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Detector backaction can be completely evaded when the state of a one-electron quantum cyclotron is
detected, but it nonetheless significantly broadens the quantum-jump resonance line shapes from which the
cyclotron frequency can be deduced. This limits the accuracy with which the electron magnetic moment
can be determined to test the standard model’s most precise prediction. A steady-state solution to a master
equation, the first quantum calculation for the open quantum cyclotron system, illustrates a method to
circumvent the detection backaction upon the measured frequency.
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The electron magnetic moment in Bohr magnetons,
determined to 3 parts in 1013, is the most precisely
determined property of an elementary particle [1,2]. A better
measurement is currently of great interest because of an
intriguing 2.4 standard deviation discrepancy [3,4] with the
most precise prediction [5] of the standard model of particle
physics (SM). Tests of the prediction are critical because
these would check important elements of the SM. These
include the Dirac theory [6], quantum electrodynamics
through the 10th order [5,7,8], hadronic contributions
[9–11], and possible weak interaction effects [11–15]. The
intriguing discrepancy has stimulated new theoretical inves-
tigations into possible physics beyond the SM [16–20].
A quantum cyclotron [21] is a single trapped electron

that occupies only the ground and first excited states of its
cyclotron motion. Measuring the quantum jump rate
between these states as a function of drive frequency
produces resonance line shapes from which the cyclotron
and spin frequencies and then the electron magnetic
moment can be deduced. Quantum nondemolition
(QND) detection makes it possible to completely evade
detector backaction in determining the quantum state.
However, the QND coupling does not prevent detector
backaction from producing a cyclotron line shape that is
broad and asymmetric enough to prevent more accurate
measurements of the cyclotron frequency and the electron
moment to investigate the current discrepancy. The line
shape for the other frequency that must be measured to
determine a magnetic moment is much less of an obstacle
to measurements of an interesting precision because its
intrinsically different shape is much more symmetric [22].
This “anomaly frequency” is the difference of the spin and
cyclotron frequencies that can be measured instead of the
spin frequency to get the magnetic moment more
precisely.
In this Letter, a steady-state solution to a master equation

illustrates the possibility of circumventing all detector

backaction except that from detector zero-point motion
despite the axial detection motion being spread over many
quantum states. The extremely narrow and nearly sym-
metric cyclotron line shapes that should result are examples
of what is well known to enable significant progress in
precision resonant frequency measurements. Even though
resonant frequencies can be extracted from broad and
asymmetric lines is principle, in practice this causes a
susceptibility to systematic uncertainties. The steady-state
solution is the first quantum mechanical solution for a
damped quantum cyclotron coupled to a detection oscil-
lator via a QND coupling. The predicted line shapes for this
open quantum system [23] are very different from a
previous prediction that assumed a classical detection
oscillation [24,25].
The Hamiltonian for the quantum cyclotron [22,26] with

angular cyclotron frequency, ωc,

Hc ¼ ℏωc

�
a†cac þ

1

2

�
; ð1Þ

has the form of a simple harmonic oscillator. The energy
eigenvalues are a ladder of equally spaced Landau levels
[26], ℏωcðnc þ 1=2Þ with nc ¼ 0; 1; 2;…. The raising and
lowering operators a†c and ac in terms of position and
momentum operators differ from those for a simple
harmonic oscillator, of course, because circular rather than
linear motion is described. For the same reason, the
position representation of energy eigenstates jnci are
associated Laguerre polynomials rather than the Hermite
polynomials for a simple harmonic oscillator.
For detection, the quantum cyclotron is coupled to a

harmonic oscillator with a Hamiltonian,

Hz ¼ ℏωz

�
a†zaz þ

1

2

�
; ð2Þ
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with energy eigenstates jnzi, eigenvalues ℏωzðnz þ 1=2Þ,
and nz ¼ 0; 1;…. For an electron in the electrostatic
quadrupole potential of a Penning trap, this detection
motion is the axial oscillation of the electron along the
magnetic field direction. The raising and lowering oper-
ators a†z and az in terms of position and momentum
operators are in every quantum mechanics textbook, as
are the energy eigenstates in the position representation.
The uncoupled Hamiltonian H0 ¼ Hc þHz has energy

eigenstates jnc; nzi ¼ jncijnzi and energy eigenvalues

E0ðnc; nzÞ ¼ ℏωc

�
nc þ

1

2

�
þ ℏωz

�
nz þ

1

2

�
: ð3Þ

The representation in Fig. 1 is not to scale since ωc is
typically 1000 times larger than ωz. The magnetron motion
present in a laboratory realization of a quantum cyclotron
[2] is dropped in our calculation because the frequency
scale is smaller by about ωm=ωz ≈ 10−3 after cooling [22].
Including magnetron motion would cause negligible broad-
ening and no noteworthy changes.
Detecting the cyclotron state requires a Hamiltonian

H ¼ Hc þHz þ V with a coupling V of the cyclotron and
axial motions. A small magnetic bottle gradient [27] can be
added to the uniform field Bẑ [28] of a Penning trap:

ΔB ¼ B2½z2 −
1

2
ðx2 þ y2Þ�: ð4Þ

With δc ¼ ℏeB2=ðm2ωzÞ, the resulting coupling is

V ¼ ℏδc

�
a†cac þ

1

2

��
a†zaz þ

1

2

�
ð5Þ

when two rapidly oscillating terms are averaged to zero.
The coupled Hamiltonian has the uncoupled energy eigen-
states jnc; nzi. The energy eigenvalues

Eðnc; nzÞ ¼ E0ðnc; nzÞ þ ℏδc

�
nc þ

1

2

��
nz þ

1

2

�
ð6Þ

acquire a small term that depends on both nc and nz.
The coupling V is a QND coupling [29–32] because it

commutes with H0. The consequence is that detection
backaction is completely evaded when the cyclotron
quantum state is detected. This can be seen by writing
the energy eigenvalues as

Eðnc; nzÞ ¼ ℏ

�
nc þ

1

2

�
þ ℏω̃z

�
nz þ

1

2

�
: ð7Þ

Repeated measurements of the effective axial frequency

ω̃z ¼ ωz þ δc

�
nc þ

1

2

�
ð8Þ

will not themselves change the cyclotron state, even as they
reveal quantum jumps of the cyclotron state and nc caused
by an external cyclotron driving force.
Critical to this report is that the QND coupling V that

completely evades detection backaction in the determina-
tion of the quantum cyclotron state does not do so for a
measurement of ωc. This can be seen by writing the energy
eigenvalues in the alternate form:

Eðnc; nzÞ ¼ ℏω̃c

�
nc þ

1

2

�
þ ℏωz

�
nz þ

1

2

�
: ð9Þ

Despite the QND coupling, the effective cyclotron
frequency

ω̃c ¼ ωc þ δc

�
nz þ

1

2

�
ð10Þ

shifts in proportion to the axial quantum number. This
detection backaction shift cannot be completely evaded
because a shift due to axial zero-point motion remains even
when the axial detection motion is cooled to its nz ¼ 0
ground state. Because the shift in this limit is orders of
magnitude smaller than what has been attained, the rest of
this work focuses on how this zero-point limit can be
attained. We call this “circumventing” detection backaction
because the proposal is to achieve this limit while many
states beyond nz ¼ 0 are populated.
The ωc needed for an electron magnetic measurement

must be extracted from the resonance line shape that is the
quantum jump rate measured as a function of an external
cyclotron drive frequency. The broad cyclotron linewidth
from detection backaction (Δωc=ωc ¼ n̄zδc=ωc ≈ 10−9 in
past experiments [1,2]) limits the accuracy of possible
magnetic moment measurements. The distribution of axial
states that causes the broad linewidth arises because the
axial detection oscillator is weakly coupled to its

FIG. 1. Lowest energy levels for the combined quantum
cyclotron and axial detection oscillator (not to scale).
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environment with a coupling constant γz. For times larger
than 1=γz, this leads to a thermal Boltzmann distribution of
axial states. For a T ¼ 0.1 K ambient temperature and
ωz=ð2πÞ ¼ 200 MHz [1,2], the average axial quantum
number is

n̄z ¼
�
exp

�
ℏωz

kBT

�
− 1

�
−1

≈
kBT
ℏωz

≈ 10: ð11Þ

For past measurements, the effective axial temperature was
actually at least 3 to 5 times higher due to the elevated
temperature of the electronics used to detect the axial
oscillation and its frequency [2].
The cyclotron motion also weakly couples to the thermal

reservoir with a coupling γc. A state jnci radiates synchro-
tron radiation at a rate ncγc. In principle, cyclotron states
can also absorb blackbody radiation, but at 0.1 K and
ωc=ð2πÞ ¼ 150 GHz [1], the number of available black-
body photons is negligible. The average quantum number
for a Boltzmann distribution of states is

n̄c ¼
�
exp

�
ℏωc

kBT

�
− 1

�
−1

¼ 1.2 × 10−32 ≈ 0: ð12Þ

The cyclotron motion thus remains in its nc ¼ 0 ground
state [21] unless a cyclotron driving force is applied.
A cyclotron drive adds the Hamiltonian term

VcðtÞ ¼
1

2
ℏΩc½a†ce−iðωcþϵcÞt þ aceiðωcþϵcÞt�: ð13Þ

The drive strength is given by the angular Rabi frequency
Ωc, and the drive is detuned from resonance at ωc by a
detuning ϵc. For measurements, the driving force provided
by 150 GHz microwaves injected into a trap cavity excites
the j0; nzi states to j1; nzi. Higher cyclotron states can be
neglected because it is less probable to excite from a small
population in an excited state but also because a relativistic
shift keeps the cyclotron transitions between excited states
off resonance from the drive [33].
A density operator is required for a system that decays

and is coupled to a thermal bath. The initial state at time
t ¼ 0 is the cyclotron ground state and a thermal super-
position of axial states

ρð0Þ ¼
X∞
nz¼0

pnzðTÞj0; nzih0; nzj: ð14Þ

The Boltzmann weighting factors are

pnðTÞ ¼
�
1 − exp

�
−
ℏωz

kBT

��
exp

�
−
nℏωz

kBT

�
: ð15Þ

Explicit calculations show that 150 axial states suffice for
axial states in thermal equilibrium at 0.1 K.

The time evolution of the density operator is described
by a Lindblad equation [23,34,35]:

dρ
dt

¼ −
i
ℏ
½H0 þ V þ Vc; ρ�

−
γc
2
ða†cacρ − 2acρa

†
c þ ρa†cacÞ

−
γz
2
n̄zðaza†zρ − 2a†zρaz þ ρaza

†
zÞ

−
γz
2
ðn̄z þ 1Þða†zazρ − 2azρa

†
z þ ρa†zazÞ: ð16Þ

The first line describes the driven motion. The second
describes the incoherent cyclotron decay. The third and
fourth lines describe the incoherent deexcitation and
excitation of the axial motion by the thermal bath.
To efficiently solve the master equation, several trans-

formations are made. All terms in Eq. (16) are transformed
to an interaction picture with

ρ̃ ¼ eiH0t=ℏρe−iH0t=ℏ: ð17Þ

Since the coupled system starts and remains axially
diagonal, only the probabilities ρ̃jk;nz ¼ hj; nzjρ̃jk; nzi
are needed. The indices j and k are 0 or 1, and nz takes
positive values as large as needed to describe the thermal
distribution—up to about 150 for n̄z ¼ 10, as mentioned. A
second transformation,

pjk;nz ≡ ρjk;nze
iðj−kÞϵct ð18Þ

produces a time-independent equation for the pjk;nz , where
the detuning ϵc was defined in Eq. (13). The time-
dependent probabilities we seek to calculate,

pjj;nz ¼ ρ̃jj;nz ¼ hj; nzjρjj; nzi; ð19Þ

are invariant under these transformations.
The master equation in terms of vectors p⃗jk with

components pjk;nz is

d
dt

p⃗00ðtÞ ¼ Rð0; 0; 0Þp⃗00ðtÞ −ΩcIm½p⃗01ðtÞ� þ γcp⃗11ðtÞ
ð20aÞ

d
dt

p⃗01ðtÞ ¼ Rðϵc; δc; γcÞp⃗01ðtÞ − i
Ωc

2
½p⃗11ðtÞ − p⃗00ðtÞ�

ð20bÞ

d
dt

p⃗11ðtÞ ¼ Rð0; 0; 2γcÞp⃗11ðtÞ þΩcIm½p⃗01ðtÞ�: ð20cÞ

The nonzero components of the matrices are

Rðϵc; δc; γcÞnz;nz−1 ¼ γzn̄znz ð21aÞ
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Rðϵc; δc; γcÞnz;nz ¼ i

�
−ϵc þ

�
nz þ

1

2

�
δc

�
−
1

2
γc

− γzð2n̄z þ 1Þnz − γzn̄z ð21bÞ

Rðϵc; δc; γcÞnz;nzþ1 ¼ γzðn̄z þ 1Þðnz þ 1Þ: ð21cÞ

Beside the specified arguments and indices, these
equations and matrices depend on the bath temperature
via n̄z and the axial damping rate, γz.
This vector master equation must be solved for initial

conditions (at t ¼ 0) that p⃗00 has components pnzðTÞ [from
Eq. (15)] and p⃗01 ¼ p⃗11 ¼ 0. The desired resonance line
shape is the probability of a cyclotron excitation,

P ¼
X∞
nz¼0

p11;nzðtdÞ; ð22Þ

which is a function of the drive detuning ϵc. This line shape
depends on the drive strength Ωc and the time that the drive
is applied, td.
In general, the vector master equation must be integrated

numerically from t ¼ 0 to t ¼ td to determine the line
shape. However, for a weak drive with Ωc ≪ γc (to avoid
power broadening) and td ≫ 1=γc (to let transients damp
out), there is a steady state for which the driven cyclotron
excitation balances the emission of synchrotron radiation.
This steady-state solution suffices to demonstrate that
circumventing detector backaction is possible.
To obtain the steady-state solution, the derivatives in

Eq. (20) are set to zero. The three equations are summed
over all axial states and simplified using

X∞
nz¼0

p00;nzðtÞ ≈
X∞
nz¼0

pnzðTÞ ¼ 1 ð23Þ

X∞
nz¼0

p11;nzðtÞ ≪ 1 ð24Þ

X∞
nz¼0

½Rð0; 0; 2γcÞp⃗11�nz ¼ −γc
X∞
nz¼0

p11;nz : ð25Þ

The first two simplifications pertain for a weak drive and
make terms involving p⃗11 negligible compared to those
involving p⃗00. The third pertains becauseRð0; 0; 2γcÞ has a
simple structure and axial damping does not change the
total population in states j1; nzi. The result is the steady-
state probability for cyclotron excitation by a weak drive:

P ¼ −
Ω2

c

2γc
Im

�X∞
nz¼0

½iRðϵc; δc; γcÞ−1p⃗ðTÞ�nz
�
: ð26Þ

The vector p⃗ðTÞ has the Boltzmann factors pnzðTÞ as its
components. In the T ¼ 0 limit, the steady-state line shape
becomes the expected Lorentzian.

Direct numerical integrations of the master equation
[Eq. (20)] and the steady-state solution in Eq. (26) provide
the first fully quantum treatment of the coupled and open
cyclotron and axial system. (More details, including com-
parisons of direct integrations and steady-state solutions of
the master equation, will be published in a longer work that
deals with measuring magnetic moments more generally
[36].) The line shape calculation [24,25] previously avail-
able (and used to predict and analyze all experiments to
date) assumed a classical axial oscillation undergoing
Brownian motion and predicted a very different line shape.
We now investigate detector backaction and how it can

be circumvented, with estimates first and then with quan-
tum line shape calculations. The result of a thermal
distribution of axial states is that a cyclotron drive will
make cyclotron transitions over a range of cyclotron drive
frequencies: Δϵc > n̄zδc. For the best measurement, the
bath temperature was 0.3 K and above, which corresponds
to a spread Δω=ωc > 800 ppt. (A part per trillion, ppt, is 1
part in 1012). Line splitting made it possible to obtain a
300 ppt uncertainty. Even at 0.1 K temperature, the back-
action linewidth will still spread the cyclotron excitation
over a broad width. Reducing the coupling strength [δc in
Eq. (5)] would reduce the backaction. However, this is not
an option because this simultaneously reduces the sensi-
tivity needed to detect the individual states of the quantum
cyclotron.
The new possibility proposed here is circumventing

backaction by resolving the cyclotron excitations that an
electron makes during the time it is in its axial ground state
from those made while the system is in other axial states.
Resolving δc, the cyclotron frequency shift for axial states
with nz ¼ 0 and nz ¼ 1 requires two conditions:

δc ≫ γc þ 2n̄zγz; ð27Þ
δc ≫ 1=td: ð28Þ

The first [from the diagonal damping term in Eq. (21b)]
requires that the shift be larger than both the cyclotron
damping width γc and the axial width contribution 2n̄zγz.
The latter arises because the underlying physics of the
master equation is that probability transfers between the
axial oscillation and the thermal reservoir at an average rate
going as n̄zγz. The second requirement is a drive applied
long enough that the frequency-time uncertainty principle
does not broaden the line shape.
The shift δc=ð2πÞ ¼ 4 Hz used for measurements is

much smaller than the extremely small cyclotron damping
width γc=ð2πÞ ¼ 0.03 Hz realized using a microwave
cavity to inhibit spontaneous emission [37]. At the ambient
temperature of experiments T ¼ 0.1 K, this means that
γz=ð2πÞ ≪ 0.2 Hz is needed. This requirement was not met
by the γz=ð2πÞ ¼ 1 Hz of the best measurement. Resolving
axial quantum structure thus requires reducing γz by about
2 orders of magnitude. The second condition [Eq. (28)] is
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met by simply applying the cyclotron drive for much longer
than 40 ms.
The axial damping rate cannot simply be reduced by this

large factor because the induced signal needed to deduce
the cyclotron state from ω̃z in Eq. (8) reduces to unusable
levels. One solution would be to rapidly switch between
large γz for cyclotron state detection and a small γz during
the time a drive is applied to make cyclotron quantum
jumps. A cryogenic HEMT switching circuit that operates
with essentially no power dissipation was recently devel-
oped and demonstrated for this purpose [38]. For our
estimates and calculations, the large and small γz realized in
the lab demonstration are used.
Quantum calculations of the cyclotron line shape dem-

onstrate how the detector backaction can be reduced to only
that from zero-point motion. Figure 2(a) shows steady-state
line shapes [Eq. (26)] for three values of the axial damping
rate γz at a temperature T ¼ 0.1 K and a coupling
δc=ð2πÞ ¼ 4 Hz. For the dashed line shape, 2n̄zγz=ð2πÞ ¼
6 Hz does not satisfy Eq. (27), and the axial quantum states
are not resolved. For a 10 times lower γz=ð2πÞ ¼ 0.03 Hz,
the quantum structure of the axial motion manifests itself in
the dotted line shape. For another tenfold reduction in γz,
the solid line shape shows completely resolved peaks.
The extremely narrow left peak for nz ¼ 0 is good news

for measurement. Its width γc þ 2n̄zγz is only about 3 times
the cyclotron decay width γc and much smaller than the
total cyclotron linewidth [Fig. 2(b)]. More good news is
that this nz ¼ 0 peak is very symmetric about its center
frequency—a big help in precisely identifying the center
frequency of the resonance. The next peak to the right is for
nz ¼ 1 and so on. There are many peaks because n̄z ¼ 10
for T ¼ 0.1 K.
The peak probability for a resonant weak drive Ωc ¼

0.1γc is only 3.1 × 10−4. However, increasing the cyclotron
drive strength to Ωc ¼ γc [dashed curve in Fig. 2(b)]

increases the excitation probability to 2.2 × 10−2 while
power broadening the full linewidth from 3 to only 3.6
cyclotron decay widths. (The 300 differential equations for
the vector master equation were integrated directly to time
10=γc for Ωc ¼ γc because the steady-state solution applies
only for Ωc ≪ γc.) Stronger drives may be useful for
tracking slow magnetic field drifts [2].
The offset of the nz ¼ 0 resonance from ϵc ¼ 0 to

ϵc ¼ δc=2 is due to the zero-point motion of the quantum
axial oscillator. This could be measured in two ways. First,
measuring this peak and its neighbor determines this offset
since these two peaks are spaced by twice the offset.
Second, the shift of axial frequency ωz to ωz þ δc can be
measured.
In summary, a QND coupling of cyclotron motion to an

axial detection motion evades all detector backaction in
determining the cyclotron state. However, it does not
prevent detector backaction from broadening the observed
cyclotron resonance line shape to limit the accuracy that
can be achieved in determining the cyclotron resonance
frequency and the electron magnetic moment. The first
solution of the quantum master equation for a quantum
cyclotron and a harmonic detection oscillation demon-
strates the possibility of circumventing all of the additional
detector backaction except the small amount caused by the
zero-point detection motion despite a detector excitation
spread over many states. The extremely narrow and
symmetric cyclotron resonance line shapes that are pre-
dicted differ markedly from previous predictions. The new
approach promises to make it possible to make a test of the
standard model’s most precise prediction at the precision
required to check the intriguing discrepancy that now exists
between prediction and measurement.
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