cylindrical cavity of equivalent size. However, this still
implies an error in the g —2 experiment that is easily five times the present statistical uncertainty.
To account for slit electrodes and imperfect tolerances in existing traps, experimental measurements
of the mode structure are still needed. The resonant frequencies of a microwave cavity can be mea-
sured very precisely. We show here that an accuracy of 10% in the measurements of certain cou-
pling constants is sufficient to compute the shifts for the g —2 experiment at the level of one part in

10°.

1. INTRODUCTION

A long series of experiments at the University of
Washington has succeeded in isolating a single electron
and measuring its magnetic moment, or rather, g factor
with unprecedented precision. ' The most recent experi-
ment® has a statistical accuracy of five parts in 10'.
There is, however, a systematic effect that may well be an
order of magnitude larger. This is the correction brought
about by the radiative electromagnetic interaction of the
single electron with the metallic walls of the Penning trap
that surrounds it. The trap forms a microwave cavity
whose modes interact with the cyclotron motion. This
interaction significantly modifies the observed cyclotron
damping rate* and also shifts the cyclotron frequency w,
to

o, =o0.+Ao, . (1.1

The physics of this shift has already been extensively dis-
cussed®>~7 and so we shall provide here only the briefest
review. The cavity shift can easily be as large® as
Aw,/o,~5x107'2. To see that this is a significant
correction to the g —2 experiment, we note that the mea-
sured anomaly is (essentially) determined by

g—2 7% (1.2)

’
2 o,

a =

where o, is the spin precession frequency. Thus, if the
cavity shift (1.1) is not accounted for, it gives rise to a
systematic error,

Aa 1 Ao,

a4 . (1.3)
a a o,

Since a =1 1073, one sees that the cavity shift may give
Aa/a=5x%10"°% which is indeed an order of magnitude
larger than the statistical accuracy of the experiment.

The purpose of the present paper is to provide a de-
tailed account of the cavity shift for the geometry of the
actual experiment, a cavity formed by hyperbolic surfaces
of revolution. This we shall do in part by means of a nu-
merical evaluation of the mode structure for such cavi-
ties. In actual experimental traps, small impressions in
the dimensions can significantly shift the cavity eigenfre-
quencies, limiting the direct applicability of these numeri-
cal calculations. Therefore, experimental measurements
of the mode structures will be required to get a sufficient
account of the cavity shifts. We shall describe the accu-
racy needed in such measurements.

Before describing the results, we sketch the basic
theory. The Penning trap consists of a strong uniform
magnetic field along the z axis superimposed over a weak
electrostatic potential ¥ (r), giving the equation of
motion

V—-chv+Til-VV(r)+%ycv=0. (1.4)
Here o, =w,Z is the cyclotron frequency of the particle’s
rotation in the magnetic field alone, and

Yoo, )=4e’w? /3mc? (1.5)
is the free-space damping constant of this motion. Radia-
tive effects for the other submotions implied by the equa-
tion of motion (1.4) are negligible since they are much
slower. Our interest is in the modification of the cyclo-
tron motion when it takes place about the center of an
axially symmetric conducting cavity, with the orbit size
very small in comparison to the size of the cavity.
Neglecting insignificant image magnetic forces, the pres-
ence of the surrounding metallic cavity alters the equa-
tion of motion to read

V—@ XV —VV(r)+1y . v="SEr). (1.6)
m m
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Here E'(r) is the electric field at the position r(¢) of the
charged particle brought about by the presence of the
cavity. It is the electric field acting on the particle omit-
ting the trap field [ — V¥ (r)] and also excluding the self-
field of the particle. This proper field is accounted for by
the use of the observed (renormalized) mass m and the ra-
diative dissipation described by the damping constant y .
It is convenient to split the field E’ into longitudinal and
transverse parts. The longitudinal part gives the
Coulomb interaction of the charged particle with the
effective image charges that represent the cavity walls.
This part provides merely a small alteration in the trap-
ping potential V' (r) which is experimentally unobserv-
able. The transverse field gives the radiative interaction
of the charged particle with the cavity. It may be ex-
pressed as

3
E}(T"(t,r)=—‘a%fdt' S Dyt — 1,0 (¢'))ev (1) /c?
I=1

(1.7

where Dy;(t —t';r,r') is the alteration of the retarded
Green’s function due to the cavity. Since the charged
particle is confined to a small region near the center of
the cavity, it suffices to set r=r(¢#)=0 and r(¢')=0. In-
serting the field solution (1.7) into the equation of motion
(1.6) and Fourier transforming to exhibit the steady-state
solution yields

w—w,+iy, /2= —owryD ' (©;0,0) , (1.8)

where ro=e?/mc?~2.8 107! cm is the classical elec-
tron radius. The effect of the trapping potential is to re-
place the cyclotron frequency w, by the slightly modified
frequency w,, but this is irrelevant for our calculation of
the cavity shift. .

The full Green’s function D,,(w;r,1’') which includes
the free-space contribution as well as the cavity correc-
tion is defined by

1

2
_V2~-@-2— Dk,(w;r,r’)-_—41r I—V‘“-Z-V] S(r—r') .
¢ Ve u

(1.9)

It may be expressed as a sum over the complete set of
cavity modes,
Gy (D6 y, (1)

Dy(w;r,r')=c* 3 3 3
N=1 Oy —@

(1.10

Here wy is the angular eigenfrequency of the Nth mode,
and 6y ,(r) is the kth vector component of the electric
field mode function whose tangential components vanish
on the cavity surface. Substituting this construction into
the Green’s-function equation, multiplying by &,,,(r’),
summing over /, and integrating r’ over the volume of the
cavity, we learn that the normalization of the vector
mode functions is given by

1 3
=3 [y ()64 (1) =6y -

1.11
4 < ( )
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The Green’s function D/, (w;0,0) which appears in the
frequency shift (1.8) has the same poles and residues as
those given by the sum in Eq. (1.10), but the free-space
function is removed from ﬁm(a);0,0) to form
D, (w;0,0). Thus, except for an (infinite) constant that
is absorbed into the mass normalization, the two func-
tions can differ only by an entire function—a polynomial
in w% Let us denote by L a typical length of the cavity.
The dimension of D ', (w;0,0) is L ~!. Hence this poly-
nomial must contain an overall factor of L ~! times
powers of the dimensionless variable (w’L?/c?). But this
polynomial must vanish as the cavity becomes very large;
it must vanish in the limit L — . Hence it can contain
only a constant term «/L, where k is a dimensionless
number which depends on the shape of the cavity.
Therefore

ﬁ;x(w;0,0)=%+ > (1.12)

4 0k —w?

As a check on this formula, one may verify from the ex-
plicit expressions given in Ref. 6 that the modified (sub-
tracted) sum in Eq. (1.12) converges for the case of a cy-
lindrical cavity. Inserting Eq. (1.12) into the frequency
shift (1.8), we obtain

2

, o ) - Ay
W=, =—0F K+o° Y #}—w
N=] ON— 0O —1I® N

(1.13)

Here we have included the decay constants I'y for the
cavity modes with Qy =wy /T y the corresponding quali-
ty factor of a mode; but at the same time, we must delete
the term iy, /2 which appears on the left-hand side in
Eq. (1.8) in order that the absorptive part of the sum on
the right-hand side reproduce the free-space decay con-
stant —y./2 in the limit of an infinitely large cavity
made of lossy material.® The sign in the damping term
—wly is dictated by the causal requirement of decay,
rather than growth, of the cyclotron orbit with time.
This simple modification of the denominator suffices to
describe cavity dissipation since, generally, Qy >>1. The
mode coupling constants A% are given by®

c6y0) |

A% =L , 1.14
N o (1.14)

and they are dimensionless.

The “subtraction constant” « appearing in Eq. (1.13)
accounts for the finite renormalization of the electron
mass brought about by the presence of the cavity, for it
corresponds to a term multiplying the acceleration v in
the equation of motion. Once this subtraction has been
made, the sum in Eq. (1.13) converges. This constant can
be calculated for a right-cyclindrical cavity of radius R
and length 2L using the analytic expressions given in Ref.
6. The result for a range of aspect ratios R /L is shown
in Fig. 1. In the parallel-plate limit R /L — oo, one has
k= —11In2=—0.347. We see that « is rather insensitive
to the aspect ratio R /L. As will be shown in Sec. 11, k
also makes quite a small contribution to the cavity shift
®w—w, in the frequency range of experimental interest.
Hence, although we cannot compute « for the hyperbolic
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FIG. 1. Subtraction constant x as a function of R /L for a cy-
lindrical cavity of radius R and length 2L. The tickmark marks
the R — oo limiting value. [The evaluation is made from Egs.
(3.21) and (4.28) of Ref. 6].

cavity of interest to the accuracy that we need, it is
sufficient to use the « value for a cylindrical cavity of the
same aspect ratio.

In Sec. IT we describe the accuracy achieved in the fre-
quency shift for a cylindrical cavity when one sums over
only a finite number of modes, and how well the sum with
numerically evaluated mode frequencies wy and cou-
plings Ay agrees with the exact analytic result. With
these tests in hand, we then go on in Sec. III to describe
our results for the hyperbolic cavity. Since these results
depend very sensitively on the precise geometry of the
cavity, we discuss in Sec. IV the feasibility of using mea-
sured values of the cavity-mode frequencies wy and cou-
pling constants A for the actual experimental trap. Sec-
tion V summarizes our results.

II. POLE FITS

In this section we illustrate the accuracy of our work
by computing the cavity shifts for a cylindrical shape
with aspect ratio R/L =1.186. This is the geometry
selected for a cylindrical trap whose properties are now
being studied.® First we shall show how well a finite sum
of pole terms reproduces the exact analytic result when
the exact analytic forms for the frequencies and couplings
are used. Then we shall compare the exact analytic result
with a finite sum formed with the numerically evaluated
frequencies and couplings.

A. Finite sum

In Figs. 2 and 3 we plot the decay constants and fre-
quency shifts for a cylindrical cavity (with R /L =1.186)
as a function of the scaled, dimensionless frequency vari-
able

wlL 2L

f=2" =22

’ 2.1
me A 2.1

which is the number of wavelengths that fit between the
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FIG. 2. Decay constant I(w)/y.(w) for a charged particle
moving in a small orbit about the axis and centered in the mid-
plane of a cylindrical cavity with Q =1000 and an aspect ratio
R /L =1.186. The solid line is the analytic result of Ref. 6. The
pole sum given by Eq. (1.13) using the exact analytic results of
Ref. 6 for wy and Ay with only a finite number of poles taken in
the bandwidth —0.5 <&y —£<0.5 is also plotted as a dotted
line, but the fit is so good that this dotted line is not visible.

two flat end plates. The range shown, 3 <& <S5, corre-
sponds to that of primary interest in the g —2 experi-
ments. For a cylindrical cavity, the widths of the TM
modes, ' =™, are all the same, while those of the
TE modes, T'{f), are about half as large® as ™. Thus
the cavity dissipation is accounted for by setting
F(M):w/Q(M) and F(E)~a)/Q(E), with Q(E)';ZQ(M):Q-
The plots are drawn for Q =1000. The decay constant
I(w) is the negative of twice the imaginary part of the
complex frequency shift w—w,. It appears in Fig. 2,
scaled by the free-space cyclotron damping constant
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FIG. 3. Scaled frequency shift —(L /ry)Aw/w for the cylin-
drical cavity of Fig. 2 with the solid and dotted lines having the
same significance as in Fig. 2.
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FIG. 4. Differences in the analytic result and the finite sum
of poles shown in Figs. 2 and 3. The solid curve gives the errors
in the scaled frequency shifts —(L /ry)Aw/w; the dashed curve,
the errors in the scaled decay constants I (w)/y . (w).

v.(@). The frequency shift Aw is the real part of 0 —w,.
The fractional frequency shift Aw/w scaled by ry/L ap-
pears in Fig. 3. For a typical g—2 trap, ry/L
~5% 10", and one division of the ordinate (20 scale
units) corresponds to a fractional shift Aw/w of approxi-
mately 10X 1072, which is 20 times the present statisti-
cal error in the experiments.’

The solid lines in Figs. 2 and 3 are the exact analytic
results of Ref. 6. Superimposed on these graphs are dot-
ted lines that give the result for a finite truncation of the
pole sum given in Eq. (1.13) with k=—0.27 and the
eigenfrequencies wy and couplings Ay evaluated from the
analytic forms given in Ref. 6. The dotted curves are so
close to the exact analytic results (solid lines) as to be in-
visible for the most part. It should be noted that the sub-
traction constant « makes quite a small contribution
(Aw/w=~1x10"13). The truncated sum was evaluated
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FIG. 5. Averaged error in the pole sum for the scaled fre-
quency shift —(L /ry)Aw/w, averaged over the frequency inter-
val 3 <& < 5. The solid curve displays this error as a function of
the bandwidth A¢; the dashed curve, the corresponding rms er-
ror. The bandwidth A& limits the scaled eigenfrequencies &y
that are used in the pole sum to the interval —O0.5A¢
<&n—E<0.5AE, thereby retaining only a finite number of
terms.

only for poles with eigenfrequencies wy that lie in a fixed
“bandwidth” about the frequency w. It is convenient to
characterize this bandwidth in terms of the dimensionless
frequency variable £ and denote the bandwidth by A£. A
bandwidth A§=1.0 was used in Figs. 2 and 3 so that, a
given frequency £, at the mode sum includes those
resonant-cavity frequencies &y that lie in the interval
—0.5 <&y —&<0.5. This bandwidth corresponds to the
inclusion of approximately 15 modes in the sum.

To exhibit the very small discrepancies between the
truncated pole sum and the exact results, their differences
are plotted in Fig. 4. The solid curve represents the
differences in the frequency shift, the dashed curve the
decay-constant differences, with both scaled as in Figs. 2

TABLE L. Cylindrical cavity-mode structure for R /L =1.186.

& eigenvalues =&y

Coupling constants A}

No. Exact Numerical Type Exact Numerical
1 0.703 0.705 E01 1.221 1.323
2 1.143 1.142 MO1 0.130 0.138
3 1.516 1.517 E02 0.556 0.629
4 1.579 1.585 E1l1 0.242 0.257
5 1.819 1.822 M1l 0.183 0.195
6 1.948 1.943 MO02 0.028 0.030
7 2.073 2.077 E12 0.290 0.343
8 2.345 2.344 EO03 0.356 0.393
9 2.407 2.406 M12 0.107 0.109

10 2.548 2.556 E21 0.093 0.102
11 2.703 2.709 M21 0.104 0.118

12 2.738 2.739 E13 0.261 0.302

13 2.776 2.766 MO3 0.010 0.012

14 2.881 2.886 E22 0.150 0.175

15 3.115 3.117 M13 0.055 0.007
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and 3. Clearly, the decay constants are fit very well
indeed. The jitter in the frequency-shift error, for the
most part, probably arises from computer-round-off error
in evaluating the exact “analytical” result, which entails
computing a sum of Bessel functions, which is done only
with limited accuracy. At any rate, we see that the error
in (Aw/o)(L /ry) is at worst approximately 1.0, corre-
sponding to an error in Aw/w of approximately 5x 10~
for a typical trap dimension.

The bandwidth A£ that is needed for an accurate repre-
sentation by the pole sum can be accessed by calculating
the average of the frequency differences shown in Fig. 4,
or the rms averaging of these differences, averaged over
the interval of interest 3 <£ <5, as a function of A&, not
only for A§=1 as shown in Fig. 4. The result of this pro-
cedure is shown in Fig. 5. The solid line gives the aver-
age difference, the dashed line the rms average difference,
as a function of the bandwidth A§. All modes below £
tend to have larger effective-field strengths than the
modes above £. The average error thus increases with
A&, until the bandwidth exceeds the threshold 2£, when
all modes below £ are exhausted. A further increase in
bandwidth decreases the average error, with error vanish-
ing as A£— oo, the limit of the convergent pole sum, Eq.
(1.13).

B. Numerical results

We have just seen that a judiciously chosen finite pole
sum provides an accurate description of the shifts for a
cylindrical cavity. Thus such a sum should also give an
accurate description of the shifts within a hyperbolic cav-
ity, provided that the eigenfrequencies wy and coupling
parameters Ay can be evaluated sufficiently well by using
numerical techniques—the only theoretical method
available for the hyperbolic cavity. The computer
calculation that we shall use is the Los Alamos
National Laboratory —Deutsches Elektronen-
Synchotron (LANL—DESY) program URMEL-T.'® To
test its accuracy, it was first used to compute the eigen-
frequencies and coupling parameters for the cyclindrical
cavity with aspect ratio R /L =1.186. The results are
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FIG. 6. Same as Fig. 2 but with the numerically evaluated
Oy and A‘N'
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FIG. 7. Same as Fig. 3 but with the numerically evaluated
Wy and )\'N'

given in Table I along with the exact, analytic results of
Ref. 6. We see that the errors in the calculated values of
the eigenfrequencies are on the average approximately
0.2% and, in any case, do not exceed 0.4%. The errors in
the numerical evaluation of the coupling constants are,
on the other hand, about two orders of magnitude larger.
The last entry in the table has an 87% error because the
parameters of the numerical method were not optimized.

Figures 6 and 7 show the decay constants and frequen-
cy shifts just as in Figs. 2 and 3, but now using the nu-
merical evaluation of the eigenfrequencies and coupling
parameters that are given in Table I. We see that the po-
sitions of the resonant frequencies for the calculated re-
sult (dotted line) are only slightly displaced from the ex-
act locations shown by the solid line. Although the error
very near the resonant frequencies tends to be propor-
tional to the error in the coupling constant, the frequen-
cies of the zero-shift points between modes are only
slightly affected. We shall examine this point in detail in
Sec. IV.

III. HYPERBOLIC CAVITY

Having illustrated the accuracy of the pole sum used
with the analytic mode structure and couplings for the
cylindrical cavity, and of the corresponding numerical re-
sults using Table I, we shall now employ the pole siim to
obtain the cavity shifts and decay constants in a hyper-
bolic trap with the help of the calculated numerical
values in Table II. But before going further, it is impor-
tant to consider the limitations on this numerical model,
since geometrical deviations of an experimental trap from
the idealized geometry of the model may not be negligi-
ble.

To make an estimate of such deviations, we take the
analytic calculations for the cylindrical cavity and ask
how much change in the mode structure is incurred by a
change of 1% in the aspect ratio R /L. Figure 8 com-
pares the decay constant as a function of the dimension-
less frequency [Eq. (2.1)] for the aspect ratios 1.186 (solid
line) and 1.200 (dotted line). The corresponding scaled
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frequency shift is given in Fig. 9. Not surprisingly, some
of the mode frequencies shift in proportion to the dimen-
sion change. The absorptive curves in Fig. 8 show that
such shifts in the positions of the poles can be as large as
the separation between two adjacent modes. Figure 9
shows that the frequencies of the zero-shift point can be
moved to regions of maximal frequency shifts. Hence un-
certainty in the experimental-trap geometry on the level
of a few percent precludes a close comparison of a model
with experiment. A pole-sum computation of the cavity
effects for the actual hyperbolic trap is of qualitative
significance only. This is the reason that we were

TABLE II. Hyperbolic cavity-mode structure for py/zg
=V2.

No. & eigenvalues =§y Coupling constants A%
1 0.443 0.300
2 0.663 0.707
3 0.926 0.118
4 1.185 0.466
5 1.292 0.049
6 1.338 0.043
7 1.469 0.065
8 1.566 0.272
9 1.694 0.042
10 1.729 0.040
11 1.740 0.317

12 1.899 0.071

13 1.972 0.003

14 2.022 0.034

15 2.079 0.344

16 2.147 0.011

17 2.237 0.018

18 2.300 0.119
19 2.353 0.079

20 2.406 0.082

21 2.471 0.048

22 2.535 0.003

23 2.563 0.066

24 2.670 0.005

25 2.694 0.283

26 2.731 0.138

27 2.739 0.006

28 2.837 0.110

29 2.895 0.003

30 2.954 0.080

31 2.988 0.108

32 3.076 0.043

33 3.106 0.015

34 3.137 0.057

35 3.162 0.002

36 3.178 0.053

37 3.285 0.000

38 3.309 0.181

39 3.324 0.126

40 3.375 0.018

41 3.446 0.073

42 3.459 0.001

43 3.515 0.106

44 3.571 0.200

45 3.711 0.025
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FIG. 8. Comparison of decay constant I (w)/y () between
two cylindrical cavities of slightly different aspect ratios, but
having the same Q =1000. The solid line is for R /L =1.186;
the dashed line, R /L =1.20. Both curves are computed using
the exact analytic results in Ref. 6.

satisfied with the accuracy of the numerical work for the
cylindrical cavity given above, which also indicates the
numerical accuracy of the results for a hyperbolic trap
that we now present. For the same reaon, we can ignore
the small contribution of the subtraction constant «.

The calculated numerical values for the mode frequen-
cies and couplings in Table II are computed for a hyper-
bolic trap truncated as shown in Fig. 10. The end-cap
electrodes and ring electrode are hyperbola of revolution
generated, respectively, by

2i=z3+p*/2 (3.1a)
and
22=1(p*—p}) (3.1b)
- I T T T T ' T T 1 71 ' T T T T l T T T T I -4
100 |— —
3
3
N
=
=5
]
~100 [~ -
l 1 1 1 1 l 11 1 1 l il 1 1 1 l 1 L 1 1 I
3 35 4 45 5
¢ = wL/mc
FIG. 9. Comparison of the scaled frequency shift

—(L/ro(Aw/w) for the cylindrical cavities in Fig. 8 with the
same line significance.
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FIG. 10. Schematic diagram of the hyperbolic cavity used in
the computation of Table II. The electrodes are hyperbola of
revolution about the z axis, with the end caps and ring de-
scribed, respectively, by z>=z}+p?/2 and z2=L(p*—pj). The
aspect ratio pp/zo=1.414. The truncation regions are closed
with flat rings whose perpendicular distance to the origin is
h /z,=2.800, centered about the asymptotes (dashed lines).

The aspect ratio is given by p,/z,=V2. Flat compen-
sation ring electrodes terminate the truncation region,
centered about the asymptote with the perpendicular dis-
tance from the origin given by h /z,=2.80. Using Table
II with Eq. (1.13), we obtain the decay constant as a func-
tion of the dimensionless frequency variable

2% (3.2)
§= mc )
as show in Fig. 11. The scaled frequency shift

—(zy/rg)Aw/w) is a function of &, as shown in Fig. 12.
The dashed curves are for a cylindrical cavity with aspect
ratio Ry/zy=1.5 and the same Q =1000. We see in Fig.
12 that the shifts in the cylindrical cavity are about twice
as large as those in the hyperbolic cavity, for the most

300
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Lovvao b v byovoa o by oy

or_'ll‘l'll“rITlllll_L

FIG. 11. Decay constant I (w)/y.(w) for the hyperbolic cavi-
ty shown in Fig. 10 (solid line). The dashed line is for a cylindri-
cal cavity of comparable aspect ratio 1.5 and the same Q = 1000.
For the cylindrical cavity, z; is set to the half length L.
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FIG. 12. Scaled frequency shifts —(z,/7¢)(Aw/w) for the
hyperbolic cavity in Fig. 10 (solid line). The dashed line is for a
cylindrical cavity with R /L =1.5. For the cylinder, z; is set to
the half length L.

part. This is to be expected, since the modes are about
half as dense in the cylindrical trap as in the hyperbolic
trap, owing to the higher degree of symmetry in the
cylinder.

IV. POSSIBLE EXPERIMENTAL LOCATION
OF MINIMUM CYCLOTRON FREQUENCY SHIFTS

The microwave modes in a hyperbolic Penning trap
have been observed!! by a bolometric technique that
monitors the temperature of the axial center-of-mass
motion of a cloud of electrons. This method has demon-
strated that the eigenfrequencies of a microwave cavity
can be determined to a precision of better than one part
in 10*. On the other hand, the coupling constants are

100 | -

-(L/r)Aw/w
o
T
.

-100 |— —

Lo o by by by |
3 35 5

4
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FIG. 13. Scaled frequency shifts —(L /ry)Aw /o for the cy-
lindrical cavity using the pole-sum equation (1.13). The solid
line uses the exact analytic results of Ref. 6 for wy and Ay. The
dashed line corresponds to random perturbations in Ay by 10%.
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FIG. 14. Magnification of Fig. 13 at the regions of experimental interest.

difficult to measure to better than 10%. This technique
so far measures only the relative coupling strengths of the
cavity modes. To use this result in a truncated pole sum,
the absolute coupling strength of one mode must also be
determined. In this section, we shall investigate how well
the cyclotron frequencies can be located which give
minimal frequency shifts, when the coupling strengths
are known only inaccurately.

As a simple estimate, consider the error in the contri-
bution from the nearest mode to the cavity shift if the
coupling constant A% of this mode has some error 8A3%.
The ratio of the corresponding error in the frequency
shift, §Aw, to the maximum shift caused by the mode,
Aw,,,, has a simple form many linewidths away from the
mode frequency wy,

5Aw _ SAY
A(‘)max }\?v =0y A}\, Q W—0y .

'y _‘Sk}vi Oy

4.1)

From Fig. 3 we see that the average mode separation in
the dimensionless frequency £ is approximately 0.1 for
the range of experimental interest where §~4.0. Taking
®—wy to be half of this average mode separation gives

Y En 4.0

= o~ 280 .
o—wy E—§&y 0.05

4.2)

Accordingly, for a 10% error in the coupling strength,
8A% /A% =0.1, and for the typical quality factor
Q =1000, we have

SAw
Awmax

~0.01 . (4.3)

Since for Q =1000, Aw,,,,/®. is no larger than approxi-
mately 100 parts in 10'2, the error near the zero-shift fre-
quencies is less than about one part in 102,

To give a more accurate estimate, we plot in Fig. 13
the frequency shifts for an aspect ratio of 1.186 and
Q =1000 with the coupling constants of the cylindrical
modes randomly increased or reduced by 10%; the solid
line is the wunperturbed result. Figure 14 is a
magnification of Fig. 13. We note that the deviations are
well within our simple estimate for a remarkably wide
range of values, including the zero-shift frequencies.
Thus an experimental precision of 10% in the measure-
ment of the coupling constants is sufficient for locating
the null-shift frequencies at a one part in 10'? level.

V. SUMMARY AND CONCLUSION

We have tested the truncated pole sum, Eq. (1.13), us-
ing an appropriate number of modes with the exact ana-
lytic forms of the eigenfrequencies and coupling con-
stants for a cylindrical cavity. This gives sufficiently pre-
cise results. Extending this to the hyperbolic Penning
trap with the help of the numerically-determined cavity-
mode structure, we find that the cavity shifts in the hy-
perbolic trap are approximately half as large as those in a
cylindrical trap of equivalent size. But this still implies
an error in the g —2 experiment that is easily five times
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the present statistical uncertainty.

The precision in the actual-trap geometry is unfor-
tunately not sufficient to permit using the numerical eval-
uations to model the actual experimental trap and locate
the frequencies that give minimum cavity shifts. Experi-
mental measurements of the mode structure, therefore,
must be employed to determine these minimum-shift fre-
quencies. A simple calorimetric technique' can measure
very precisely the resonant frequencies of a microwave
cavity. We have shown here that a 10% accuracy in the
measurements of the coupling constants is adequate for
the g —2 experiments at the one part in 10° level. On the
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other hand, unless the accuracy of the coupling constants
can be pushed much higher, raising the g —2 experiment
to even higher precision appears to be very difficult.
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