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1. Introduction and History

The measured magnetic moment of the electron provides the most accurate test of
quantum electrodynamics.! ** Until a few years ago, the measurements were conceptually
simple, with no large systematic corrections required. However, the accuracy of the exper-
iments has improved to the extent that this is no longer true. Presently, the measurements
utilize line splitting based upon an intricate theory of the observed line shape? . The
experimental accuracy is limited by a lack of control over the interaction of a single elec-
tron oscillator with the electromagnetic modes of a surrounding microwave cavity. (The
unavoidable cavity in experiments so far is formed by the metal electrodes of the Penning
trap used to confine the electron.) Efforts are underway to remove the reliance upon the
theory of the observed resonance line. One possibility is to switch on and off the inho-
mogeneous magnetic field which both makes possible and limits the current experiments.>
Another possibility is to utilize relativistic couplings which have been observed* to avoid
the noise broadened lineshape which is an unpleasant consequences of the magnetic field
inhomogeneity. Whatever approach succeeds, possible cavity shifts of the measured mag-
netic moment (the subject of this chapter) must be controlled or eliminated if further
experimental progress is to be made.

The possibility of cavity shifts of the measured cyclotron frequency used to determine
an electron’s magnetic moment was first demonstrated when the coupling of the electron
oscillator and a trap cavity was directly observed by Gabrielse and Dehmelt.> The first of
the reported observations was made almost a year and one half before they were published.
The reason for the delay illustrates a difficulty in performing these measurements. A
proper study required shifting the electron cyclotron frequency by changing the current in
a superconducting solenoid and this was delayed to avoid the long time (up to a month)
required for the field to restabilize sufficiently to allow more measurements. During this
year and a half, estimates with electrical analogs® and an explicit model calculation? were
undertaken to estimate the size of possible cavity shifts. Eventually, the observation of
a coupling between an electron and a trap cavity was repeated at one electron frequency
in another trap.? In hindsight, it is now clear that the cavity coupling is responsible for
a slower than expected decay of the electron’s cyclotron motion which had earlier been
attributed to electronic causes.

Although the importance of cavity shifts for measurements of the electron magnetic
moment was realized only recently, the basic notion that the couplings of two oscillators can
shift both the damping rate and oscillation frequency of the oscillations is certainly very
familiar. (The electron in its cyclotron motion and the electromagnetic cavity modes are
the coupled oscillators here.) Long ago, for example, it was mentioned that the spontaneous
ernission of an atom placed in a cavity could be inhibited.® Further discussions of cavity-
induced modifications to atom damping rates came later,’ with clear realization of the
problems that the frequency shifts would present for precise measurements of resonance
frequencies.’® In fact, the observation of inhibited spontaneous emission in a trap was the
first observation of inhibited spontaneous emission in a cavity. Soon after, similar effects
were observed with Rydberg atoms and now a variety of such studies have been carried
out.!! '



The electron cyclotron oscillator and the observed coupling to a trap cavity are intro-
duced in Sec. 2. Ounly a pure cyclotron motion is considered because other aspects of the
motion of a single particle in a Penning trap are well understood!? and do not complicate
our examination of damping and frequency shifts. A simple model, wherein an electron
* oscillator is coupled to an LCR circuit which represents a single cavity mode, is devel-
oped in Secs. 3 and 4. The simple model is useful for understanding and for estimating
changes in the damping rate and the resonance frequency of the electron oscillator. It is
qualitatively useful as well, when the cyclotron oscillator is near to resonance with a cavity
mode. In Sec. 4, eigenmodes of cylindrical, hyperbolic and spherical cavities are examined.
Calculated coupling coefficients are presented which indicate how well each mode couples
to an electron cyclotron motion around the symmetry axis of the cavity at its center.
Sufficient information is provided so that the coupling of any of the cavity modes to the
electron oscillator can be treated using the simple model. The way that cavity shifts limit
the current measurements of the electron magnetic moment is discussed in Sec. 5. Only
the simple model is used, given the limited experimental information which makes a more
detailed theoretical analysis to be unwarranted.

Unfortunately, the simple model is not a complete description, especially when the
electron cyclotron oscillator is not near to resonance with a high Q cavity mode. In fact,
the sum of frequency shifts computed with the simple model diverges if contributions from
too many cavity modes are included. Rigorous calculations are thus required to establish
the validity and limitations of the simple model.!® Detailed, renormalized calculations
for a cylindrical cavity!* and a spherical cavity!® are reviewed in Sec. 6. These cal-
culations are classical since it has been shown that within a high level of accuracy, the
exact apparatus of quantum electrodynamics yields the classical results.'® A comparison
of the exact cylindrical calculation with the simple model has been used to justify an ap-
proximate treatment of the hyperbolic cavity, for which a more exact calculation cannot
be done.'? Finally, future possibilities for dealing with cavity shifts are discussed in Sec.
7. Particular attention is paid to a cylindrical microwave cavity!? since it has recently
been demonstrated that a single electron can be accurately studied with trap electrodes
which approximate this configuration,'® just as well as within the customary hyperbolic
electrodes.

The present state of experimental information about the cavity modes and how much
they affect the measurements of the electron magnetic moment is far from satisfactory.
Ideally, the magnetic moment would be measured over a wide range of electron cyclotron
frequencies, a range over which the location, Q and symmetry of cavity modes is well
known (instead of at only a single frequency). Although there is now some experimental
indication of the location and Q of cavity modes,?? the estimates in this article are badly
in need of more experimental information. Hopefully, the estimates will be replaced by
measurements. '

2. One-electron Cyclotron Oscillator



For our purposes it suffices to deal with a cyclotron motion of an electron (of charge e
and mass m) in a uniform magnetic field B. In free space, the electron orbits a magnetic
field line at angular frequency (CGS units)

We = — (1)
This cyclotron motion is damped via synchrotron radiation with a damping width

2,2
_detw;

3mc?

Ye (2)
which is just the ratio of the power radiated from the circular motion (given by the familiar
Larmor formula) divided by the instantaneous energy stored in this motion. Typically, the
cyclotron motion is damped only very weakly so that the radiation width is very much
smaller than the cyclotron frequency. For B = 5.9 Tesla, for example, w./2r = 164 GHz
and ~v./27 = 1.3 Hz so that
T —gx 107 (3)
We
Without line splitting, therefore, the cyclotron frequency could (in principle) be measured
to 8 x 1072, The corresponding decay time is 7 = y7! = 100 ms.
To relate the uncertainty Aw, in measuring the cyclotron frequency to the resulting
uncertainty Aa in the measured anomalous magnetic moment a which is so important for
tests of quantum electrodynamics, we note that

We — W

a= (4)

We

can be regarded as a definition of a, where w, is the electron’s spin precession frequency.
Since a &~ 10~3 is small,
Aa _1Aw.

ot

a a we

(8)

Setting Aw. equal to the free space line width yields Aa/a =~ 8 x 10~%. The experimental
error currently quoted? is half this amount.

~ Both the cyclotron frequency and the damping rate can be shifted when the one
electron cyclotron oscillator is located within a microwave cavity rather than in free space.
Fig. 1 shows the cavity within which the the inhibition of spontaneous emission was first
observed. Fig. 2 shows measured cyclotron damping times® of 86 + 2 and 347 -+ 64 ms for
cyclotron frequencies which differ by only 0.5%. These are the first observations of damping
times which differ from the 7. = 100 ms expected for radiation into free space from Eq. (2).
The damping clearly varies as the electron: cyclotron frequency (and hence the detuning
from the nearest eigenmode of the trap cavity) is changed. The longest damping time
observed in this particular trap was about three times longer than the damping time for
free space. This first observation was subsequently repeated in another trap?, but with a
damping time 7 = y~1 = 1.0 £ 0.1s, about 10 times larger than in free space.
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Fig. 1. Hyperbolic Penning Trap in which the inhibited spontaneous emission of a one-
electron cyclotron oscillator was first observed. (From Ref. 5.)
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Fig. 2. Measured decay of the energy of a one-electron cyclotron oscillator in the trap of
Fig. 1 as a function of time for two electron cyclotron frequencies which differ by
only 0.5 %. Both damping times differ from the free space value (v.)"! = 0.1 s
because of the microwave cavily formed by the trap electrodes. (From Ref. 5.)
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3. Simple Model

To illustrate the characteristic way that the damping rate and resonant frequency of an
electron cyclotron oscillator is modified by its interaction with a microwave cavity, we use
the simple model in Fig. 3a. In this model, the N** cavity mode is represented to the right
by an LCR tuned circuit.?® Such a circuit is resonant at angular frequency wy = (LC)~1/2
with damping width 'y = (RC)™!. The electron oscillator is represented as a charge ¢
and mass m on a spring with spring constant mw?. The interaction between the LCR
and the electron is via the force —eV/d on the cha.rge which occurs when a potential V is
present across two extended plates (separated by an effective distance d) between which
the particle is located. (The effective capacitance of the two plates is included in C.) The

unperturbed resonance frequency of the two oscillators are related by a detuning § defined
by

1
We =wpn + §PN5 (6)

Presently we shall provide explicit expressions for the combination of the parameters L,C,R
and d which will make the simple model quantitatively useful as well.

To emphasize that the cavity mode is in fact an oscillator, at any given frequency we
can substitute an equivalent series L,C,R, circuit for the parallel LCR circuit as shown
in Fig. 3b. We choose the same resonant frequency wy = (L,C,)" /2, and the parallel
and series circuits are indistinguishable at any given frequency provided that

L, = _FN (7)
and R
Be=11g (8)

The negative series inductance (and capacitance) signify an effective phase change and to
simplify the latter expression we have assumed that § << (2wy/ I'wv). Both oscillators now
explicitly satisfy harmonic oscillator equations

eV
F+w? e ==y (9)
R, . 1 V

where ¢ is the charge stored in the capacitor and g denotes that g is differentiated with
respect to time. The two equations are easily combined to eliminate V which couples them.
The remaining equation can be solved by inspection if the instantaneous power trans-

fered from circuit to electron —¢V is equated to the power dissipated by the electron
—eVz/d, yielding the Schotky formula

§= (Z) ;. (11)
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Fig. 3. (a) Simple model of the inieraction of a one-electron cyclotron oscillator (repre-
sented as a charge e and mass m on @ spring with spring constant mw?) and a
electromagnetic mode of ¢ microwave cavity (represented as a parallel LCR cir-
cuit). (b) At any one frequency, the parallel LCR circuit may be represented as
a series L,C,R, circuit.

We choose the origin of the coordinate system to coincide with the center of the trap so
that ¢ = (e/d)z as well. The ¢ dependence can then be eliminated to obtain a single
damped harmonic oscillator equation

Etyz+(we+Aw)z=0 _ (12)

which describes the motion of the coupled electron. The electron is damped via its coupling
to the cavity mode at a rate
: _ _IN
TE s
The maximum damping rate yx (discussed in the next paragraph) pertains on resonance
when w, and wy coincide (i.e. § = 0). The electron frequency is shifted from w, to w, +Aw

(13)
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with
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If the electron oscillator and the LCR circuit are tuned to the same unperturbed resonance
frequency (i.e. § = 0) there is no frequency shift. The maximum frequency shifts +yy/4
occur near resonance, at detunings § = +1. The characteristic shapes for v and Aw are

shown in Fig. 4 and these will be clearly evident in more detailed calculations which follow
as well.

(14)
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Fig. 4. Characteristic dependence of an oscillator’s damping rate v in (a) and frequency

shift Aw n (b) as a function of its detuning & from the resonant frequency of an
LCR circuit (or a cavity mode).

‘The maximum of the damping rate and the maximum of the frequency shift are both
determined by
e’ R
TN = (15)
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Since yv ~ R ~ Qn, the maximum damping and maximum frequency shift are larger
when the quality factor Qn = wy/T'n is larger. To display the Q dependence explicitly

‘we write )

p _

IV _ g (—N) (16)
WN wy

thereby defining the coupling strength?® Ax. This definition also allows the use of a simple
form for the electron’s frequency shift and damping rate

w(An)?

Y
-t = ) 1
Aw 2_2 w? +iwly —wi " (17
Using the parameters of the LCR model,
1rec?
2 _ 1Te
(M) = 2Cd?’ (18)

where we have utilized the classical electron radius r, = e2 /mct. Coupling strengths for
cavities of interest will be specified in the next section.

To illustrate the results of the simple model, the solid lines in Fig. 5 represent the
damping v and frequency shift Aw as a function of detuning & (upper abcissa), for an
electron cyclotron oscillator coupled to a mode of a cylindrical microwave cavity. (The
mode eigenfrequency is within the frequency range where experiments are being done and
the coupling strength used is described in the next section.) For comparison, the results of
a more complete calculation (described in Sec. 6) are represented by the dotted line. For
this relatively high Q value, @ = 10%, the simple model describes both the damping and
frequency shifts near the mode so well as to make the two curves almost indistinguishable.

Fig. 6 shows a similar comparison for a lower Q = 1000. Again the simple, one-
mode model works very well near the mode. The larger frequency spread being viewed,
however, reveals significant deviations between the one-mode model (solid lines) and the
exact calculation (dotted lines). The major difficulty is the coupling of the electron to
additional cavity modes which are nearby, as is illustrated at the left of the figure because
of a nearby mode which is strongly coupled. These contributions can be largely accounted
for by summing the contributions to 4 and Aw over additional, nearby modes. We thus
replace Eq. (17) by the mode sum

7 e A%
Ay —1L = —_—lde =~ — = -
woiy =w-we =iy . w%wz—HMPN—w%\r,

(19)
where the frequency of the cyclotron oscillator, w, is now taken to be complex. The dashed
line in Fig. 6 shows what happens when contributions are included from one additional
cavity mode on either side. The agreement with exact values is much better, particularly
at the left of the figure. ' _

More than 3 modes are clearly required to deseribe the region between cavity modes
with accuracy comparable to the experimental precision. The contributions to Aw from
off-resonant modes are clearly important, going as 3(An)?/(w. —wn), independent of Qn.
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Including the contribution of more modes to the mode sum does improve the agreement
with the exact values. A careful study for Q = 10® shows that the agreement gets better
as more modes are included up to approximately 7 modes to either side of the frequency
being considered.!® If more modes are included, however, the error in the frequency shift
(i.e. in the real part of the mode sum) begins to increase. In fact, the frequency shift
from the mode sum diverges if the mode sum includes all the cavity modes which couple
to the electron cyclotron motion. This divergence, and how it can be correctly removed by
renormalization in certain cases, is discussed in Sec. 6. A truncated mode sum was used
to calculate the damping and frequency shifts of an electron cyclotron oscillator within a
hyperbolic cavity,!® since an exact calculation has not been feasible in this geometry.

§.. i
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Fig. 5 The simple model and the ezact calculation of Sec. 6 yield indistinguishable damp-

ing rate (above) and frequency shift (below) near a cylindrical cavity mode at
€n & 3.781 with Q = 10%.
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Fig. 6. Comparison of simple model (solid line) and the ezact calculation of Sec. 6 (dotted
line) for a cylindrical cavity mode at &y ~ 3.781 with Q = 10°. Adding the
contributions of an additional cavity mode to either side (dashed line ) improves
the agreement.

4. Cylindrical, Hyperbolic and Spherical Cavities

To use the simple model to quantitatively describe the interaction of the electron
cyclotron oscillator with a cavity mode, we must of course specify the resonant frequency
wy and the quality factor @y = wy /Ty for the mode. Also, the coupling constant (An)?,
which indicates the strength of the interaction between an electron and a cavity mode,
must be specified. This is equivalent to specifying an effective value of Cd?. We focus
upon three cavity geometries of interest, considering only modes which couple to cyclotron
motion about the symmetry axis of a single electron located at the center of the cavity.
For each cavity geometry, the size of the cavity is indicated by an appropriately defined

constant z,. The use of a normalized frequency
2z, zow

£="'"_=

A Te

(20)
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which is independent of the overall size, makes it possible to separate out the dependence
of the cavity properties on the cavity size.

The first cavity considered is a cylindrical cavity (Fig. 7) which is of particular
interest because a one-electron cyclotron oscillator is being studied within a Penning trap
whose electrodes approximate the idealized cavity shown in the figure. Also, a detailed
calculation for this geometry (Sec. 6), makes it possible to establish the limitations of
simple models. The second cavity discussed is a simple spherical cavity (Fig. 8). This
cavity is included because its high degree of symmetry allows a particularly simple rigorous
calculation of its effects upon a one-electron cyclotron oscillator located at its center.
The third is a hyperbolic cavity (Fig. 9).. The traps used in the past to study one-
electron cyclotron oscillators (including the trap used for the most precise electron magnetic
moment measurement?) have electrodes which approximate equlpotentla,ls of an electric
quadrupole potential which they are used to produce.

At the outset it is possible to estimate possible Q values. Up to a geometrical factor
(which depends upon the specific field configuration of a particular cavity mode) the Q
value is simply the ratio
Q~ ATS ~ :‘_0

8 8

where V is the volume of the cavity and A, is the penetration volume of the fields into
the cavity walls. Here A is the interior surface area for the cavity and §, is the skin depth.
The skin depth is related to the conductivity of the cavity walls and the angular frequency

w by
8s = ¢/V2rwo. (22)

For a pure material like copper at low temperature (T < 30 K), the electrical conductivity
is very high (¢ > 10?° 57') and the skin depth is very small (§, < 10~® cm). This yields
an estimate of Q > 10°,

In practice, the Q values of the hyperbolic traps used so far seem to be lower. Holes
and slits in the electrodes (to admit particles and to allow potentials to be applied to
the trap electrodes) can allow radiation to leak out of the cavity, lowering the Q. In the
only hyperbolic trap in which Q values were measured, Q values on the order of 1000
were indicated.? The Q value in the cylindrical trap now being used may well be higher,
since choke flanges were incorporated to minimize the losses of radiation through the slits
between electrodes. Unfortunately, the Q values are not yet well known and hence cannot
be treated very accurately in any calculation.

(21)

a. Cylindrical Cavity

The cylindrical cavity represented in Fig. 7 is invariant under rotations about z-axis,
with radial dimension p, and axial dimension z,. For numerical examples, we choose
a relative geometry of po/z, = 1.186 as indicated in Fig. 7, the choice which is used
experimentally to provide optimum electrostatic properties for the Penning trap.!* The
well known mode eigenfrequencies are obtained by solving the boundary-value problem for
perfectly conducting surfaces. To find the analytic expressions for C' and d, however, we

12
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Fig. 7. Geomeiry of a cylindrical microwave cavity used to calculate the damping rate
and frequency shift of a one-electron cyclotron oscillator which is located at the
center of the cavity and oscillates about the symmetry azis of the cavity. A trap
with relative geometry given by p,/z, = 1.186 and z, = 0.385 cm is presently
being used for experiments. .

have to solve the system of coupled differential equations describing the interaction of the
cyclotron motion with the standing waves excited in the cavity by the accelerating charged
particle at the cavity center. Comparing the solution with the simple model, we choose

_ P
C= 8z (23)
and 5
<o
d= nn,l, (24)

to maintain a close analogy when the oscillator in the model is driven. The dimensionless
constant K., (discussed in the next paragraph) depends upon the particular mode N,

13



which we identify here with the two quantum numbers n = 0,1,2,... and ! = 1,2,3,....
When the magnetic field is along the symmetry axis of the cavity, these two indices identify
- the subset of cavity modes which couple to a cyclotron oscillator located at the center of
the cavity. The coupling constant is thus given by

~(ra)? (25)

from which ¥n = 75,1 can be calculated.
T'wo types of modes couple to the cyclotron motion and for both it is convenient to
use k, = (n+1/2)7/z,. For TE (transverse electric) modes

2 a?

2 !
= 26
it at — 1 Ji(o)? (26)

2 AN
Wh = (kn + p2) c (27)
where a;, defined by

Ji(a;) =0, (28)

is the I** zero of the derivative of the first order Bessel function. For TM (transverse
magnetic) modes which couple to electron cyclotron motion

2k3e2 1
2 — 123 29
Ka,t wi,l JO(JBI) ( )
2
di=(B+ D)o (30)
where 8, given by
Ji(Br) =0, (31)

is the I** zero of the first order Bessel function. The quantum numbers n and ! which we
use to label the cavity modes which couple to the electron are simply related to common
conventions for labeling all the modes of a cylindrical cavity. For example, in the textbook
by Jackson the origin of the coordinate system is translated to the center of the bottom
endcap,?? and the TE and TM modes identified above are labeled as TE; 1 2n+1 and the

TMj 1,2n41, respectively. Table I gives specific values calculated for the cylindrical trap in
Fig. 3.
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b. Spherical Cavity

Fig. 8 represents a spherical cavity of radius p,. The mode structure is particularly
simple owing to the high degree of symmetry for a sphere. Only one quantum number
suffices to label the modes, since only the partial waves which rotate as vectors couple to
a cyclotron oscillator at the center of the cavity. Egs.(19)-(24) still apply for the spherical
cavity with z, = p,. The coupling parameter is given by

(o) = 1= Xu) + X%’, ‘ (32)

Xk —2
and the mode eigenfrequencies by
c
wN = XN, (33)
o
where yn is the Nth root of the equation’
0= (1-x%) tan(xn) - xn- (34)

The eigenfrequencies and couplings of the first 25 modes are given in Table II.

c. Hyperbolic Cavity

The g-2 experiments so far have been performed in Penning traps formed from hy-
perbolic surfaces of revolution. Unfortunately, the microwave properties of a hyperbolic
cavity are not known like those of the cylindrical or spherical cavities. The eigenfrequen-
cies wy and the coupling parameter Ay can only be obtained numerically.!® A computer
code called URMELT-T developed for accelerator studies was used.? The numerically
calculated values for the mode frequencies and couplings in Table III are for a hyper-
bolic cavity closed as shown in Fig. 9. So-called endcap electrodes and ring electrodes lie
approximately along hyperbola of revolution generated, respectively, by

22 =22 4 p?/2 (35)

and
Pt =p} +27 (36)

An aspect ratio p,/z, = v/2 was chosen, corresponding to the trap used for the measure-
ment of the electron magnetic moment. Flat compensation ring electrodes terminate the
truncation region, perpendicular to the asymptote with the perpendicular distance from
the origin given by h/z, = 2.80.

The numerical method was tested in computations of the eigenfrequencies and cou-
pling parameters for the cylindrical cavity with aspect ratio py/zo = 1.186. Comparisons
with the exact, analytic expressions showed that the errors in the eigenfrequencies are
approximately 0.2 % on the average and do not exceed 0.4 %. The errors in the numerical

15



Fig. 8. Spherical cavity.

evaluation of the coupling constants are about two orders of magnitude larger. The cou-
pling parameter for the highest frequency mode calculated (see Table IIT) has an 87% error
because the parameters of the numerical method were not optimized. A more accurate
calculation is not warranted since the actual dimensions must be known to better than 1%
for the model to be directly useful. Hence, the measured values of these parameters are
needed.

5. Implication for current experiments

Unfortunately, the frequencies and quality factors of the electromagnetic modes of
the Penning trap used for the most accurate, electron g-2 measurements have not been
measured.? Also, the highest precision experiment was only done for a single oscillation
frequency of the electron oscillator (i.e. at only a single value of the magnetic field).

16
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Fig. 9 Hyperbolic cavity. (From Ref. 13.)

This means that the detuning between the oscillator and the nearest cavity mode is not
known at all. For an unfortunate choice of detuning, near § = 1, the frequency shift
could be as large as vn/4. From Table III. we see that YN/7.QnN can be as large as
0.027 in the frequency range of interest, corresponding to a fractional frequency shift
Awfwy =~ (@n/20) x 10712, For the “reasonable” value of Qy = 1000 suggested by
measurements®, this gives a possible frequency shift of 50 x 10~2, or ten times the claimed
uncertainty. For larger Qn the maximum shift is proportionately higher.

As it happens, the experimenters were not so unlucky. A small damping rate ¥ = v./10
was measured. Inverting Eq. (13) shows that such a shift could be caused by a detuning

TN YN  Ye
5=,/ 1= Loy -1 37
\/7 \/%sz'r (37)

For the illustrative mode used above, a detuning § ~ /Qn /2 is required to attain the
measured damping. The corresponding fractional frequency shift is Awfw = 0.2/Qn %

17



10712, If we again use the suggested Qx = 1000, this gives § ~ 16 and Aw/w = 6 x 10712,
From the calculated mode density for a hyperbolic cavity (see Table III) this detuning
is reasonable. This fractional frequency shift is only slightly larger than the 4 x 10~12
quoted,? but would be higher for Qu greater than 1000.

As illustrated in Fig. 6, including the effect of neighboring cavity modes tends to
make the damping rate slightly higher than when only one mode is considered. This
means that the frequency shift could tend to be slightly smaller than estimated if the
cavity modes happen to be uniformly distributed in frequency. However, given the lack
of knowledge of the frequencies and quality factors for the cavity modes of the real trap,
we stress that these estimates are rather unreliable. We have also pointed out earlier that
the coupling constants were obtained numerically with rather low accuracy. Hopefully,
subsequent measurements will be done as a function of the electron’s cyclotron frequency
(by changing the magnetic field), within a trap cavity whose microwave properties are well
measured, so that such estimates of probable measurement error are no longer required.

6. Renormalized calculation of cavity shifts
a. Renormalization

In Sec. 4, the coupling constants reported were obtained by solving the two-dimen-
sional equation of motion for the velocity v of a one-electron cyclotron oscillator within a
microwave cavity, '

mv — (e/c)B x v = eET, (38)

The transverse radiation field within the cavity ET was taken to be the standing wave field
of a particular cavity mode, generated as the accelerating particle radiates into the cavity.
In this equation of motion the standing wave field acts back upon the cyclotron oscillator.

As illustrated earlier, a simple mode sum is actually not valid except for oscillator
frequencies in close proximity to the resonant frequency of a high Q cavity mode. To
understand this, we note that the standing wave field is actually composed of two contri-
butions

ET = Eaelf + E'a (39)

the self-field E,.;s radiated directly by the oscillator (as if into free space) and the reflected
field E' which is reflected from the cavity walls. The back reaction of a self-field upon the
accelerating charge which is radiating, is well known to lead to difficulties and divergences
in classical electricity and magnetism.2* In our particular situation, the real part of the
mode sum [Eq. (19)] diverges when the sum includes all the cavity modes.

Given the usefulness of the simple model and mode sum in certain circumstances, it
is instructive to see how the divergences arise and can be partially circumvented in this
model. Consider first the case that the cyclotron oscillator’s frequency is near enough to the
eigenfrequencies of several cavity modes to be dominated by these modes. In the standing
waves of these modes, the self-field is much smaller than the built up reflected wave in the
cavity and can be neglected. The simple model thus describes quite well the contributions
of these dominant modes. Cavity modes far from resonance with the cyclotron oscillator
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contribute relatively little to the damping or to the frequency shift of the oscillator and
thus can be neglected. Neglecting the off-resonant contributions is essential here, since an
unrenormalized calculation of these contributions overstates them and leads to a divergent
result when the mode sum includes all cavity modes.

The situation is quite different when the cyclotron oscillator is not close in frequency
to the resonant frequency of any cavity mode. A number of off-resonant cavity modes make
small contributions to the damping of the oscillator as well as to shifting its frequency.
Typically, including the contributions of more nearest neighbor modes in the mode sum
initially improves the accuracy of the calculated frequency shift. The difficulty is that for off
resonant modes, the Fourier component of the standing wave fields at the electron frequency
contains a non-negligible amount of self-field. As mentioned above, these self-fields are
the problem. For any particular off-resonant mode, the contribution to the frequency
shift of the electron oscillator is slightly overstated due to self-field in the standing wave.
The overstated contributions add up as the contributions from many modes are included.
Optimal use of the simple, mode sum model thus requires a careful choice of the number
of cavity modes included in the sum. Beyond a certain number of terms, the real part of
the mode sum will start to diverge. Eventually, the mode sum over an infinite number of
such small contributions diverges. It is difficult to establish the optimum number of terms
or the accuracy of the truncated mode sum except by comparison to a calculation which
avoids the divergences entirely and which is the subject of the remainder of this section.

For a correctly renormalized calculation, the self-field term is replaced by a radiation
damping term for radiation into free space (with damping time 4, discussed earlier) and
only the transverse reflected field E' acts back upon the cyclotron oscillator,

¥ wex v+ -;-%v = (e/m)E. (40)

Only in special cases is it possible to separate the reflected field and the self-field which
together make up the standing wave. The high degree of symmetry for a spherical cavity
(Sec. 6.1) makes the removal of the self-field relatively simple because the free-space
radiation from the oscillator at the center contains only outgoing spherical waves, easily
distinguished from the reflected waves. A cylindrical cavity (Sec. 6.2) has less symmetry,
but the separation can still be accomplished by using image charges to satisfy the cavity
boundary conditions. The reflected field is thus clearly distinguished as the field of the
images. Unfortunately, for a hyperbolic cavity (which corresponds to the trap within which
the electron’s magnetic moment was measured) a separation of self and reflected fields
is completely intractable. Finite mode sums as done in the simple model are the only
possibility. Comparisons of a mode sum and a complete calculation for the cylindrical
cavity are used to estimate the optimal number of terms to be included in the finite mode
sum. To set up a framework for specific calculations, we use the radiation gauge. The
transverse electric fields ET, E,qr and E' are thus time derivatives of vector potentials.
These vector potentials, in turn can be written in terms of Green’s functions. For example,
the standing wave field ET can be written as

Ef(t,r) = _% /dt';DH(t =t r,r(t))ev(t')/ 2. B (41)
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It is convenient to Fourier transform Dy (t — #'; r,r'), according to
dw o o = ' ,
Du(t-t';r,r') = /E;e_""("'t ) Dir(w; r, ). (42)

From the wave equation for the vector potential in the radiation gauge, with a point current
source, we obtain

(=V? — k?) Dy(w;r, ') = 4x [1 - V—V—,I—EV] §(r—r"). (43)
ki

The gradient operator V and the inverse 1/V? in the square brackets insure that only
transverse radiation fields are being considered. Of course, the Green’s function must
satisfy the cavity boundary conditions as well.

The self-field Eqei¢(t,r) can be similarly written in terms of the free space Green'’s
function D¢ (¢t — t';r,r') or its Fourier transform D¢ (w;r,1'). The latter is a solution
to the same wave equation (43), but with boundary conditions appropriate to free space.
What we are most interested in, however, is the reflected field E' (¢, r) which is needed to
solve the renormalized equation of motion (40) for the cyclotron oscillator in a cavity. As
above, we can write the reflected wave in terms of D4;(t—#'; r,r’') and its Fourier transform

ﬁ;‘, (w;r,r"). This Fourier transform is a solution of the homogeneous equation
(=V? —k*) Diy(w;r,x') =0, (44)

since the sources of the reflected waves are not located within the cavity. D (w;r, ) is
thus the unique modification which must be added to the free space Green’s function to
obtain the Green’s function for the standing waves which satisfies the cavity boundary
conditions.

The desired damping rates and frequency shifts for the cyclotron oscillator can be
simply expressed in terms of the modification to the Green’s function. We use the Fourier
expansion of Di,(t —¥;r,r') in the renormalized equation of motion and use the complex
notation for the velocities v(t) = v.(t) — ivy(t) ~ e~**, which includes the assumption
that the oscillator has a well defined frequency. If we restrict our attention to a cyclotron
oscillator located at the center of the cavity (r = 0 = r') we obtain

W — we + 17c/2 = —wry D, (w; 0,0). (45)

The simplicity of the right-hand side of Eq.(45) results from the axial symmetry which
implies that D'(w;0, 0) is proportional to the unit dyadic in the xy plane, with the pro-
portionality constant D} _(w;0,0) = ﬁ;y(w; 0,0). In general, the Green’s function modifi-
cation D, (w;0, 0) is a complex number, and thus the presence of the cavity modifies the
cyclotron decay constant away from its free-space value .. In the limit of a perfect cavity
with perfectly conducting walls, the imaginary part of D', _(w;0,0) cancels ~, exactly. In
this limit there is no decay of the cyclotron motion because there is no dissipative process
to absorb the energy.
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b. Spherical cavity

A notable feature of the spherical cavity is that the effects of dissipation can be
treated exactly. Because of the spherical geometry, application of the boundary conditions -
appropriate for cavity walls with finite conductivity,!® does not mix the modes and leads

to
1. 1, (1 —inkp,)hi(kp,) + (kpo)hi(kpo) 3. 1
w-—wi-]——zc:—zc . : ; — =t ’
27T 2 [T —nkpo)in(koo) + (Fpo)ia(Rpo) 2 (Rp)

46
- (40)
where k = w/c is the wave number at frequency w. Here, 7 relates the electric and magnetic
field components just outside the surface of the lossy conductor

E" =nn X B", (47)

where n is the outward unit normal to the surface. In terms of the magnetic permeability
of the conductor p and the skin depth §,,

n=pu(l—12)ké,/2. (48)

In Eq. (46) we use the usual notation j;(x) for the spherical Bessel function and hi(z)
for the outgoing wave spherical Hankel function, both of order one. The prime denotes a
derivative with respect to the argument.

Since the dissipative effects given in Eq.(46) only approximately model an actual
trap, and since dissipative effects are generally very small except near a cavity resonance,
it suffices to adopt the simple procedure of replacing w by the complex extension w —
w(1 +4/2Q), where Q is an average quality factor for the frequency range of interest. In
this way, we obtain from Eq.(46)

' 1. 1, [(1—2%)cosz+zsinz 3
= Aw— Sy = - 4
YT e “T 37 57e 5 (1—2%)sinz —zcosz 223 (49)
where .
WP i
=t [1+—-2Q] (50)

and explicit forms for the Bessel functions have been used.

In Fig. 10, we highlight the important features of this result and compare directly
with those of the cylindrical cavity ( to be discussed). The cavity shifts are plotted against
- the dimensionless variable ¢ = 2p,/A for the spherical cavity, while for the cylindrical
cavity we use { = 2z,/) where 2z, is the length of the cylinder. We take Po to be
also the radius of the cylinder, and set z, = 2p,/3 so that both cavities have the same
volume. We use a rather low value, Q = 100, so as to more clearly exhibit the structure.
The regularity of the spherical modes (thick line) is set against the complicated mode
structure of the cylindrical cavity (thin line). The cylindrical-cavity mode spacing steadily
decreases as the frequency increases, with considerable merging of the modes giving rise
to a complicated fine structure. In contrast, the modes of the spherical cavity are quite
evenly spaced with a larger spacing, and although there is a broadening of the widths
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with increasing frequency, with an accompanying decrease in the height of the peaks, the
dispersive and absorptive structure maintain a distinct corelation with one another and to
the normal resonant frequencies. But because the spherical-cavity mode spacing is larger
than that of the cylinder, while the average total “oscillator strength” of the two cavities
must be the same, the effects are much larger for the sphere. Roughly speaking, the cavity
reflection field from a spherical surface is optimally focused to the center of the trap and
thus produces a stronger effect.
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Fig. 10. Damping time and frequency shift as a function of normalized frequency &, for a
spherical cavity (thick line) and for a cylindrical cavity of the same volume (thin

line), both with Q = 100. (From Ref.15.)

6.3 Cylindrical cavity

To get the renormalized alteration for the cylindrical cavity, we note that the limit
in which the cavity radius goes to infinity yields a geometry with two parallel, infinite
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Fig. 11. Image charges for an electron midway between two parallel plates.

conducting planes a distance 2z, apart. Thus we express the Green’s function as the sum
of the Green’s function for the parallel plate problem plus the solution to the homogeneous
wave equation which corrects for the presence of the cylindrical side wall. This gives

w—wizAw—%v:—%%+w {Ep(w+%1’)+25(w+%l‘)] (51)
where Zp is the parallel-plate contribution to the renormalized green’s function alteration,
and Xg is the correction due to the cylindrical side of the cavity. Since the Green’s
function for the two-parallel plate geometry can be expressed as an infinite sum of image
contributions as shown in Fig. 11, the removal of the self-field term is now trivial: the
direct contribution is omitted from the sum. Using the method of images we obtain

h (UJ) — T_e In [1 + eZiwz‘,/c] _T_e i(_l)n e2inuz°/c 1c - c2 n cz
P Zo _ Zo 2ntzow - 4ndz2w? 4ndz2w? |’
(52)
The alteration of the Green’s function brought about by the presence of the circular side
can be expressed in terms of an infinite sum over the axial standing waves that fit between
the two endcap planes. The wave numbers of the waves that do not vanish at the midplane
location of the charged particle are given by

n=1

oo = (n + D)/, (53)

where n = 0,1,2,... . With w below the first axial threshold, £ < %, the radial waves are
exponentially damped with the damping constant

pn = (k7 — w? /)2, (54)
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In terms of this decomposition, the cavity side addition to the complex frequency shift
(47) is given by :

ES(U) = _T_e = {K£(»uﬂp0) + kfzzcz Kl(runpo) _ Kl(knpo)] } , (55)

ne0 Li(unpo) ~ w? | Li(pnpo) Ii(knpo)
where the prime denotes a derivative. The first ratio of Bessel functions is the TE contri-
bution, the terms in the large parentheses are the TM contribution. When w is near the
nth threshold, y, becomes small, and the nth term in the sum (55) has a large logarithmic
contribution that cancels the large logarithm in the parallel plate term. As w passes the
threshold, y, becomes a negative imaginary number. In the limit of vanishing dissipation
(T' = 0), the imaginary part of the Bessel function ratios cancels the imaginary part of the
parallel plate term. Past a threshold, the Bessel functions in the denominator can van-
ish, producing poles corresponding to the normal modes of the cavity. The replacement
w — w +iI'/2 changes these poles into Lorentzian forms of width I'. The sum in (55)
converges very rapidly; for large n, p, ~ k, ~ nw/z,, and it is exponentially damped.
Thus the sum is easily calculated on a digital computer. Adding the result to the previous
parallel plate contribution gives the complete shift of Eq.(51).

We use the aspect ratio p,/z, = 1.186 for the cylindrical cavity, which has been
employed to demonstrate the possibility of the cylindrical geometry for a Penning trap.
Experiments are generally performed in the region 3.5 < £ < 4.5, and Fig. 12 illustrates
the result in this region. But before passing to this, we note that the various cavity modes
have different quality factors. In the region that we are considering, the quality factors for
perfect cylindrical geometry for the TE modes Q are , to within about 10 percent, twice
the quality factors Qs of the TM modes. We approximately account for this difference in
cavity widths by using the complex frequency w(1+:/2Qg) in the TE denominator function
Ii(¢tnpo) in Eq.(55), while all the other complex frequencies are given by w(1 + /2Q M)
with Qum = Qg/2. (By keeping all the other complex frequencies the same, we preserve
the threshold cancellation discussed above, as we must.) Actual cylindrical penning traps
contain holes and slits, and the quality factors are difficult to calculate accurately. Thus,
although one could alter the individual modes in the interval 3.5 < £ < 4.5 by putting
in the exact widths, this is not warranted by the uncertainty in our knowledge of the
widths of the experimental traps. Thus we use the simple substitution described above to
compute the decay constants and frequency shifts plotted in Fig. 12 for a typical quality
factor @z = 1000. A @ 2 1000 is required to make possible the decrease in the damping
constant by the factor of 10 which has been observed.?

7. Summary and future prospects

Cavity shifts of the cyclotron frequency of a one-electron cyclotron oscillator presently
limit the accuracy of measurements of the anomalous magnetic moment of the electron. A
substantial change in the electron’s damping rate has been observed,® but a frequency shift
has not been observed directly. In fact, little is known experimentally about the microwave
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properties of the cavities in which magnetic moment measurements have been done. On
the theoretical side, a simple model whereby the electron is coupled to a single cavity
mode illustrates the characteristic damping and frequency shift of the electron oscillator.
Moreover, the simple model can be quantitatively useful when the electron oscillator and a
cavity mode are nearly resonant. When the electron oscillator is not resonant with a cavity
mode, however, a properly renormalized calculation is required for a precise description.
Such a calculation can be done for cylindrical and spherical cavities, but not for hyperbolic
cavities (which correspond most closely to traps used for precise measurements so far).
Two experimental directions are being pursued. One is to deliberately make the trap
of lossy materials? to minimize the radiation which reflects from the cavity walls and acts
back upon the oscillator. A possible alternative might be to make trap electrodes which
lie along a cylinder, but with completely open ends?’ through which radiation can escape.
The second direction is to use the cavity to control the radiation, by tuning the electron
oscillator’s frequency as close as desired to the eigenfrequency of a high Q cavity mode. A
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cylindrical trap cavity'? is promising here (compared to the hyperbolic traps) because a
proper renormalized calculation can be done for this geometry and because it is easier to
build a high Q cavity of this geometry. Moreover, it has recently been demonstrated that
a single electron can be confined and interrogated within such a cavity just as well as in
the traditional hyperbolic geometry. Hopefully the perturbations due to slits in the cavity
(needed to make a particle trap) are very small, with radiation losses kept small by choke
flanges, but this remains to be seen. Prospects seem good for a systematic experimental
study of the damping and frequency shifts of a one-electron cyclotron oscillator within a
well-characterized microwave cavity.
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Table I. Mode structure for a cylindrical cavity with Pofzo = 1.186

N={(nl) &n=zwn/re (2/r)Anfwn)?  IN[{QN7e) TYPE
0, 1 0.702985 1.2213 0.8295 TE
0, 1 1.143497 0.1299 0.0542 ™
0, 2 1.515745 0.5425 0.1709 TE
1, 1 1.579300 0.2420 -  0.0732 TE
1, 1 1.818677 0.1827 0.0480 ™
0, 2 1.948165 0.0278 0.0068 T™
1, 2 2.073037 0.2900 0.0668 TE
0, 3 2.344983 0.35586 0.0724 TE
1, 2 2.407353 0.1072 0.0213 ™
2, 1 2.548370 0.0929 0.0174 TE
2, 1 2.703254 0.1039 0.0184 ™
1, 3 2.738420 0.2608 0.0455 TE
0, 3 2.775854 0.0097 0.0017 T™
2, 2 2.880535 0.1502 0.0249 TE
1, 3 3.115344 0.0552 0.0085 ™
2, 2 3.129752 0.1042 0.0159 ™
0, 4 3.181306 0.2634 0.0395 TE
2, 3 3.391009 0.1701 0.0239 TE
1, 4 3.481481 0.2200 0.0302 TE
3, 1 3.534712 0.0483 0.0065 TE
0, 4 3.610725 0.0044 0.0006 T™
3, 1 3.647956 0.0614 0.0080 ™
2, 3 3.702076 0.0769 0.0099 T™
3, 2 3.781201 0.0872 0.0110 TE
1, 4 3.877800 0.0301 0.0037 ™
3, 2 3.974336 0.0785 0.0094 ™
2, 4 4.015060 0.1654 0.0197 . TE
0, 5 4.020443 0.2089 0.0248 TE
3, 3 4.183174 0.1118 0.0128 TE
1, 5 4.261919 0.1859 0.0208 TE
2, 4 4.363179 0.0521 0.0057 ™
3, 3 4.439073 0.0729 0.0078 ™™
0, 5 4.448730 0.0024 0.0003 T™
4, 1 4.527051 0.0295 0.0031 TE
4, 1 4.616014 0.0396 0.0041 ™
1, 5 4.668105 0.0177 0.0018 ™
3, 4 4.703266 0.1205 0.0122 TE
2, 5 4.707861 0.1524 0.0155 TE
4, 2 4.722021 0.0559 0.0057 TE
0, 6 4.860961 0.1730 0.0170 . TE
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Table II. Mode strﬁcture for a spherical cavity

N §v = pown/me  (pofre)(An/wn)? TN/(@N7e)
1 0.873349 1.606573 0.878323
2 1.947027 1.371989 0.336450
3 2.965571 1.349238 0.217231
4 3.974397 1.342053 6.161228
5 4.979597 1.338849 0.128374
6 5.983033 1.337140 0.106708
7 6.985475 1.336119 0.091325
8 7.987301 1.335461 0.079831
9 8.988719 1.335012 0.070913
10 9.989851 1.334691 0.063792
11 10.990776 1.334455 0.057972
12 11.991547 1.334275 0.053127
13 12.992198 1.334135 0.049030
14 13.992757 1.334024 0.045520
15 14.993240 1.333935 0.042480
16 15.993663 1.333862 0.039820
17 16.994036 1.333802 0.037475
18 17.994368 1.333751 0.035390
19 18.994665 1.333708 0.033525
20 19.994932 1.333671 0.031847
21 20.995173 1.333640 0.030329
22 21.995393 1.333613 0.028949
23 22.995593 1.333589 0.027690
24 23.995777 1.333568 0.026535
_25 24.,995946 1.333550 0.025473
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Table III. Mode structure for a hyperbolic cavity

N €N = z,wN/[Te (zo/r)(An[wn)? YN/ (@NTYe)
1 0.443 0.30 0.32

2 0.663 6.71 0.51

3 0.926 0.12 0.061

4 1.184 0.47 .19

5 1.291 0.049 0.018

6 1.337 0.043 0.015

7 1.469 0.065 0.021

8 1.565 0.27 0.083

9 1.693 0.042 0.012
i0 1.729 0.040 0.011
11 1.740 0.32 0.087
12 1.898 0.071 0.018
13 1.971 0.0029 0.00070
14 . 2.021 0.034 0.0081
15 2.079 0.34 0.079
16 2.147 0.011 0.0025
17 2.237 0.018 0.0039
18 2.299 0.12 0.025
19 2.352 0.079 0.016
20 2.405 0.082 0.016
21 2.471 0.048 0.0093
22 2.534 0.0032 0.00060
23 - 2.562 0.066 0.012
24 2.669 0.0052 0.00093
25 2.693 0.28 0.050
26 2.730 0.14 0.024
27 2.739 0.0058 0.0010
28 2.836 0.11 0.019
29 2.894 0.0034 0.00056
30 2.954 0.080 0.013
31 2.988 0.11 0.017
32 3.075 0.043 0.0066
33 3.105 0.015 0.0022
34 3.137 0.057 0.0087"
35 3.161 0.0015 0.00022
36 3.177 0.053 0.0079
37 3.285 0.00015 0.000021
38 3.308 0.18 0.026
39 3.324 0.13 0.018
40 3.374 0.018 0.0025
41 3.446 0.072 0.010
42 3.458 0.00050 0.000069
43 3.514 0.11 0.014
44 3.571 0.20 0.027
45 3.712 0.025 0.0032
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