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1 Introduction

Imagine holding an apple in your hands – this is how small our visible universe was

around 13.8 billion years ago. This tiny piece of today’s space-time contained an enormous

amount of energy. The progress of our fundamental understanding of nature is rooted

in investigating these early moments in the evolution of our universe. One approach

is to reproduce this high temperature state in collider experiments, where high energy

particles are directly produced. The current energy limit1 of around 14 TeV is set by

the Large Hadron Collider. High precision experiments provide us with insights into the

fundamentals of nature on similar or even higher energy scales where virtual particles give

rise to contributions of precisely measured quantities.

Understanding nature over many orders of magnitude, physicists can explore the first

moments of the temporal evolution of our universe and predict to an astonishing precision

the outcomes of experiments with the smallest units of matter [33]. We have a thorough

understanding of the early phases of the universe, but there are still many unknowns and

puzzles, for example dark matter, the cosmological constant, or the origin of matter in our

universe. Most theories which could resolve some of these questions predict permanent

electric dipole moments (EDMs) of particles. A precision-measurement of the electron

EDM is particularly important to exclude or constrain various supersymmetry models.

Furthermore, a non-zero value of an electron EDM violates the time reversal symmetry

and could give us hints to explain the matter-antimatter asymmetry of our universe.

The current limit for the existence of the electron EDM was set by the Advanced Cold

Molecule Electron EDM (ACME) Collaboration in 2013, performing a spin-precession

measurement in the thorium-232 monoxide (ThO) molecules. The value of the electron

EDM is measured to be smaller than 9.3·10−29 e cm (90% confidence level) [8], thereby con-

straining various prominent particle physics theories [69]. The second-generation ACME

experiment aims for even higher precision. The leading systematic uncertainties in the

first-generation electron EDM measurement were due to imperfect polarizations of the

laser beams needed to prepare and readout the EDM-sensitive state of the molecules.

This thesis presents an improved polarimeter allowing for precise characterization of po-

larization imperfections. Furthermore, various polarimetry measurements on ACME are

performed. In particular, a detailed investigation of thermally-induced birefringence in the

1In particle physics and cosmology, the Boltzmann constant is usually set to one, so that energy and
temperature units are equivalent. An energy of 1 eV corresponds to a temperature of around 104 K.
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1 Introduction

indium-tin-oxide coated glass field plates is reported. These field plates, used to produce

a static electric field in the ACME experiment and therefore being crucial for the whole

measurement scheme, are dominantly responsible for the systematic error mechanism in

the ACME’s first generation. Polarimetry results shown in this thesis demonstrate that

the newly designed second-generation field plates greatly suppress this effect.

The structure of this thesis is as follows: The overview of the ACME experiment in

Chapter 2 summarizes the motivation for the search of an electron EDM, the measure-

ment principle and the experimental setup, and gives an illustration of how imperfect

polarization leads to systematic errors. The following Chapter 3 reports in detail on

the self-calibrating polarimeter designed for ACME. This includes a brief review of the

Stokes parameters needed to describe the polarization of light, the basics of a rotating

waveplate polarimeter, its laboratory realization together with the intensity normalization

scheme, the novel calibration technique, and an analysis of uncertainties. The polarimetry

measurements on ACME are presented in Chapter 4. A particular focus is the thermally-

induced birefringence in the electric field plates. Furthermore, mechanical stress-induced

birefringence is investigated and tests of various optical elements are shown. Finally, a

brief conclusion found in Chapter 5 sums up the content of this thesis.
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2 The Advanced Cold Molecule

Electron EDM (ACME) Experiment

This chapter briefly describes the Advanced Cold Molecule Electron Electric Dipole Mo-

ment (ACME) Experiment. More details can be found in theses by ACME graduates

([83, 41, 46, 38, 89]) and publications by the ACME collaboration (e.g. [9, 63, 8]). Since

this thesis focuses on polarimetry, only a compact overview is given here. The first sec-

tion, Sec. 2.1, summarizes the motivation for the search of an electron EDM and its link

to the progress of fundamental physics. After introducing the measurement principle and

the advantages of using ThO for an electron EDM experiment in Sec. 2.2, the ACME

setup is presented in Sec. 2.3. The last Sec. 2.4 indicates how imperfect polarizations of

laser beams affect the electron EDM measurement.

2.1 Motivation for the Search of an Electron EDM

Let us first illustrate how the electron EDM is related to the discrete symmetries. In the

classical picture, an electric dipole moment ~dcl characterizes the spatial asymmetry in the

charge distribution:

~dcl =

∫
ρ(~r) · ~r d3~r, (2.1)

where ρ(~r) is the spatially dependent electric charge density. In molecular physics the

unit Debye is often used to quantify its magnitude: 1 D ' 3.3 · 10−30 C · m ' 0.4 e a0,

where a0 is the Bohr radius and e the electron charge. In particle physics, units of e · cm

are common instead. To compare this unit to atomic scales, consider the water molecule

which has an electric dipole moment of around 3 D ' 1.6 · 10−9 e · cm [37].

What makes the electron EDM be different than the classical EDM is that it has

to be either aligned or anti-aligned with the spin [70]. If this would not be the case,

another quantum number could be added to describe the electron. Then, due to the

Pauli principle, twice as many electrons could occupy the orbitals – the atomic spectra

and chemical laws would be completely different. Since we know that our set of quantum

numbers for the electron is sufficient to describe the atomic shell structure, we conclude

that there cannot be any other quantum number which is not a combination of the known

ones. The Wigner-Eckhard theorem [75] states that in this case the combined vector, in

our case the electric dipole moment, must be proportional to the known vector quantity,

in our case the spin.

3



2 The Advanced Cold Molecule Electron EDM (ACME) Experiment

The electron EDM is fundamentally different from the classical EDM which becomes

clear if we consider the discrete symmetries of time reversal (described by the time-reversal

operator T̂ ) and parity inversion (described by the operator P̂ which reverses the space

coordinates). For a classical EDM, the space inversion operator P̂ changes the sign of the

EDM since it is proportional to ~r:

~dcl ∝ ~r → P̂ ~dcl = − ~dcl, T̂ ~dcl = ~dcl. (2.2)

As discussed in the previous paragraph, the electron EDM is proportional to its spin and

hence behaves oppositely under P- and T-transformations:

~de ∝ ~S → P̂ ~de = ~de, T̂ ~de = −~de. (2.3)

Since the electric field ~E breaks the parity-reversal symmetry, P̂ ~E = −~E , and is invariant

in time, T̂ ~E = ~E , the corresponding electron EDM interaction term in the Hamiltonian,

ĤeEDM = ~de · ~E , (2.4)

is odd under the P-symmetry and the T-symmetry:

P̂ (ĤeEDM) = −~de · ~E , T̂ (ĤeEDM) = −~de · ~E . (2.5)

This demonstrates that the electron EDM breaks the time reversal and parity symme-

tries. For local quantum field theories, which are a successful framework for the Stan-

dard Model of particle physics and most of its extensions, the combined CPT symmetry,

where C stands for the charge conjugation operator, is conserved [57].1 Assuming the

CPT-theorem, the electron EDM also violates the combined CP symmetry.

Symmetries have always been important in understanding the fundamentals of nature.

Until the 1950s, a common paradigm in physics was that ‘nature is perfect’ such that

the C-, P -, and T -symmetries are separately conserved. This is a natural assumption

based on all the ‘perfect’ conservation laws we find in classical physics. We would never

think that Newton’s law should be slightly different if we reverse the space. If we move

to the left, ~F = m~a is true exactly the same way compared to if we move to the right.

A breakthrough for fundamental physics happened in 1956 when Lee and Yang proposed

to test the P symmetry [55]. In the same year, the astonishing experiment by Wu saw

the violation of this fundamental symmetry in the weak interaction [93]. In 1964, Cronin

and Fitch reported the violation of the combined CP -symmetry [16].

1There are theories which propose a violation of the CPT-symmetry [20]. Therefore, it is important to
perform experimental CPT-tests, for example with antimatter experiments such as [25]. We remark
that there is a controversy on whether CPT implies Lorentz invariance and vice versa [36, 14].
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2.1 Motivation for the Search of an Electron EDM

Today, CP-violation is well established in theory but still insufficient to explain one

of the greatest puzzles of contemporary physics – the matter-antimatter asymmetry of

the universe. Our universe arose from a hot dense state where matter and antimatter2

are believed to be in equilibrium. Particles and antiparticles are created and annihilated

as long as the temperature of the universe is sufficiently high to exceed the rest energy

of the particle. As the universe expands, it cools down and the interactions fall out of

equilibrium. The so-called ‘freeze-out’ of massive particles occurs when the expansion

rate H is approximately equal to the rate of particle interactions Γ [59].

The question of how much matter survives the early phases of the universe is quantified

by the baryon-to-photon density ratio nb/nγ. A simple estimate based on the standard

cosmological model yields, see App. A.1:

nb/nγ ∼ 10−18. (2.6)

However, the observational value is far off the prediction [64]:

nb/nγ = (6.09± 0.06) · 10−10. (2.7)

This value can be obtained from several independent observations which are all remark-

ably consistent with each other [64, 59]. The striking discrepancy between Eqs. 2.6 and

2.7 of around nine orders of magnitude points to the lack of understanding of the origin

of baryons, even without mentioning the apparent absence of anti-baryons [21].

In addition to the above discrepancy, we find almost no anti-baryons in our universe

which is referred to as the matter-antimatter asymmetry. According to Sakharov [74],

three conditions are necessary to produce an excess of matter over antimatter: violation

of baryon number, violation of C- and CP-symmetries, and a thermal non-equilibrium.

Interestingly, all Sakharov conditions are satisfied in the Standard Model. First, though

not directly observed yet, the baryon number is broken via anomalies present in all quan-

tum field theories3 [67]. Second, as discussed above, the C- and CP-symmetries are found

to be violated and a corresponding mechanism is implemented in the Standard Model.

Third, the thermal in-equilibrium is a known phenomenon in the development of our

universe [59]. Though a slight asymmetry between baryons and anti-baryons can be pro-

duced within the Standard Model, a detailed quantitative analysis shows that the specific

value disagrees with the observed baryon-to-photon ratio by many orders of magnitude

[13]. Therefore, undiscovered sources of Sakharov conditions must exist, which can only

be explained by physics beyond the Standard Model.

2What is antimatter? The charge-conjugation operator Ĉ converts a particle state |Ψ〉 into antiparticle
state |Ψ〉. The operator Ĉ changes sign of all additive quantum numbers (e.g. electric charge, baryon
number) but leaves the space-time related properties unchanged (e.g. mass, energy, momentum, spin).

3The triangle anomaly leads to the sphaleron process which violates the baryon number. This non-
perturbative effect was first realized by t’Hooft in 1976 [86].
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2 The Advanced Cold Molecule Electron EDM (ACME) Experiment

CP-violations beyond the Standard Model can manifest in permanent EDMs [69]. Since

the electron EDM violates the C-, T- and CP-symmetries (assuming CPT-theorem), it

is a prominent candidate for new sources for the fulfillment of the Sakharov conditions.

Also other permanent EDMs, for instance of the neutron or the proton, are important for

the research on this topic. Whereas the neutron and proton EDMs also probe the strong

interaction, the electron EDM provides an outstanding probe of CP-violation in leptons.

In addition to the matter-antimatter puzzle of the universe, many other hints point to

physics beyond the Standard Model. For example, gravity is not included into current

quantum field theories, we do not know what dark matter is, we do not understand the

source of the cosmological constant, and the Standard Model of particle physics suffers

from the so-called hierarchy problem [64]. Extensions to the Standard Model provide

possible solutions to some of these problems. Most of the prominent models, like various

modifications of Supersymmetry, predict a value for the electron EDM. The origin of the

electron EDM can be interpreted as the asymmetrical charge distribution in the cloud of

virtual particles surrounding the electron. In the n-loop process, Ramsey et al. showed

that the electron EDM would be related to the mass scale mx of the new particle as [28]:

|de| '
}e
c

me

m2
x

( α
4π

)n
sinφCP , (2.8)

where e is the electron charge and α the coupling strength between the electron with

mass me and the new particle. The phase φCP is naturally expected to be maximally

CP-violating [69]. For n = 1 and sinφCP ' 1, we obtain a value of:

|de| ' 10−27 e · cm

(
10 TeV

mxc2

)2

(2.9)

Therefore, the electron EDM measurement is a very strong probe of new physics. The

electron acts as an ‘antenna’ for virtual massive particles arising in CP-violating interac-

tions. The current electron EDM limit is set by the first-generation ACME measurement

[8]:

|de| < 9.3 · 10−29 e · cm (90% conf. level). (2.10)

Most simple supersymmetric models predict an electron EDM of de ∼ 10−26 e ·cm. There-

fore, the result of Eq. 2.10 constrains the parameter space of various modifications of

supersymmetry, pushing them to the unnatural fine tuning. Note that the Standard

Model also predicts a non-zero value for the electron EDM, de . 10−38 e · cm, which is un-

realistic to verify by the experiment, though. This is due to the fact that the CP-violation

in the Standard Model is manifested in the quark sector and contributes to the leptonic

electron EDM only on the fourth loop order.
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2.2 Measurement Principle and Advantages of Thorium Monoxide

2.2 Measurement Principle and Advantages of Thorium

Monoxide

When measuring the electron EDM, we wish to determine an interaction whose energy

contribution is:

ĤeEDM = ~de · ~E = |~de| σ̂ · ~E , (2.11)

where σ̂ is the Pauli matrix corresponding to the direction of the spin, ~E the electric field,

and ~de the electron electric dipole moment. In order to measure this Hamiltonian term,

we need a system where electrons have a known spin state which can be addressed and

manipulated, and where electrons are subject to an electric field. As we shall see, we can

find such a system in an atom or a molecule. For now, let us assume that the electron

state can be controlled and we perform a spin precession measurement.

When the electron is placed in an electric and magnetic field, the Hamiltonian reads:

Ĥ = ~µ · ~B + ~de · ~E = m (µB ± deEeff ) , (2.12)

where we assume that the magnetic and electric fields are aligned with a particular spin

orientation m = ±1. The electron is subject to the effective electric field Eeff (the term

‘effective’ is justified later). Furthermore, we allow for a reversal of the electric field. First,

we prepare a superposition of spin states so that the initial state reads:

|ψ(0)〉 =
1√
2

(| ↑〉+ | ↓〉). (2.13)

Then we let the electron interact with the electric and magnetic fields. According to the

Schrödinger picture, during a time t the state accumulates a phase:

|ψ(t)〉 = exp(−iĤt/~) |ψ(0)〉. (2.14)

After a precession time t = τ , the state is given by:

|ψ(τ)〉 =
1√
2

(e−iφ| ↑〉+ eiφ| ↓〉), (2.15)

with the corresponding phase

φ = m
τ

~
(µB ± deEeff). (2.16)

If we determine the phases φ± with the opposite directions of the electric field, the value

for the electron EDM can be extracted as:

de =
~(φ+ − φ−)

2 τ Eeff

. (2.17)

7



2 The Advanced Cold Molecule Electron EDM (ACME) Experiment

The phase φ can be measured by a projection onto a pair of orthogonal analyzer states

|ψA,X〉 and |ψA,Y 〉 given by:

|ψA,X〉 =
1√
2

(| ↓〉 − | ↑〉), |ψA,Y 〉 =
1√
2

(| ↓〉+ | ↑〉) . (2.18)

The projection from N prepared electrons leads to the signals SX and SY :

SX = N |〈ψA,X |ψ(τ)〉|2 = N cos2(φ), SY = N |〈ψA,Y |ψ(τ)〉|2 = N sin2(φ). (2.19)

Determining the asymmetry A between these signals has the great advantage of being

immune to possible fluctuations in the number of analyzed electrons in the system (in the

ACME experiment N fluctuates by around 20%):

A =
SX − SY
SX + SY

= cos(2φ) (2.20)

If the orthogonal states |ψA,X〉 and |ψA,X〉 are rotated by a degree ψ with respect to x in

the xy-plane, the upper equation is modified by φ → φ − ψ. A variety of imperfections

(e.g imperfections in the state preparation or readout, decay back to the prepared state,

velocity dispersion), introduce a reduced contrast C < 1 in the asymmetry measurement:

A =
SX − SY
SX + SY

= C cos[2(φ− ψ)] (2.21)

On ACME the contrast value is typically C ' 0.94. The contrast can be measured by

dithering the angle ψ when φ ≈ (2n + 1)π/4 + ψ for integer n (condition for largest

sensitivity on measuring small changes of φ):

C = −1

2

∂A
∂ψ

. (2.22)

For shot-noise limited measurement, the uncertainty in the phase measurement scales

as 1/
√
N (see [89] for a detailed discussion). Comparing with Eq. 2.17 the sensitivity for

the electron EDM is:

δde =
~

2 C τ Eeff

√
ṄT

, (2.23)

where we introduced the flux Ṅ and the total measurement time T .

As obvious from Eq. 2.23, it is important to maximize the effective electric field Eeff.

It turns out that the strongest electric fields an electron can experience are found in a

molecule. Naively, one would expect that due to the Schiff’s theorem the net electric field

on the electron bound in a neutral system vanishes. Indeed, if Eq. 2.25 was exactly true,

the electron would not experience any electric field at all. Fortunately, Eq. 2.25 is only a

8



2.2 Measurement Principle and Advantages of Thorium Monoxide

non-relativistic approximation and the proper relativistic Hamiltonian reads:

ĤeEDM, rel. = ~de · ~E +
γ

1 + γ
~β · ~de ~β · ~E , (2.24)

where γ is the Lorentz factor and ~β = ~v/c the dimensionless electron velocity. One can

write the average value for this Hamiltonian in the familiar non-relativistic form of Eq.

2.25:

〈ĤeEDM, rel.〉 = 〈~de〉 Eeff, (2.25)

with Eeff being the effective electric field on the electron. The fact that Eeff does not

vanish was first realized by Sandars in 1965. The second term in Eq. 2.25 gives rise to

the Lorentz contraction which makes Schiff’s theorem invalid. In an atom or a molecule

Eeff scales as:

Eeff ∝

{
PZ3α2 for Z � 140,

PZ4α2 for Z . 140,
(2.26)

where Z is the atomic number, α the fine structure constant, and P the degree of polar-

ization. The fact that Eeff ∝ α2 indicates that to a first-order Schiff’s theorem is true,

whereas a non-zero Eeff is a second-order effect. However, because of the Z dependence the

effective electric field can easily become substantial for nuclei with large atomic numbers.

For atoms, only a small polarization fraction P can be achieved. Even to achieve

P ∼ 10−3 very high electric fields on the order of Eapp ∼ 105 kV/cm are required. On

the contrary, molecules can be nearly fully polarized, P ∼ 1, with modest electric fields

of Eapp < 102 V/cm. Therefore, molecules provide a larger effective electric field with

much smaller applied electric field. A larger Eeff value results in a higher electron EDM

sensitivity whereas a smaller Eapp reduces the sources of systematic errors. The limiting

systematics in atomic EDM measurements, like the tellurium (Tl) experiment [72], are

typically caused by large applied electric fields leading to geometric phases, motional

magnetic fields and leakage currents.

An overview of the three most recent electron EDM experiments is given in Tab. 2.1.

For a long time, from 1990 to 2011, the most precise limit on the electron EDM was

achieved by the Tl experiment. Experiments with atoms have the advantage of a high flux

Ṅ . The flux attained with molecular beam sources is typically several orders of magnitude

lower. However, EDM experiments with molecules are competitive to those with atoms

because of the larger Eeff and a smaller Eapp which suppresses several systematic errors.

This was first demonstrated by the ytterbium fluoride (YbF) experiment in 2011. In the

ACME experiment, the applied electric fields are even smaller and the effective electric

field is more than five times larger than in YbF [31, 79]. Furthermore, the sophisticated

cryogenic buffer gas beam source allows for a higher molecule flux [47].

For all three listed experiments, the precession time τ is on the order of a millisecond.
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2 The Advanced Cold Molecule Electron EDM (ACME) Experiment

System
Group
Year [ref]

Eapp

[kV/cm]
P

Eeff

[GV/cm]
Ṅ [s−1] τ [ms] T [h] Result [10−28 e cm]

|de| δdstat
e

δdsys
e

Tl
Berkley
2002 [72]

123 10−3 0.07 8.5 · 108 2.4 60 < 16 5.5 5

YbF
Imperial
2011 [44]

10 0.75 14.5 1.2 · 104 0.65 280 < 10.5 5.7 1.5

ThO
ACME
2013 [8]

0.03 1.00 78 5 · 105 1.1 200 < 0.93 0.41 0.27

Table 2.1: Overview of the three most recent leading electron EDM experiments. The table
shows the parameters relevant for the measurement sensitivity according to Eq. 2.23, as well
as the final results of the experiments.

Typically, the precession time τ is limited by the lifetime of the used state. For the ACME

experiment, the lifetime of the EDM-sensitive H-state in ThO is 1.8 ms [90]. Even if the

states lived much longer, a larger precession time could cause possible systematic effects,

for instance due to the velocity dispersion leading to different interaction times. Because

of the residual magnetic field the variation in the interaction time results in a broader

phase distribution. Therefore, a much larger precession time is not necessarily a better

choice.

A further requirement for an electron EDM measurement is a suitable electronic state.

For ThO, the H 3∆1 state of rotational level J = 1 turns out to be a perfect candidate.

In this state, the two valence electrons are in the σ and δ orbitals. The σ electron is

closer to the nucleus and is therefore responsible for the high effective electric field. The

presence of the δ electron results in a small magnetic moment of µ1 = g1µB, where µB is

the Bohr magneton and g1 = 0.00440(5) the small g-factor [68, 91]. This makes the EDM

measurement largely immune to magnetic field noise.

Another important property of the H 3∆1 state is the Ω-doublet structure which is

illustrated in Fig. 2.1. Without the applied electric field, the molecules are in one of

the defined parity states |±〉. This configuration is symmetric or antisymmetric under

P̂ -transformation, P̂ |±〉 = ±|±〉:

|±〉 =
1√
2

(| 〉 ± | 〉) ≡ 1√
2

(
|Ñ = −1〉 ± |Ñ = +1〉

)
, (2.27)

where Ñ denotes the direction of the internuclear axis. The opposite parity states are
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2.2 Measurement Principle and Advantages of Thorium Monoxide

Figure 2.1: The energy level structure of the H 3∆1 state in ThO illustrating the advantages
for the electron EDM measurement, figure from [9]. The |M = ±1〉 states are subject to
the linear Stark shift proportional to D1|E| where D1 ' 2π× 1 MHz/(V/cm) is the molecular
electric dipole moment and E the applied electric field. The contribution of the Zeeman shift
g1µB|B| is shown in red. A non-zero electron EDM results in a shift proportional to deEeff

depicted in blue. The electric and magnetic fields are aligned with the laboratory ẑ axis which
determines the orientation of the effective electric field ~Eeff as well as the orientation of the
spin of the σ electron.

separated by ∆Ω,1 ' 2π × 360 kHz due to the Coriolis force.4 An applied electric field

polarizes the molecules and thus breaks the space-reversal symmetry. The molecules are

now in the |Ñ = ±1〉 states of mixed parity:

|Ñ = −1〉 ≡ | 〉 =
1√
2

(|+〉+ |−〉) , |Ñ = +1〉 ≡ | 〉 =
1√
2

(|+〉 − |−〉) . (2.28)

Note that for M = 0 the linear Stark shift does not occur and the molecules still are

in the opposite parity states |±〉 from the case of zero applied electric field. The dipole

moment of the H state is D1 ' 2π×1 MHz/(V/cm). Therefore, the condition for a nearly

perfect polarization, D1|E| � ∆Ω,1, can be achieved with applied electric fields on the

order of ∼ 10 V/cm. Another advantage of the Ω-doublet is the possibility of reversing the

effective electric field without altering the laboratory electric field by addressing different

N states. This is of great importance for studying various systematic errors.

4The Ω-doublet splitting of the C state in ThO is much larger, ∆Ω,C,1 ∼ 50 MHz, and can easily be
spectroscopically resolved. Optical pumping of the H → C transition thus allows to switch the parity
of the prepared H state.
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2 The Advanced Cold Molecule Electron EDM (ACME) Experiment

2.3 The ACME Experimental Setup

The basic ACME setup is shown in Fig. 2.2. For the sake of simplicity, the molecular beam

source is not shown. This sophisticated hydrodynamically enhanced cryogenic buffer gas

beam source is crucial for the ACME experiment [47]. Here we just quote the result:

a beam of ThO molecules with a velocity of ∼ 200 m/s and a rotational temperature

of ∼ 4 K enters the interaction region. Thereafter, the molecules are polarized by the

transparent glass field plates coated with a conductive layer of indium-tin-oxide (ITO).

Then the desired molecule state is prepared (discussed below in more detail). After the

spins precess for ∼ 1 ms in parallel electric and magnetic fields, the accumulated phase

is measured by the readout laser beam. The molecules are pumped into a higher excited

state (C state in the first generation and I state in the second) and the photons from the

spontaneous decay are detected by photomultiplier tubes (PMTs).

In addition to what is depicted in Fig. 2.2, the ACME apparatus has magnetic field coils

and five layers of magnetic shielding. Several coils wrapped around the vacuum chamber

provide a constant magnetic field Bz parallel to the electric field, as well as constant

magnetic fields in the other two directions and all five linearly independent first-order

Figure 2.2: The basic ACME experimental setup, figure from [63] by C. Panda. The
molecular beam source (not shown for the sake of simplicity) provides a beam of ThO molecules
which are polarized with electric field plates as soon as they enter the interaction region. The
desired EDM-sensitive state is prepared via the second-generation Stimulated Raman Adiabatic
Passage (STIRAP) technique or via optical pumping (first-generation technique). Afterwards,
the state precesses for ∼ 1 ms in parallel electric and magnetic fields. The accumulated phase
is measured by pumping to a specific state with the readout laser beam (switching between
orthogonal linear polarizations) and detecting the fluorescence photons with photomultiplier
tubes (PMTs). Note that magnetic coils and shields are not shown in this figure.
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2.3 The ACME Experimental Setup

(a) (b)

Figure 2.3: Comparison of state preparation schemes for the first and second generations of
the ACME experiment, figure from [63] by C. Panda. (a) In the first generation the molecules
are pumped into the A state. The spontaneous decay to the H state results in an incoherent
superposition of the H state sub-levels. A coherent superposition needs to be prepared by
additional pumping to the C state (not shown here). (b) In the second generation, two laser
beams are applied simultaneously. Carefully chosen parameters of these pump and the Stokes
lasers allow for a Stimulated Raman Adiabatic Passage (STIRAP) from the lowest rotational
X state level to a coherent superposition of the H state sub-levels.

magnetic field gradients. The latter are used to study or exclude systematic errors. The

magnetic field is permanently monitored by a set of four magnetometers5. As mentioned

previously, the used H state of ThO has the great advantage of a small magnetic moment

allowing to be largely insensitive to magnetic field imperfections.

2.3.1 First- and Second-generation State Preparation

The state preparation schemes differ for the first and second generations of the experiment

and are compared in Fig. 2.3. In the first generation method, the molecules are optically

pumped from the ground X state to the A state. This results in a spontaneous decay to

the desired H state manifold. However, the superposition of H sub-levels is incoherent

and therefore useless for the spin precession measurement until a coherent superposition

of opposite spin states according to Eq. 2.13 is prepared. An additional state preparation

laser (not shown in the figure) is responsible for optical pumping to the C state, thereby

leaving the ‘dark’ coherent superposition of M = ±1 sub-levels of the H state. The first

generation scheme is subject to many state losses. Only around 6% of molecules can

finally be used for the EDM measurement.

The technique for the second generation demonstrates a transfer of (75± 5)% of initial

molecules to the desired state, a factor of 12±1 increase in the usable number of molecules

compared to the first generation [63]. In this so-called Stimulated Raman Adiabatic

Passage (STIRAP) two laser beams are applied simultaneously. Rotational cooling (also

5Bartington Instruments, Mag-03 Three-Axis Fluxgate Magnetometers
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present in the first generation) is achieved by several lasers before the molecules enter

the interaction region and enhances the population in the lowest rotational level of the

X state. From this state the population is coherently transferred into a superposition

of opposite spin states in the H state manifold. The prepared state is purified with an

additional refinement laser beam (not shown in the figure), similar to the optical pumping

in the first generation.

2.3.2 Phase Measurement and Switches

The interaction Hamiltonian responsible for a phase accumulation during the spin pre-

cession reads similar to Eq. 2.12:

Ĥ(M, Ñ , Ẽ , B̃) = −M(B̃g1µBBz + B̃Ñ ηµBEBz + Ñ ẼdeEeff). (2.29)

M = ±1 denotes the spin state of the electrons. Ñ = ±1 is the internuclear axis orienta-

tion corresponding to the upper or lower H state manifold in Fig. 2.1. B̃ = ±1 denotes

the direction of the magnetic field in the z-direction with a magnitude Bz. Ẽ = ±1 is the

direction of the electric field in the z-direction set by the voltage on the field plates. The

first term in Eq. 2.29 accounts for the Zeeman shift with the small magnetic moment

mentioned in the previous section. The second term is related to the electric field de-

pendent magnetic moment difference between the upper (Ñ = −1) and lower (Ñ = +1)

sub-levels of the H state, caused by Stark mixing with other ThO states. The parameter

η is measured to be η = 0.79(1) nm/V [68]. The last term in Eq. 2.29 corresponds to a

shift caused by the electron EDM we wish to determine.

For a precession time τ , the accumulated phase reads analogously to Eq. 2.16:

φ = −τ
~

(B̃g1µBBz + B̃Ñ ηµBEBz + Ñ ẼdeEeff). (2.30)

As can be seen from Eq. 2.21, for a most sensitive measurement the accumulated phase

φ needs to be φ ≈ (2n + 1)π/4 + ψ for integer n, where ψ is determined by the rotation

of the two orthogonal linear polarizations of the readout laser6. This condition can be

fulfilled by setting a corresponding magnetic field amplitude Bz as well as the polarization

rotation angle ψ.

The accumulated phase is measured by the asymmetry between orthogonal state pro-

jections as described in the previous section. On ACME, this is realized with orthogonal

linear polarization switching of the readout laser beam. To be as insensitive as possible to

molecule number fluctuations, the polarization switching needs to be fast. However, the

upper limit is determined by the fluorescence state lifetime of around 0.5µs because the

6Note that in other theses or publications by ACME the linear rotation angle is typically called θ rather
than ψ. In this thesis we choose ψ to be consistent with the definition of a linear rotation angle in
Chapter 3, see Eq. 3.9 and Fig. 3.1.
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spontaneous decay needs to be detectable. Ideally, one wants to measure the line shape

of the emitted photon numbers. In the first generation the polarization was alternated

every 5µs, for the second generation the rate is doubled.

The polarization switching frequency constrains the horizontal width of the laser beam.

The molecules need to experience both polarizations as they propagate through the laser

light. With a switching frequency of 100-200 kHz and a velocity of 200 m/s we obtain a

horizontal beam width on the order of wx ∼ 1 − 2 mm. The vertical width wy needs to

be much larger because of the angular spread of the molecular beam, wy ∼ 30 mm.

From Eq. 2.30 it becomes obvious that in order to measure the contribution of the

electron EDM, we need to isolate the Ñ Ẽ correlated phase. Not only for this purpose,

but also to study various systematic errors, several ‘switches’ are used in the ACME

experiment. Aside from the polarization switching, the fastest switch is between the two

configurations of the H state, Ñ = ±1. With an acousto-optic modulator (AOM), the

laser frequency is alternated every half a second to address these different sub-levels of

the H state manifold. The direction of the applied electric field Ẽ = ±1 is switched every

two seconds. The linear polarization rotation angle of the readout laser beam is dithered

every 10 s by ∆ψ = 0.05 rad to measure the contrast C from Eq. 2.21. The precession

time τ is determined by varying the direction of the magnetic field B̃ = ±1 every 20 s.

Those four switches, Ñ , Ẽ , ψ̃, and B̃, form a ‘block’ of data of all 24 = 16 configurations

of these experimental parameters which takes in total around 40 seconds [9].

On longer times scales, the following parameters are varied to study or exclude the

systematic errors: the parity of the excited state Pread, the simultaneous change of the

power supply polarity and interchange of leads connecting the electric field plates to their

voltage supply, a rotation of the state readout orthogonal polarizations by ψ → ψ + π/2,

the global polarization rotation of both state preparation and readout lasers by 90◦, the

magnitude of the magnetic field Bz (1, 19, or 38 mG) and the magnitude of the applied

electric field E needed to polarize the molecules (varied between 36 and 141 V/cm) [9].

2.3.3 Second-generation Upgrades

In addition to the STIRAP state preparation scheme which results in a 12 times higher sig-

nal gain, the second generation of the ACME experiment features the following upgrades:

optimized beamline geometry (∼ 8× gain), improved fluorescence collection (∼ 2.5× gain)

and an increased efficiency of photomultiplier tubes due to a different detection wavelength

(∼ 2.5× gain). From these improvements, an overall signal gain factor of 300 − 600 in

the spin precession measurement is anticipated [3]. Furthermore, a novel thermochemical

molecular beam source which allows to produce an around ten times higher molecule flux

is currently under development [3].

Regarding systematic error handling, the second generation ACME setup mainly has
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the following novel features: the refinement beam which aims to suppress STIRAP po-

larization fluctuations, the careful control of beam pointing, the modified apparatus for

magnetometry, the monitoring and feed back system of laser light polarization, and the

improved electric field plates [3]. This thesis presents a contribution to the latter two

points. The polarimeter described in Chapter 3 allows to precisely measure the laser light

polarization. In Chapter 4 various polarimetry measurements are discussed. A particular

focus is the investigation of thermally-induced birefringence (Sec. 4.2). Anticipated im-

provements of optical and thermal properties of the new field plates are characterized by

measurements of thermally-induced polarization changes. The proposed ellipticity feed

back mechanism ([62]) accounts for waveplate imperfections which need to be investigated

as demonstrated in Sec. 4.3.1. Furthermore, the knowledge of the absolute light polar-

ization which reaches the molecules and may be affected by mechanical stress-induced

birefringence, see Sec. 4.1, can be valuable. In addition, the polarization purity in the

sideport of the Glan-Laser polarizer is tested in Sec. 4.3.4 which is important for the

polarization switching scheme.

2.4 Systematic Errors due to Imperfect Polarizations

The dominant systematic errors in the first generation ACME setup are due to imperfect

polarizations of the laser beams preparing and reading out the state of the ThO molecules.

The mechanisms by which polarization imperfections produce an EDM-like phase are one

of the most intricated ones. This thesis focuses on the characterization of polarization

imperfections rather than the mechanism by which these imperfections cause a systematic

effect. Therefore, it is only briefly mentioned how imperfect laser polarizations may

contribute to spurious phases in the EDM measurement. We refer to [9] for more details.

Consider first an idealized measurement scheme with constant polarization offsets only,

a small linear polarization rotation by ψi → ψi + λdψi and a small ellipticity change by

χi → χi+λdχi, where λ quantifies the small polarization imperfections. Note how a linear

rotation angle ψ and an ellipticity angle χ are related to our relative Stokes parameters

in the next chapter, see Eq. 3.9 and Fig. 3.1. Taking these offsets into account, the phase

φ from Eq. 2.30 differs from the measured phase Φ as following [9]:

Φ = φ+ λ(dψprep −
1

2
(dψX + dψY ))− λ2P̃prepP̃readdχprep(dχX − dχY ) +O(λ3). (2.31)

Note that a rotation of all polarization angles by the same amount leaves the measured

phase unchanged, as should be true from basic symmetry arguments. A deviation in

the relative linear polarization angle between the state preparation and readout beams

adds an offset to the measured phase. However, if uncorrelated with other parameters

or switches, this offset is eliminated through measuring the Ñ Ẽ correlated phase. The
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Figure 2.4: Illustration of how a non-reversing electric field Enr leads to a correlated detuning
∆NE , figure from [9]. The energy levels Ñ = ±1 are shifted oppositely with a non-reversing
electric field component Enr when switching the direction of the electric field Ẽ = ±1.

contribution of an imperfect ellipticity enters the phase measurement only if it is different

in the orthogonal readout laser beams. Furthermore, it can be distinguished from other

contributions through the parity of the excited state for read out, P̃read. To sum up, the

terms in Eq. 2.31 are uncorrelated with the Ñ Ẽ switch used to extract the EDM phase.

However, Eq. 2.31 provides a useful framework for other polarization imperfections [9].

Polarization imperfections can contribute to a false EDM measurement through Stark

interference between the electric dipole (E1) and magnetic dipole (M1) transition am-

plitudes. The analysis of this mechanism follows a calculation which is found in [9]. It

is estimated, that in the first generation with an ellipticity corresponding to the rela-

tive Stokes parameter S/I ∼ 5%, this mechanism contributes to a systematic error on

the order of ωNE = φ/τ ∼ 0.1 mrad/s which corresponds to a false EDM on a scale of

10−30 − 10−31 e · cm. Assuming that this effect scales linearly with the ellipticity, with a

demonstrated ellipticity imperfection of one to two orders of magnitude lower than in the

first generation (see Chapter 4), this effect should be negligible. However, it is important

to confirm this conclusion through the polarization switches of the global polarization

rotation and the rotation of the readout laser beam. These switches can also be used to

suppress this systematic error.

The leading systematic error in ACME’s first generation was due to the mechanism of

AC Stark shift phases. As above we refer to [9] for a detailed calculation and discussion.

On ACME, the AC Stark shift phases are caused by the correlated laser detuning ∆NE

with the reversed electric field E , combined with circular polarization gradients due to

thermally-induced birefringence in the electric field plates. As illustrated in Fig. 2.4, a

correlation of the laser detuning ∆NE is caused by the non-reversing component of the

electric field Enr ∼ 5 mV/cm. The circular polarization gradient is caused by thermally-
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Figure 2.5: Field plates used to produce the static electric field, depicted together with the
fluorescence collection optics, figure from [9]. Note that only one of two sets of four lens
doublets is shown. Note also that in the second generation the fiber bundles are replaced by
light pipes. The right view shows the elongated beam shape of the read out laser. This high
intense laser beam propagating through those field plates is responsible for thermally-induced
birefringence causing the leading systematic error mechanism in ACME’s first-generation mea-
surement. The thermally-induced birefringence in the field plates is a particular focus of
Chapter 4, see Sec. 4.2.

induced birefringence in the electric field plates which is discussed in detail in Sec. 4.2.

Fig. 2.5 shows the electric field plates together with the fluorescence optics. As the high-

power elongated laser beam (illustrated on the right view in Fig. 2.5) passes through the

field plates, some heat is deposited in the glass as well as in the coating.7 This heat leads

to mechanical stress and at the end causes a spatially dependent birefringence. Since

the intensity varies along the beam, an ellipticity gradient is imprinted. This ellipticity

gradient maps onto the molecule state we prepare and read out in a way that an EDM-like

phase is produced.

It was demonstrated that the latter systematic could be suppressed by aligning the

laser beam polarization with the birefringence axis [9]. Nevertheless, an uncertainty

corresponding to a false EDM of on the order of ∼ 10−29 e · cm remains. This thesis

demonstrates that in the second generation ACME setup, the ellipticity gradient is one

to two orders of magnitude lower than in the first generation. Assuming that the mech-

anism of detuning-correlated AC Stark shift phases scales approximately linearly with

the magnitude of the circular polarization gradient [9], we conclude that in the second

generation this systematic error is anticipated to produce a false electron EDM of less

than ∼ 10−30 − 10−31 e · cm.

7The intense laser beam also passes through the vacuum windows. In the first generation the windows
were made of BK-7 glass which can substantially contribute to thermal effects. The second-generation
fused silica windows produce no significant thermally-induced birefringence, see Fig. 4.10.
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measure Stokes Parameters

The leading systematic errors in the first-generation ACME experiment are due to imper-

fect polarizations of the laser beams used to manipulate the states in the molecules [9, 8].

In particular, circular polarization gradients resulting from the thermally-induced bire-

fringence of the electric field plates affect the spin precession measurement and contribute

substantially to a systematic error mechanism. The second-generation field plates are de-

signed to suppress this effect and require a test of their polarization properties. The goal

of this work is to construct a polarimeter with an improved performance that allows to

carefully characterize the polarization state of the ACME experiment lasers, in particular

the ellipticity present in the laser beam. Though to some extend the systematic due to

thermally-induced birefringence can be minimized [9, 8], a precise characterization of light

polarization in the future generations of ACME is needed to identify or exclude possible

other sources of systematic errors related to the imperfect polarization in the electron

electric dipole moment measurement. Therefore, a major part of this thesis is dedicated

to the development of a polarimeter matching the requirements by ACME, one of which

is the use at intensities of up to a hundred mW/mm2 whereas commercial polarimeters

are specified for around one to two orders of magnitude lower intensities [42, 87, 76].

Furthermore, the improved design presented here is immune to intensity fluctuations and

features a novel calibration technique. The carefully analyzed uncertainties demonstrate

an order of magnitude increase in precision compared to previous laboratory realizations

or commercial polarimeters.

This chapter reports on this polarimeter for the precise determination of the relative

Stokes parameters that characterize the polarization state of laser light. The structure is as

follows: After a brief introduction into polarimetry in the first section and an overview of

Stokes parameters in Sec. 3.2, the working principle of the rotating waveplate polarimeter

is presented in Sec. 3.3. The laboratory realization and the compensation of intensity

noise in the measured laser beam, which is crucial for the measurement precision, are

summarized in Sec 3.4. Sec. 3.5 describes an optimized in-situ calibration technique

without the need to remove or realign optical elements which minimizes the calibration

uncertainties. Finally, the last section, Sec. 3.6, shows the study of uncertainties which

ensures the high accuracy of the absolute polarization measurement.
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3.1 Introduction

Light polarimetry is important in many fields of physics [80]. In atomic physics, polariza-

tion of light reveals information about interactions between excited states and the atomic

state structure [58]. Among many applications in astronomy [43], the polarization of light

that has traveled through interstellar dust provides information about the background

magnetic field that aligns the dust [2, 35]. Light polarization also probes the magnetic

field in the plasmas used for nuclear fusion studies [48]. When light propagates through

plasma, magnetic fields can change the polarization of light, either through rotating the

linear polarization (Faraday effect) or changing the ellipticity (Cotton-Mouton effect). Po-

larimeters are also used in geophysics [81] and biomedical diagnostics [1]. As mentioned

previously, for the most precise measurement of the electron’s electric dipole moment,

polarimetry is crucial for understanding the mechanisms that dominantly contribute to

the systematic uncertainty [8].

Drawing upon the early work of G. G. Stokes [85, 84], various methods are available

to measure the light polarization [34]. In the so-called ‘division of amplitude’ method,

light is split to travel along optical paths with differing optical elements, the polarization

state being deduced from the relative intensities transmitted along the paths [6, 5, 66,

40]. Alternatively, the light can be analyzed using optical elements whose properties

vary spatially (‘division of wavefront polarimetry’), with the polarization revealed by the

spatially varying intensity [15, 98, 56]. Lower precision is typically attained using the

two above methods as compared to the technique we follow, called ‘rotating element

polarimetry’. Instead dividing or splitting the laser-beam, the orientation of an optical

component is varied over time to obtain an intensity modulated series of measurements.

In our case, the polarimeter is comprised of a rotating retarder, in particular a quarter

waveplate, and a fixed analyzer. Based on previous experimental realizations [12, 41], this

thesis presents an improved design of a rotating waveplate polarimeter.

Commercial polarimeters similar to the one presented here lack the internal calibration

mechanism, the immunity to intensity fluctuations and a detailed error analysis. They

attain uncertainties on the order of 1% in the Stokes parameters, and can typically handle

up to several mW/mm2 [42, 87, 76]. The ACME experiment requires operating intensities

of up to a hundred of mW per mm2 with the best possible polarimeter accuracy. The

polarimeter design presented in this thesis is easy to realize and is robust in its operation.

With a calibration procedure introduced in Sec. 3.5, it is straightforward to internally

calibrate the polarimeter without the need to remove or realign optical elements. The

polarimeter is designed to be largely immune to intensity fluctuations and has been used

at the high intensities required by ACME. The relative fraction of circularly polarized

light can typically be measured with an uncertainty below 0.1 % as discussed in Sec. 3.6.
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3.2 Stokes Parameters

3.2 Stokes Parameters

Let us first introduce the Stokes formalism which is needed for the description of the

polarimeter. More details are found in the standard literature on optics and polarization

[34, 18, 50, 10, 78, 95].

G. G. Stokes discovered [85] that the polarization state of a beam of light at a particular

point in space can be fully described by four measurable quantities which are called the

Stokes parameters and are summarized in the Stokes vector. This representation is very

useful for two reasons. First, the Stokes parameters allow for a description of partially

polarized light in a practical form and second, they can be easily measured. Stokes showed

that fully polarized light and partially polarized light can be characterized, in principle,

by intensities transmitted after the light passes through each of four simple configurations

of optical elements:

I = I(0◦) + I(90◦) = I(45◦) + I(−45◦) = IRHC + ILHC, (3.1a)

M = I(0◦)− I(90◦), (3.1b)

C = I(45◦)− I(−45◦), (3.1c)

S = IRHC − ILHC. (3.1d)

The total intensity I, and the two linear polarizations M and C, are given in terms of

intensities I(α) measured after the light passes through a perfect linear polarizer whose

transmission axis is oriented at an angle α with respect to the polarization of the incoming

light. The circular polarization S is the difference between the intensity of right- and left-

handed circularly polarized light, IRHC and ILHC. S can be measured by putting a perfect

quarter waveplate before the linear polarizer. If IQWP(α, β) is the intensity of light after

the beam first passes through a perfect quarter waveplate with the fast axis given by the

angle β and then through a linear polarizer whose axis is given by angle α, the last Stokes

parameter is given by [34]:

S = IRHC − ILHC = 2IQWP(45◦, 0◦)− I, (3.2)

where I is obtained from Eq. 3.1a. Therefore, the Stokes parameters are in principle deter-

mined by the four directly measurable intensities I(0◦), I(90◦), I(45◦), and IQWP(45◦, 0◦).

(Note that I(−45◦) can be inferred from other intensities following Eq. 3.1a.) However,

this simple method assumes a perfect orientation of optical elements by 90◦ and 45◦, and

an ideal quarter waveplate. Furthermore, the simultaneous determination of all the pa-

rameters without removing or reinserting the waveplate is not realized. As we shall see,

the method of a rotatable waveplate is much more robust, precise, allows for an imperfec-

tion in the retardance of the quarter waveplate, and enables a simultaneous measurement
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3 Self-calibrating Polarimeter to measure Stokes Parameters

of all the relative Stokes parameters.

Let us now relate the Stokes parameters to the more familiar representation of the

electric field. At any instant point in space and time, the electric field of a light wave

points in a particular direction. If the electric field follows a repeatable path during its

oscillations, the light wave is said to be polarized. Averaged over some time which is long

compared to the oscillation period of the light, however, the light may be only partially

polarized or even completely unpolarized if the direction of the electric field varies in a

non-periodic way. Partial elliptical polarization is the most general polarization state. In

cartesian coordinates, the electric field of the plane wave traveling in the z direction with

frequency ω and wavenumber k can be written as:

~E = x̂ E0x cos(ωt− kz + φ) + ŷ E0y cos(ωt− kz), (3.3)

where E0x and E0y are the absolute values of orthogonal electric field components. φ

represents the phase difference between the two orthogonal components.

A fully polarized electromagnetic plane wave is characterized by three parameters: E0x,

E0y, and the relative phase φ. However, usually the relative phase as well as the absolute

values of the amplitudes fluctuate, so that the direction of the electric field vector changes

randomly over time. In this case, light is unpolarized or only partially polarized. The

amplitudes E0x and E0y and the phase φ fluctuate enough so that an average over time

reduces the size of the average correlations between electric field components. The Stokes

formalism accounts for an additional parameter which is needed to resolve the degree of

polarization. Therefore, in general four parameters describe a light wave in a particular

point in space over an averaged time period. The Stokes vector, defined with respect to

the polarization measured in the plane perpendicular to the propagation direction k̂, is

given by

~S =


I

M

C

S

 =


〈E0x〉2 + 〈E0y〉2

〈E0x〉2 − 〈E0y〉2

2 〈E0xE0y cosφ〉
2 〈E0xE0y sinφ〉

 , (3.4)

where 〈·〉 indicates the time average which is needed to express the polarization state

through measurable intensities.

Note that we defined the Stokes vector for planar waves. It can be proven that in the

case of a superposition of plane waves the total Stokes vector is the sum of the individual

Stokes vectors [34]. Since any wave can be represented through a superposition of plane

waves via the Fourier transform, the Stokes formalism is valid for any light waves. Because

the fast oscillating term cos(ωt) averages out, the Stokes parameters are independent of

the frequency of light and can be applied to any light source, not only to a monochromatic

one.
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3.2 Stokes Parameters

In addition to the requirement of an averaging interval long enough compared to the

oscillation period, the average time should be long enough compared to the inverse band-

width ∆ν of the Fourier components that describe the light, or equivalently to the co-

herence time τ ' 1/∆ν. The reason is that Stokes parameters are determined in terms

of intensity. Within a time interval smaller than the coherence time, the different fre-

quency components can cause a beat note in the intensities which would cause the Stokes

parameters to be ill-defined.

Let us now consider the difference between the squared total intensity I and the sum

of the remaining squared Stokes parameters:

I2 − (M2 + C2 + S2) = 4
(
〈E2

0x〉〈E2
0y〉 − 〈E0xE0y cosφ〉2 − 〈E0xE0y sinφ〉2

)
≥ 4〈E2

0x〉〈E2
0y〉
(
1− 〈cosφ〉2 − 〈sinφ〉2

)
≥ 0, (3.5)

where we used the Cauchy-Schwarz inequality 〈x2〉〈 y2〉 ≥ 〈x y〉2. Therefore, the following

relation between the four Stokes parameters is true:

M2 + C2 + S2 ≤ I2, (3.6)

with equality in the case of fully polarized light. The degree of polarization P that survives

the averaging is defined as:

P =

√
M2 + C2 + S2

I
≤ 1, (3.7)

The unpolarized part of the light contributes only to the first of the four Stokes parameters,

I, and not to M , C or S. In general, any Stokes vector can be written as a superposition

of a fully polarized and a fully unpolarized part [34]:

~S = ~Spol + ~Sunpol =


IP

M

C

S

+


I(1− P )

0

0

0

 , (3.8)

where IP and I(1−P ) are the polarized and unpolarized part of the intensity, respectively.

Points on the Poincaré sphere (Fig. 3.1) represent the elliptical polarization state with

a relative Stokes vector

~s =

M/I

C/I

S/I

 =

cos 2χ cos 2ψ

cos 2χ sin 2ψ

sin 2χ

 . (3.9)

The linear rotation angle is defined by tan 2ψ = C/M and the ellipticity angle is defined by
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~s

C/I

S/I

M/I

2�

2 

Figure 3.1: The three relative Stokes parameters on three orthogonal axes trace out the
Poincaré sphere, with each point on the surface a possible state of fully polarized light. An
example of a particular polarization state with the red relative Stokes vector ~s is shown.
According to Eq. 3.9, the linear rotation angle is 2ψ and the ellipticity angle is 2χ.

S/I = sin 2χ. When P = 1, the light is completely polarized and the polarization vector

lies on the Poincaré sphere. For partially polarized light, the length of the polarization

vector is shortened such that it will now describe a point inside the sphere. When P = 0,

the light is fully unpolarized.

While I describes the total light intensity, the dimensionless quantities M/I, C/I and

S/I determine the polarization state of light. The linear polarization fraction is L/I =√
(M/I)2 + (C/I)2 and the circular polarization fraction is S/I, with

(L/I)2 + (S/I)2 = P 2 ≤ 1. (3.10)

Because the relative intensities are summed in quadrature, in the case of fully polarized

light nearly complete linear polarization (e.g. L/I = 99%) corresponds to a still substantial

circular polarization (e.g. S/I = 14%).

Optical elements typically change the Stokes vector. Simple linear optical elements

can be described by a Jones matrix which relates the electric field incident on the optical

elements to the electric field that leaves the elements [34]. Equivalently1, a Mueller matrix

M̂ transforms an input Stokes vector into the Stokes vector for the light leaving the optical

elements [34],
~Sout = M̂ ~Sin. (3.11)

The explicit forms of most important Mueller matrices are written in App. A.2. In the

formalism of Jones and Mueller matrices one assumes that an optical element changes

1A Mueller matrix M̂ can be obtained from the corresponding Jones matrix Ĵ as M̂ = Â (Ĵ ⊗ Ĵ∗) Â−1

where Â = ((1, 0, 0, 1), (1, 0, 0,−1), (0, 1, 1, 0), (0, i,−i, 0)) is the complex matrix needed for this trans-
formation [32].
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3.3 Measurement Principle of a Rotating Waveplate Polarimeter

the incoming Stokes vector ~Sin linearly, i.e. such that the outgoing Stokes vector ~Sout

can be expressed through a linear combination of the incoming Stokes parameters. This

assumption is valid for linear interactions between the light and the optical device. Non-

linear interactions like frequency doubling or parametric mixing are not considered within

these formalisms. These non-linear effects start to occur at very high photon fluxes and

determine the limit of the applicability of Jones and Mueller calculus [52].

3.3 Measurement Principle of a Rotating Waveplate

Polarimeter

The Stokes vector ~Sin = (I,M,C, S) can be measured by mapping the four Stokes pa-

rameters of the incident light beam to the intensity of the outgoing beam, Iout. This

technique relies on using optical elements with well-known polarization altering proper-

ties. The general scheme of a rotating waveplate polarimeter is shown in Fig. 3.2. Light

travels first through a quarter waveplate which can be rotated to determine the polar-

ization state. After the light passes through a linear polarizer, the outgoing intensity is

measured by the photodetector. All optical elements are aligned such that they are in

planes perpendicular to the optical axis. As we shall see later, the polarizer is rotated to

internally calibrate the waveplate retardance, the angular location of the fast axis of the

waveplate and the orientation angle of the linear polarizer transmission axis.

Although the measurement axis of the polarimeter is normal to its optics, the choice

of the reference plane (shaded in Fig. 3.2) is arbitrary. We typically choose this plane

to be aligned with the transmission axis of a calibration polarizer, through which we can

Fast axis of the 
waveplate

Zero axis of 
1st rotation 

stage 

Polarizer 
transmission axis

Incoming 
laser beam

Outgoing intensityReference 
plane

Zero axis of 
2nd rotation 

stage 
β̃
β0

α̃
α0

Iout(β̃)

Figure 3.2: General scheme of a rotating waveplate polarimeter, comprised of a rotatable
waveplate followed by a linear polarizer and a detector. The axes of the optical elements
are specified w.r.t. a reference plane. The incoming laser-beam first passes through the
waveplate with retardance δ whose fast axis is oriented at an angle β0 + β̃ w.r.t. the reference
plane. In combination with the polarizer (with transmission axis at an angle α0 + α̃ w.r.t. the
reference plane) the outgoing intensity is modulated. The intensity modulation is recorded by
a photodetector as a function of the rotation degree of the waveplate β̃.
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3 Self-calibrating Polarimeter to measure Stokes Parameters

pass light before it enters the polarimeter. With respect to this reference plane, the fast

axis of the waveplate has an angle β = β̃ + β0, where β̃ is the angle of the fast axis of

the quarter-waveplate with respect to an initially unknown offset angle β0. Analogously,

the transmission axis of the polarizer is α = α̃+ α0, where α̃ is the angle of the polarizer

transmission axis with respect to an initially unknown offset angle α0. The offset angles

α0 and β0 represent the zero axes of the two rotation stages needed to rotate the optical

components. The linear polarizer transmission angle α is left fixed during a determination

of the four Stokes parameters for the incident light, and we typically set α̃ = 0 so that

α = α0. For the internal calibration procedure the linear polarizer is rotated by an angle

α̃ = 45◦. This calibration procedure, explained in Section 3.5, determines β0, α0 and

retardance of the waveplate δ ≈ π/2.

A succession of two Mueller matrices describes the rotating waveplate polarimeter of

Fig. 3.2:
~Sout = P̂ (α) Γ̂(δ, β) ~Sin, (3.12)

where Γ̂(δ, β) is the Mueller matrix for a waveplate with a retardance δ whose fast axis is

oriented at an angle β with respect to a reference plane. The Mueller matrix for a linear

polarizer with transmission axis oriented at an angle α with respect to the reference plane

is P̂ (α). Their explicit forms are given in App. A.2. In order to extract the Stokes

parameters of the incoming light, ~Sin, we use a photodetector to measure the intensity of

the output light, Iout. The evaluation of the Mueller matrices in Eq. 3.12 leads to

Iout(β̃) = I + S sin δ sin(2α0 + 2α̃− 2β0 − 2β̃)

+ C
[
cos δ sin(2α0 + 2α̃− 2β0 − 2β̃) cos(2β0 + 2β̃) (3.13)

+ cos(2α0 + 2α̃− 2β0 − 2β̃) sin(2β0 + 2β̃)
]

+ M
[
cos δ sin(2α0 + 2α̃− 2β0 − 2β̃) sin(2β0 + 2β̃)

+ cos(2α0 + 2α̃− 2β0 − 2β̃) cos(2β0 + 2β̃)
]
.

The I, M , C and S, on which this measured intensity depends, are the Stokes parameters

of the incident beam which we wish to determine. This result is in agreement with Stokes

[84] for the special case of β̃ = β0 = 0, and with [12, 41, 73]. Setting δ = π/2, α̃ = α0 = 0

and β̃ = β0 = 0 we obtain Eq. 3.2. Note that since we aim to determine the polarization

state, we can ignore an overall constant pre-factor of Eq. 3.13 coming from possible

absorbance in the optical elements or the intensity to photodetector voltage conversion.

A measured signal on the polarimeter detector in Fig. 3.3 illustrates the variation of

the transmitted intensity with the waveplate angle β̃ that is described in Eq. 3.13. From

Eq. 3.13 one can identify the d.c., the double-frequency and the quadruple frequency

components in terms of the rotation degree β̃. In terms of its Fourier coefficients, Eq.
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3.3 Measurement Principle of a Rotating Waveplate Polarimeter

3.13 can be written as

Iout(β̃) = C0 + C2 cos(2β̃) + S2 sin(2β̃) + C4 cos(4β̃) + S4 sin(4β̃), (3.14)

with the Fourier coefficients

C0 = I +
1 + cos(δ)

1− cos(δ)
· [C4 cos(4α0 + 4α̃− 4β0) + S4 sin(4α0 + 4α̃− 4β0), (3.15a)

C2 = S sin δ sin(2α0 + 2α̃− 2β0), (3.15b)

S2 = −S sin δ cos(2α0 + 2α̃− 2β0), (3.15c)

C4 =
1− cos(δ)

2
[M cos(2α0 + 2α̃− 4β0)− C sin(2α0 + 2α̃− 4β0)], (3.15d)

S4 =
1− cos(δ)

2
[M sin(2α0 + 2α̃− 4β0) + C sin(2α0 + 2α̃− 4β0)]. (3.15e)

We conclude that circular polarization, expressed through S, only contributes to S2 and

C2 coefficients, whereas the Stokes parameters related to linear polarization, M and C,

contribute to C0, S4 and C4.

Inverting Eqs. 3.15 determines the Stokes parameters of the incoming light in terms of

the Fourier coefficients:

I = C0 −
1 + cos(δ)

1− cos(δ)
· [C4 cos(4α0 + 4α̃− 4β0) + S4 sin(4α0 + 4α̃− 4β0), (3.16a)

M =
2

1− cos(δ)
[C4 cos(2α0 + 2α̃− 4β0) + S4 sin(2α0 + 2α̃− 4β0)], (3.16b)

C =
2

1− cos(δ)
[S4 cos(2α0 + 2α̃− 4β0)− C4 sin(2α0 + 2α̃− 4β0)], (3.16c)

S =
C2

sin(δ) sin(2α0 + 2α̃− 2β0)
=

−S2

sin(δ) cos(2α0 + 2α̃− 2β0)
. (3.16d)

The Stokes parameters are thus determined by the Fourier coefficients that are extracted

from measurements like the one in Fig. 3.3, along with the values of the angles α0, β0 and

δ from the calibration to be described. The angle α̃ is 0 during a polarization measurement

and is stepped away from 0 only during a calibration, as we shall see in Sec. 3.5.

Both of the two expressions for S must be used cautiously given the possibility that

a denominator could vanish. Combining them gives a more robust expression that is

independent of the two calibration angles, α0 and β0 [12],

S = −sign(S2)

√
C2

2 + S2
2

sin(δ)
. (3.17)

We choose to make the angle 2(α0− β0) small, whereupon |S2| > |C2| for nonvanishing S

and the sign of S is that of −S2. Similarly, combining equations (3.16b) and (3.16c) gives

a more robust expression for the magnitude of the linear polarization L =
√
M2 + C2,
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Figure 3.3: Illustration of how the light transmitted through the polarimeter varies with the
angle of the waveplate axis as predicted by Eq. 3.13. The first component of the outgoing
Stokes vector, which is the total intensity Iout proportional to the detector voltage Uout, is
measured as a function of the rotation degree β̃ of the waveplate. The d.c., the double-
frequency and the quadruple frequency components (see Eqs. 3.13-3.14) from which one can
extract the Stokes parameters of the incoming light-beam are clearly visible.

independent of α0 and β0,

L =

√
C2

4 + S2
4

sin2
(
δ
2

) . (3.18)

Of course, both S/I and L/I still depend on all of the calibration angles since I does, but

the use of the more robust expression can reduce the uncertainties in S/I and L/I.

3.4 Laboratory Realization and Intensity Normalization

Our laboratory realization of a rotating waveplate polarimeter (to scale in Fig. 3.4) utilizes

a quarter waveplate (Thorlabs WPQ05M-1064), a polarizer (Thorlabs GL10-B) and two

detectors (Thorlabs PDA100A). The waveplate is mounted on a first rotation stage, while

the linear polarizer and the two detectors are mounted on a second rotation stage (both

Newport URS50BCC). For measuring the polarization the angle β̃ is typically varied over

time with 120 discretized values β̃ = {0◦, 3◦, . . . , 357◦} covering one full rotation of the

waveplate. The linear polarizer angle can similarly be rotated for the internal calibration,

though a restricted calibration rotation by ∼ 45◦ turns out to be optimal for reducing the

uncertainties, as we shall see in Section 3.5.

The aperture before the polarimeter constrains the collimation of the beam inside the

device. If the aperture is too large, the imperfections of optical elements (e.g. spatial

inhomogeneity of the waveplate retardance) reduce the accuracy of the measurement.

An aperture which is too small results in errors due to diffraction. We found that an
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Figure 3.4: Scale representation of the polarimeter. (a) Schematic drawing with apertures,
a waveplate on the first rotating stage, and the linear Glan-Laser polarizer and two detectors
that rotate together on a second stage. The first aperture selects a small region of the laser-
beam (iris diameter 1 mm) for the determination of Stokes parameters, whereas the second
iris is used in combination with the first one to align the polarimeter. The first rotation stage
rotates only the waveplate (in blue). The rotating parts controlled by the second rotation stage
- the Glan-Laser polarizer and the two photodetectors - are depicted in red. (b) Photograph of
the polarimeter on the optical table, view from the top according to the scheme in subfigure
(a).

aperture with a diameter of ∼ 1 mm minimized the uncertainties for our measurements.

Even in this case, the diffraction is still visible, as shown in Fig.3.5(a). In Fig.3.5(b)

shows measurements of the beam diameter at the distance of the polarimeter detector

for the transmitted beam in dependence on the aperture size before the polarimeter. For

aperture sizes larger than ∼ 1 mm, the beam diameter becomes smaller as the aperture is

closed. When the aperture size becomes smaller than ∼ 1 mm, the diffraction dominates

over clipping and the beam width starts to increase with a decreasing aperture size. The

aperture becomes oval for diameters < 1 mm due to the design of the zero aperture iris

diaphragm (part number Thorlabs SM1D12CZ).

The second aperture is placed directly before the detector for the transmitted beam

and is used to align the polarimeter by maximizing the light admitted by the pair of

apertures. The polarimeter is mounted on a kinematic alignment stage (Newport 9081).

Therefore the alignment can be performed without changing the pointing of the incoming

laser beam. Note that after the alignment procedure the aperture in front of the detector

needs to be opened again as illustrated in Fig. 3.4(a) to ensure no loss of detected intensity

due to diffraction.

Fluctuations in light intensity contribute noise in the measured polarization since the

Fourier components are deduced from the intensity of light transmitted through the po-

larimeter. Therefore, all laser intensity noise on the timescales smaller than one polarime-

try measurement (around 1-3 minutes) directly affects the precision of the measured Stokes
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Figure 3.5: (a) Diffraction caused by the ∼ 1 mm large aperture before the polarimeter
at the distance of the detector for the transmitted beam. To make the diffraction pattern
visible, the beam profiler is overexposed. (b) The fitted Gaussian beam width of the laser
beam at the distance of the polarimeter detector for the transmitted beam in dependence on
the aperture size before the polarimeter. For aperture sizes smaller than ∼ 1 mm the beam
diameter increases due to the prevailing diffraction.

parameters. In our system, we typically saw resulting fluctuations in S/I of up to ∼ 2%

coming from intensity noise.

Therefore, a scheme which greatly suppresses effects of laser intensity noise on the po-

larimetry measurement is implemented. The following two challenges need to be taken into

account for the development of the intensity normalization scheme. First, the additional

components should not modify the polarization state of light inside the polarimeter since

this will affect the precision of the ellipticity measurement. This requirement excludes the

use of any beamsplitters before the polarimeter since they affect the polarization. Second,

the design has to work at high powers. Taking these two requirements into consideration,

we use the sideport of the Glan-Laser polarizer. Since a polarizer is needed anyway for the

polarimetry measurement scheme, additional optical components are not required. Note

that the Wollaston prism which is typically used for pure polarization purposes would not

be suitable because of optical contacting adhesives and a lower damage threshold.

The Glan-Laser polarizer transmits light with one particular polarization, and sends

the remaining light out through a sideport where we detect it for normalization purposes

with a second detector, as shown in Fig. 3.4(a). The bandwidth of the detectors is

2.4 MHz which means that the polarimeter normalizes for all intensity fluctuations on

time scales larger than ∼ 500 nanoseconds. The intensity of the incoming light source

is proportional to the sum of both detector voltages. Relative gain and offset factors

are applied to account for detector differences. The weighted sum signal is then used to
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(a) (b)

Figure 3.6: Scheme of the Glan-Laser polarizer in the polarimeter which splits the analyzed
light into transmitted and refracted beams. The refracted beam from the sideport is used to
monitor the total intensity and correct for amplitude fluctuations in the light source. (a) The
transmitted beam represents Iout from Eq. 3.13 resulting in the detector voltage Uout. The
refracted beam from the sideport with the intensity I2 resulting in U2 provides the additional
measurement needed for intensity normalization, see Eq. 3.21. (b) Detailed drawing of the
polarizer design, showing how a small portion of the extraordinary beam is reflected after
passing the air gap and exits the sideport under an angle α2. The ordinary beam is refracted
under an angle α1.

correct the intensity of the light transmitted through the polarimeter to reduce the effect

of intensity fluctuations. The calibrated offset and gain constants minimize the variation

in the inferred intensity of light incident on the Glan-Laser polarizer.

For the intensity normalization of the polarimeter it is critical that the sum of the

intensities of the two light beams is proportional to the total incoming intensity with

a proportionality constant independent of the incoming polarization. Let us therefore

examine the Glan-Laser polarizer in detail as depicted in Fig. 3.6(b). The Glan-Laser

polarizer is a prism polarizer based on the principle of different critical angles for the

ordinary and the extraordinary beams. In general, prism polarizers use the phenomenon

of two refractive indices in an uniaxial crystal [51]. The symmetry axis of the crystal is

referred to as the optical axis. In such a crystal, e.g. calcite, the beam is separated into the

beam propagating parallel and perpendicular to the optical axis, called extraordinary and

ordinary rays, respectively. The two beams have different refractive indices ne and no. For

calcite the values are ne ' 1.485 and no ' 1.655. The optical axis of the calcite crystal in

the Glan-Laser polarizer is oriented perpendicular to the incoming beam. Therefore, until

the reflection happening between the two parts of the Glan-Laser polarizer the ordinary

and extraordinary beams propagate in the same direction but with different velocities

given by vo = c/no and ve = c/ne. The air gap separates the two prisms of the Glan-

Laser polarizer, and is placed under the angle γ ' 52◦ w.r.t. the incoming beam, shown in

blue in Fig. 3.6(b). The critical angle for the reflection of the ordinary and extraordinary
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rays is given by:

sin θo,e =
1

ne,o
. (3.19)

For the incoming angles θ > θo,e or γ = 90◦ − θ < γo,e the respective beam is subject

to total reflection and is not transmitted. For calcite we obtain the values θo ' 37◦

(γo ' 53◦) and θe ' 42◦ (γo ' 48◦). Therefore, the two parts of the Glan-Laser polarizer

have to be manufactured at an angle 48◦ . γ . 53◦ so that the ordinary beam is totally

reflected whereas the extraordinary beam is transmitted.

The air gap combined with the second part of the Glan-Laser polarizer produce a second

beam coming out of the sideport of the polarizer, as shown with the red dotted line in

Fig. 3.6(b). Since this beam represents a small fraction of the transmitted extraordinary

beam which is dependent on the incoming polarization, it can introduce an error in the

intensity normalization scheme. However, fortunately, this small part of the reflected

extraordinary beam exits the polarizer at a different angle α2 compared to the refracted

ordinary beam with an exit angle α1, as shown in Fig. 3.6(b). The angles were measured

to be α1 ' 66 ± 2◦ and α2 ' 59 ± 2◦. This difference results from a different refractive

index of the ordinary and the extraordinary beams. The latter is dependent on the beam

direction w.r.t. the optical axis [65]. If the extraordinary and ordinary beams both

propagate in the direction of the optical axis, their refractive index is equal. This could

be the scenario for the ordinary and the reflected extraordinary beams which we consider

in Fig. 3.6(b), though it is fortunately not the case.

It is important to ensure that the reflected part of the extraordinary beam coming out

of the sideport together with the ordinary beam does not reach the second detector used

for intensity normalization. Therefore an aperture is put before this detector, see ‘Iris

3’ in Fig. 3.4(a). Note that the aperture size has to be large enough to not clip part

of the ordinary beam including its diffraction tail caused by the first aperture before the

polarimeter, but small enough to block the undesired reflected extraordinary beam.

After understanding the Glan-Laser polarizer and assuring ourselves that none of the

spurious reflected beams distorts the measurement, let us consider the intensity normal-

ization scheme in more detail. As illustrated in Fig. 3.6(a), we measure the voltages from

each photodetector which are given by:

Uout = oout + gout Iout,

U2 = o2 + g2 I2, (3.20)

where I2 is the intensity of the beam from the sideport, Iout the intensity of the transmitted

beam, oout,2 the corresponding detector offsets and gout,2 the gain factors. The offsets oout,2

come from the electronics of the oscilloscope and the detector, and are typically on the

order of 10 − 30 mV. The gain factors gout,2 are a combination of factors corresponding
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3.4 Laboratory Realization and Intensity Normalization

to the linear loss of intensity and the conversion from intensity to voltage. Therefore, the

normalization scheme is insensitive to imperfections in the optics equivalent to a linear

attenuation, for example different linear absorbance or scattering in the polarizer. The

light in the reflection port allows us to normalize the intensity of the transmitted port as:

Iout

I
=

Uout + oout

g (U2 − o2) + Uout − oout

. (3.21)

The offsets oout, o2 and the gain ratio g = gout/g2 need to be determined. The electronic

offsets oout, o2 can simply be measured by blocking the laser beam. It is important to

monitor the offsets in the detectors from time to time since they were found to differ on a

scale of ∼ 10 mV from day to day, and in particular after disconnecting and reconnecting

the cables. Not surprisingly, the offset also changes when some part of the BNC connector

touches the optical table.

In the following we describe two ways to measure the gain ratio. One simple method is

to use the data from the calibration measurement with linearly polarized light described

in the following section. The calibration is performed by placing a linear polarizer before

the polarimeter so that the Stokes parameters C and S are zero, C = S = 0. In this case

Eq. (3.13) reads:

Iout = I −M [cos δ sin(2α0 − 2β) sin 2β + cos(2α0 − 2β) cos 2β] . (3.22)

Using trigonometric identities this equation can be expressed in the form:

Iout = I −M ′ cos(4β + φ), (3.23)

where M ′ and φ are constants. Comparing with Eq. 3.20, the detector voltages can be

written as:

Uout,2 = cout,2 ± gout,2M
′ cos(4β + φ), (3.24)

where cout,2 are constants. The ratio of the fitted quadrupole frequency components gives

the gain ratio g = gout/g2.

A better method is to determine the gain ratio as follows. We want to normalize for

the total intensity which is given by

Ĩ(β̃) = Uout(β̃)− oout + g̃ (U2(β̃)− o2) (3.25)

and is recorded as a function of the waveplate rotation degree β̃. Let us assume a gain ratio

g̃. If the assumed gain ratio g̃ equals the true gain ratio, the total intensity Ĩ(β̃) should

not show any variation correlated with the rotation degree of the waveplate β̃. Therefore,

we can vary g̃ to keep Ĩ as constant as possible with variation of β̃. Recalling Eq. 3.14,

the correlation with β̃ will show up in the double-frequency and quadrupole frequency
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Figure 3.7: Determination of the gain ratio from Eq. 3.21 needed to normalize the intensity.
(a) Illustration of the second method described in the text. The gain ratio g̃ from Eq. 3.25
is varied to minimize the Fourier coefficient |F̃4| defined in Eq. 3.25. The value for g̃ where
|F̃4| is minimized corresponds to the gain ratio g we wish to find. (b) The two methods of
gain determination are compared. Results of the first simple method described by Eq. 3.24
are depicted in orange. Results obtained with the second method are shown in blue. The first
method yields a mean gain ratio of g1 = 1.0484(2) with a standard deviation σ1 = 1.5 · 10−4,
with the second method we find g2 = 1.0481(1) with a standard deviation σ2 = 1.0 · 10−4.

components. Therefore, for a given data set of Ĩ(β̃) with N measurements (typically

N = 120 with β̃ = {0◦, 3◦, . . . , 357◦}), we can calculate the Fourier series for a set of

gain ratios g̃ and determine for which value of g̃ the double-frequency and quadrupole

frequency components are minimized. The Fourier series coefficients are given by

F̃k =
N−1∑
n=0

Ĩ(β̃n) · e−2πikn/N . (3.26)

The double-frequency component is resolved by the absolute value |F̃2| and the quadru-

pole frequency component by |F̃4|. Interpolation determines the functions |F̃2(g̃)| or

|F̃4(g̃)|. The position of their minima correspond to the gain ratio g we wish to find.

Note that for linearly polarized light the double-frequency components vanish whereas

for circularly polarized light the quadrupole frequency components are zero, as is obvious

from Eq. 3.13. Therefore, if light is dominantly linearly polarized the coefficient |F̃4|
should be used, whereas if the circular polarized fraction prevails one should use the

coefficient |F̃2|.

The realization of the second method is illustrated in Fig. 3.7(a). For a range of g̃

values, the absolute value of the Fourier coefficient |F̃4| from Eq. 3.26 is calculated. The

data points are interpolated and the position of the minimum determines the gain ratio

g. In Fig. 3.7(b) the two methods for the gain ratio measurement are compared for a

sequence of 50 measurements. The same data set was used for both methods. Points

from the first simple method are shown in orange whereas the gain values obtained with
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3.5 Calibration of Angles and Retardance

the second method are depicted in blue. The mean values of gain ratios determined with

the two methods agree within the uncertainty. However, the standard deviation for the

second method is smaller. Furthermore, the second method has the great advantage of

being applicable to any incoming polarization. The gain ratio calibration can thus be

incorporated into any polarimetry measurement and performed together with the data

analysis using the above scheme. No separate measurements are needed in this case.

3.5 Calibration of Angles and Retardance

In order to determine the polarization properties of the incoming light, the angles α0,

β0, and the retardance δ need to be known (recall Eqs. 3.16). There are several ways to

determine these parameters [12, 41, 73]. Here we present a novel calibration technique

which is fully automated and does not require to remove or realign optical components

inside the polarimeter. This in situ calibration procedure is more precise than previous

methods and therefore centrally responsible for the low uncertainties realized with our

polarimeter.

The previous calibration methods were performed as following. When the quarter wave-

plate is removed, the polarizer can be aligned mechanically with the calibration polarizer

by fitting Malus’s law of two crossed polarizers. Doing so, one can typically achieve angle

uncertainties of up to ±1◦. The polarimeter has to be taken apart which likely changes

alignment and takes experimenters time. Another shortcoming of this method is that the

calibration cannot be performed automatically between measurements. Without remov-

ing the waveplate, it is in principle possible to acquire the calibration data for different

incoming polarizations and perform a two dimensional fit. This procedure takes much

more time and turns out to be even less robust than the first method. Investigations

showed that this technique is unpractical and takes too much time [41]. Another tech-

nique is to place the retarder and polarizer on mounts that permit front-to-back rotation

about an axis perpendicular to the direction of beam propagation [73]. This method is

subject to various systematics due to misalignments and achieves uncertainties of only

less than 1◦. The technique presented in this thesis is simpler and about an order of

magnitude more precise.

Similar to the methods mentioned above, we make use of the linear polarizer in order

to calibrate the parameters α0, β0 and δ. The advance here is to mount the polarizer on

the rotation stage allowing for an automated procedure with a carefully studied optimal

rotation needed to minimize the calibration time and uncertainties. This calibration

technique avoids realignments of optical elements caused by either temporarily removing

or by flipping optical elements with respect to the light transmission axis.

The calibration procedure starts with a high extinction ratio polarizer (Thorlabs GL

10-B) placed in the light beam before it enters the polarimeter. The light analyzed by the
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3 Self-calibrating Polarimeter to measure Stokes Parameters

polarimeter is in this case known to be almost fully polarized. The transmission axis of

this external calibration polarizer then defines the reference plane in terms of which the

linear polarizations M and C are determined. For the relative Stokes vector (1,0,0), Eqs.

(3.16) simplify to

C0 −
1 + cos(δ)

1− cos(δ)
[C4 cos(4α0 − 4β0) + S4 sin(4α0 − 4β0)]

=
2

1− cos(δ)
[C4 cos(2α0 − 4β0) + S4 sin(2α0 − 4β0)], (3.27a)

arctan
S4

C4

= 2α0 − 4β0. (3.27b)

For the third linearly independent equation needed to determine the three calibration

parameters we rotate the linear polarizer from α̃ = 0 to α̃ = 45◦, a choice shortly to be

justified, whereupon

C̃0−
1 + cos(δ)

1− cos(δ)
· [C̃4 cos(4α0 + 4α̃− 4β0) + S̃4 sin(4α0 + 4α̃− 4β0)]

=
2

1− cos(δ)
[C̃4 cos(2α0 + 2α̃− 4β0) + S̃4 sin(2α0 + 2α̃− 4β0)]. (3.28)

These equations simplify when the waveplate is reasonably close to being a quarter

waveplate, whereupon cos δ ' π
2
− δ. They simplify further when we deliberately choose

to make α0 small, which means that the zero-axis of the internal polarizer is approxi-

mately aligned with the external polarizer that defines the reference plane for the Stokes

parameters. The linearized calibration equations, derived in App. A.3, are then

δ =
π

2
+ 1 + 2

√
C2

4 + S2
4 − C0√

C2
4 + S2

4 + C0

, (3.29a)

α0 =
cot α̃

2
− 1

sin(2α̃)

√
S2

4 + C2
4 − C̃0√

S2
4 + C2

4 − C0

, (3.29b)

β0 =
1

4

(
arctan

S4

C4

− 2α0

)
. (3.29c)

The uncertainty in α0 is determined by the standard error propagation:

σ2
α0

=

(
∂α0

∂α̃

)2

σ2
α̃ +

(
∂α0

∂C̃0

)2

σ2
C̃0

+

(
∂α0

∂C0

)2

σ2
C0

+

(
∂α0

∂C4

)2

σ2
C4

+

(
∂α0

∂S4

)2

σ2
S4
, (3.30)

with α0 from Eq. 3.29b given our simplifying choice to make α0 small.

To illustrate that the choice α̃ ≈ 45◦ minimizes uncertainties, Fig. 3.8 shows the

uncertainty in α0 for a typical choice of uncertainties in the normalized Fourier coefficients

of 0.05% and an uncertainty in α̃ of 0.02◦. For α̃ close to 0◦ or 90◦ the equations (3.27) and

(3.28) become degenerate and therefore the uncertainty in α0 grows to infinity. When the
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Figure 3.8: Determination of the optimal calibration angle α̃ according to Eq. 3.30. The
uncertainty of the calibration parameter α0 is shown as a function of the change in linear polar-
izer angle α̃ used in the calibration procedure. The minimum of uncertainty in α0 demonstrates
that a 45◦ step is close to the optimal value.

uncertainties in the Fourier coefficients are approximately equal, the 45◦ choice minimizes

the uncertainties in calibration parameters, typically making them less than 0.1◦.

To summarize, these are the calibration steps:

1. Place a linear polarizer before the polarimeter. Its polarization axis then defines

the reference plane for M and C. Set α̃ = 0.

2. Perform at least one full rotation of the waveplate recording the output intensity

Iout(β̃).

3. Determine the Fourier coefficients C0, C4, and S4 from the scan in step 2.

4. Rotate the polarizer inside the polarimeter by α̃ = 45◦ and repeat step 2.

5. Determine the Fourier coefficients C̃0, C̃4, and S̃4 from the scan in step 4.

6. Using the Eqs. (3.27)-(3.28), calculate the calibration parameters δ, α0, and β0 from

the measured Fourier coefficients.
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3 Self-calibrating Polarimeter to measure Stokes Parameters

3.6 Uncertainties

We recall from Eqs. 3.16 that the determination of the relative Stokes parameters depends

on the calibration parameters α0, β0 and δ as well as the Fourier coefficients C0, C2, C4,

S2, and S4. The uncertainties arising from the calibration cause systematic errors in the

measured Stokes parameters. The Fourier coefficients C0, C2, C4, S2, and S4 are subject

to both, statistical and systematic uncertainties. There are many possible systematic

error sources. Much effort was invested in finding or excluding possible systematics.

We focus on systematic uncertainties that arise from calibration parameters, waveplate

imperfections, misalignment of the incident light pointing relative to the measurement

axis, and the finite extinction ratio of the polarizer. The systematic errors are summarized

in the last subsection 3.6.6 with Table 3.1.

Since we typically are not interested in the absolute rotation angle of polarization, we

focus on errors for the degrees of circular polarization S/I and linear polarization L/I.

For purposes on ACME, typically a measurement of the degree of circular polarization

S/I is sufficient. From Eqs. 3.17 and 3.18 we found that the absolute values of S and

L do not depend on the angles α0 and β0 but only on the retardance δ. However, the

systematics due to imperfect knowledge of α0 and β0 enter the relative Stokes parameters

S/I and L/I because the total transmitted intensity I is dependent on these angles.

3.6.1 Statistical Uncertainty

The statistical uncertainty arises from the detector, oscilloscope and data acquisition sys-

tem electronic noise as well as the digitization errors. Fig. 3.9 shows a typical statistical

fluctuation of S/I and L/I for around 300 successive measurements. This polarimetry

data was obtained using a waveplate with the fast axis being almost aligned with the

incident linear polarization rotation angle, resulting in only a small fraction of circular

polarized light of S/I ≈ 3%. Subfigures (c) and (d) demonstrate that the distribution of

measurement results is well in agreement with a Gaussian distribution with standard de-

viations of σS/I = 0.0089(3)% and σL/I = 0.046(1)%. To sum up, statistical uncertainties

that can be averaged down with more measurements are typically on the order of 0.01%

for S/I and 0.05% for L/I. As we shall see, this is below the anticipated systematic

errors. Therefore, there is no need to average down the statistical uncertainty.

3.6.2 Calibration Parameters

Let us now examine the systematic errors due to calibration parameters. Even though

the expression for S or L in Eqs. 3.17-3.18 does not depend on the angles α0 or β0,

the impact of theses angles on the relative S/I and L/I arises from the expression for

I in Eq. 3.16a that depends on C0, C4 and S4. Comparing with Eqs. 3.15a, 3.15d and
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Figure 3.9: Statistical fluctuation in 300 successive measurements of S/I, subfigures (a)
and (c), and L/I, subfigures (b) and (d). In (a) and (b), the red line marks the mean values.
Histograms of the deviations from the mean values of S/I = 2.6511% and L/I = 99.175%
are depicted in (c) and (d). The bin size is 0.0035% for S/I and 0.019% for L/I. A
Gaussian is fitted to the histograms. The fitted standard deviations are σS/I = 0.0089(3)%
and σL/I = 0.046(1)%.

3.15e we realize that the values for C0, C4 and S4 are dependent on the angles α0 and

β0 separately. Therefore, the absolute orientation of the polarimeter w.r.t. the incoming

polarization does matter for how the errors in α0 and β0 enter the measurement of S/I or

L/I. Furthermore, I depends on the retardance δ and the Stokes parameters M and C

of the incoming light. This means that the impact of calibration parameter uncertainties

on S/I and L/I is dependent on the specific values of α0, β0, and δ, as well as on the

Stokes parameters of incoming light.

Typically our calibration procedure determines the waveplate retardance to about δerr ∼
0.1◦. Approximately the same uncertainty is obtained in the relative angle between the

polarizer transmission axis and the initial orientation of the wave plate fast axis, (α0 −
β0)err ∼ 0.1◦. We can examine how these uncertainties propagate into a systematic error

on S/I and L/I numerically. When calculating the relative Stokes parameters according to

Eq. 3.16 the true values of α0−β0 and δ are modified by (α0−β0)→ (α0−β0)+(α0−β0)err
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Figure 3.10: Calculated uncertainties in S/I (left) and L/I (right) for typical calibration
parameters of δ = 92◦, α0 = 2◦, β0 = 20◦, and calibration uncertainties of 0.1◦ in δ (blue
curve) and also for an uncertainty of 0.1◦ in α0 − β0 (orange curve) for a range of S/I and
L/I values. The curves for S/I are symmetric around zero.

and δ → δ + δerr. We set the true calibration parameters to typical values of δ = 90◦,

α0 = 2◦ and β0 = 20◦. For given incoming polarizations with known S/I and L/I we

can compute the Fourier coefficients according to Eq. 3.15 and determine S/I and L/I

with modified calibration parameters with Eq. 3.16. Subtracting this result from the

given incoming S/I and L/I we can identify the error due to the modified calibration

parameters. This procedure is repeated for all possible S/I and L/I. Fig. 3.10 shows

the results of this calculation. The errors from the retardance δ and the relative angle

α0 − β0 are analyzed separately. In the first case the error in α0 − β0 is set to zero

(blue curve) whereas the orange curve shows the case when the error in the retardance is

zero. The contribution of the uncertainty in α0 − β0 alone to errors in S/I and L/I (in

orange) is typically much smaller than the contribution from the uncertainty in δ alone,

shown in blue. The calibration uncertainties for S/I are always below 0.1%, and the

calibration uncertainties for L/I are below 0.35% for any analyzed input polarization.

For our example measurement of small S/I values the calibration uncertainty is below

0.05%.

3.6.3 Waveplate Imperfections

Even after input intensity fluctuations were normalized out, there was still a variation

in the transmitted light intensity as the waveplate rotated. It was realized that this is

related to waveplate imperfections. The initially observed variation, for an achromatic

waveplate (Thorlabs AQWP05M-980), is shown by the orange points in Fig. 3.11. This

variation limited the uncertainty in S/I to about 0.3%. Using instead a monochromatic

waveplate (Thorlabs WPQ05M-1064) suppressed this ‘ripple’, as shown by the blue points

in Fig. 3.11.

A similar phenomenon was observed in astrophysical applications of rotating waveplate
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Figure 3.11: Investigation of systematic errors related to total intensity normalization and
imperfections of the waveplate (‘ripple’). An achromatic waveplate (Thorlabs AQWP05M-
980) shown in orange makes the detected intensity vary much more as a function of waveplate
orientation than does a monochromatic waveplate (Thorlabs WPQ05M-1064) shown in blue.
Error bars represent statistical uncertainty.

polarimeters [39, 26]. There, by looking at the wavelength dependence of the systematic

error, it was shown that that the ripple of the rotating waveplate transmittance is caused

by a Fabry-Perot-type interference effect. Later investigations supported this observation

[17, 19].

Therefore, the ripple we observe is likely caused by the interference of the multiple

layers of the waveplate. Each tested waveplate has its characteristic ripple spectrum.

It was also found that this ripple significantly depends on alignment. By taking the

Fourier transform of the measurement shown in Fig. 3.11, one can extract the limit on

false Fourier components which would contribute to systematic errors in the polarimetry

measurement. The remaining variations typically contribute an uncertainty of less than

0.01% in the normalized Fourier coefficients. This translates into an error in S/I of smaller

than 0.01%.

3.6.4 Misalignment

The waveplate and the polarizer that make up the polarimeter are ideally aligned so that

their optical surfaces are exactly perpendicular to the direction of propagation of the laser

beam. Misalignment of the polarimeter from this configuration can introduce systematic

errors. Various effects contribute to systematic effects related to misalignment. Therefore,

this error source was investigated by intentionally misaligning the polarimeter in the plane

parallel to the optical table w.r.t. the incoming laser beam.

Fig. 3.12 shows the measured systematic uncertainty that arises due to misalignment.

This data was taken with a fixed elliptical polarization from a waveplate with S/I ≈ 16%

and L/I ≈ 98%. The polarimeter is mounted on a kinematic device alignment stage
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Figure 3.12: Systematic uncertainties in S/I (orange, right scale) and L/I (blue, left
scale) caused by misalignment of the polarimeter with respect to the light propagation axis.
The measurements were performed with a fixed incoming polarization of S/I ' 16.3% and
L/I ' 98.4%.

(Newport 9081) which makes it possible to misalign the setup my a fixed amount w.r.t.

the incoming laser beam. An auxiliary measurement was performed to translate the

number of turns of x- and y-screws of the stage into the angular deviation. One turn

in the stage screw corresponds to ∼ 0.3◦ angular misalignment. The data in Fig. 3.12

was taken in steps of quarter turns. While aligning the polarimeter by maximizing the

intensity transmitted through a pair of apertures, it is possible to detect intensity changes

with less than an eights of a turn. Therefore, the polarimeter is routinely aligned to better

than 0.05◦ which translates into uncertainties of 0.005% in S/I and 0.05% in L/I.

3.6.5 Finite Extinction Ratios of Polarizers

Two different polarizers can contribute to systematic uncertainty. First, the polarizer

used inside the polarimeter and second, the polarizer used for calibration. The two linear

polarizers used within and ahead of the polarimeter each have a finite extinction ratio,

r = Imin/Imax. A simple model of a polarizer perfectly transmits light along one axis and

suppresses light transmission by a factor of r along the orthogonal axis. The corresponding

Mueller matrix for such a polarizer is given in App. A.2. For polarizers used here the

extinction ratio is specified to be r . 10−5 rather than being perfectly r = 0. As turned

out in tests of polarizers, see Sec. 4.3.3 in the next chapter, the extinction ratio was

found to be even smaller than the specified value, r < 10−6. For the analysis below we

remain more conservative and assume the worst case scenario with the specified value of

r ∼ 10−5.

The relative Stokes vector after circular polarized light passed through an imperfect
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polarizer is

~s =

 1− 2r

0

2
√
r(1− r)

 '
1− 2r

0

2
√
r

 , (3.31)

Therefore, for an extinction ratio of r ∼ 10−5, there is a residual S/I of up to 2
√
r ' 0.6%.

In previous polarimeter considerations, this residual circular polarization was thought to

limit the absolute accuracy of the polarimeter [41]. However, fortunately this turns out to

be not the case. The finite extinction ratio of the polarizer in the polarimeter modifies the

Fourier components measured in the outgoing intensity Iout. The polarization is measured

through Fourier components of this transmitted intensity Iout where the extinction ratio

enters as r (and not as
√
r) which makes the effect much smaller. In a more detailed

consideration, Eq. 3.13 is re-obtained with the transformation of the Stokes parameters

M → M(1 − 2r), C → C(1 − 2r) and S → S(1 − 2r). Therefore, the measured Stokes

parameters differ from the true values by a factor 1/(1−2r) ' 1+2r, which is 0.002% for

r ' 10−5. Numerically solving Eqs. (3.16) with the residual Stokes parameters, the error

on the calibration parameters is found to be less than 0.05◦ for α and β0, and smaller

than 0.001◦ for δ.

3.6.6 Summary of Systematic Errors

The summary of systematic errors is presented in Table 3.1. As discussed previously, the

contribution of systematic errors is dependent on incoming polarization. For applications

on ACME, the light is dominantly linearly polarized. Therefore we focus on polarizations

with relative Stokes parameters S/I < 30% and L/I > 95%.

Since the rotation stages are the core elements of the polarimeter, they were carefully

tested to assure their specified accuracy. The polarimeter utilizes the precision rotation

stages by Newport (URS50BCC) with a specified uni-directional repeatability of 0.002◦,

a bi-directional repeatability of 0.003◦, and a reversal value (hysteresis) of 0.004◦. These

Error source (L/I)err [%] (S/I)err [%]
(α0 − β0) calibration to ±0.1◦ < 0.03 < 0.005
δ calibration to ±0.1◦ < 0.35 < 0.05
Intensity normalization < 0.1 < 0.02
Alignment of polarimeter < 0.05 < 0.005
Imperfections of waveplate < 0.012 < 0.006
Finite extinction ratio < 0.002 < 0.002

Quadrature sum < 0.4 < 0.06

Table 3.1: Summary of the systematic errors affecting the polarization measurement of the
polarimeter for S/I < 30% and L/I > 95%.
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specifications were confirmed by tests. However, it was found to be important to reverse

the direction of the rotation for each full cycle. Each full rotation a small drift of ∼ 0.0015◦

was observed which effectively corresponds to a change in the calibration angle β0. This

drift was observed to cancel after going in the opposite direction. Therefore, for successive

polarimetry measurements, it is important to rotate the waveplate back and forth: one

full rotation with increasing β̃ from 0◦ to 360◦ followed by a full rotation with decreasing

β̃ from 360◦ to 0◦. The accuracy of the rotation stages, including the drift, does not

contribute significantly to systematic errors and is therefore not included in Tab. 3.1.

Systematic errors due to intensity normalization are mainly caused by the uncertainty

in the measured gain ratio. They can be determined by propagating the uncertainties

similar to the calculations in Sec. 3.6.2. This numerical analysis reveals an error in L/I

of up to 0.1% and an error in S/I of up to 0.02% for dominantly linearly polarized light.

From Tab. 3.1 we conclude that the net uncertainty in S/I is smaller than 0.1%. The

leading error is due to the calibration of the retardance of the waveplate. The systematic

errors for L/I are significantly larger, up to 0.4%, mainly because of higher sensitivity to

the waveplate delay, δ. From Eqs. 3.17 and 3.18, S ∝ sin−1(δ) and L ∝ sin−2(δ/2); a

small deviation from δ = 90◦ is a first order effect in L and is second order for S. The

larger uncertainty in L/I is not important for ACME since a measurement of S/I is most

relevant.
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4 Polarimetry Measurements on ACME

This chapter summarizes the measurement results performed with the polarimeter de-

scribed in the previous chapter. In the first section the mechanical stress induced bire-

fringence in vacuum windows of the ACME experiment is analyzed. It is demonstrated

that the offset in the relative fraction of circular polarized light S/I due to mechanical

stress can be reduced to fractions of percent by aligning the incoming polarization with

the birefringence axis.

The second section presents a detailed investigation of thermally-induced birefringence

in the electric field plates caused by the high intensity of the laser light. A particular

focus of the work is a circular polarization gradient across a nominally linearly polarized

laser beam which contributed substantially to a mechanism of the leading systematic in

the ACME Generation I measurement [8]. The direct comparison of Generation I and II

field plates proves that the new field plates suppress this effect by more than an order

of magnitude. The small and well-characterized uncertainties of the polarimeter make

it possible to conclude that on the second-generation ACME apparatus the thermally-

induced birefringence is eliminated to 0.2% in S/I and is therefore not significant enough

to contribute to systematic errors in the next-generation measurement.

The last section summarizes polarimetry tests on optical components like waveplates

and polarizers used in the ACME experiment. Contrary to the specifications of the

company, the sideport of the Glan-Laser polarizer is found to produce linear polarization

which is as good as in the transmitted beam. This result is very important for ACME

since the two different ports of the Glan-Laser polarizer are used for polarization switching

mentioned in Chapter 2.

4.1 Mechanical Stress-induced Birefringence

When the state preparation, refinement or read-out laser beams pass through the interac-

tion region of the experiment, they are transmitted through vacuum windows and electric

field plates. The second-generation windows have dimensions of 5.5 x 3.5 x 0.75 inches,

are made of Corning 7980 OA fused silica glass1 and mounted to the vacuum chamber of

the experiment. The electric field plates are made of the same material. In addition they

1The first-generation windows were made of borosilicate BK-7 glass.
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4 Polarimetry Measurements on ACME

Figure 4.1: Experimental setup to measure the total birefringence in the windows and
electric field plates. After the polarized laser beam passes through the vacuum region of the
ACME experiment, its polarization is monitored by the polarimeter. The deviation from the
initially linear polarized beam gives information about the total birefringence in the windows
and the field plates. The mirror with the polarizer as well as the polarimeter are mounted on
linear translation stages to scan across the whole window. Diagram not to scale.

are coated with an electrically conducting and transparent layer of indium tin oxide to

fulfill their purpose of polarizing the molecules (see Chapter 2 for details).

The field plates as well as the windows can both introduce imperfections to laser po-

larizations. We first consider mechanical stress birefringence caused by the mounts of

the windows and estimate the residual birefringence due to material properties of the

windows and electric field plates. After that, the birefringence changes due to differen-

tial pressure on vacuum windows are discussed. The setup to measure these effects is

shown in Fig. 4.1. We start with a low-power ∼ 10 mW laser beam with a wavelength of

703 nm which is sent into the Glan-Laser polarizer after being reflected by mirrors. The

last mirror and the polarizer are mounted together on a linear translation stage to scan

across the whole optically accessible horizontal window range of ∼ 40 mm. The polarizer

is placed on a rotational mount to orient its transmission axis w.r.t. the optical table.

After being polarized, the laser beam passes through the vacuum region and is picked up

by the polarimeter. Like the mirror with a polarizer, the polarimeter is mounted on a

linear translation stage to enable a scan across the whole optically accessible horizontal

window range.

4.1.1 Determination of the Birefringence Axis

The impact of birefringence on outgoing polarization depends on the orientation of inci-

dent linear polarization of light passing through the birefringent material. If this orien-

tation angle is perfectly aligned with the birefringence axis, the polarization will remain

unchanged. Therefore, to determine the maximum effect of the birefringence of the com-
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4.1 Mechanical Stress-induced Birefringence

bined system of windows and field plates, we need to determine the total birefringence

axis first. It can be shown that a network of linear birefringent materials is described by

a single retarder followed by a polarization rotator [45, 96]. Hence, we can describe the

birefrigent network of windows and field plates by the Mueller matrices Γ̂(δ, β) and R̂(α)

which represent the retarder with a retardance δ and the birefringence axis oriented at

an angle β, and the rotator of an angle α, respectively. Their excplicit form is given in

App. A.2. With an incoming Stokes vector ~Sin = (1, cos 2γ, sin 2γ, 0) for linear polarized

light from a polarizer oriented at an angle γ passing through a network of birefringent

materials, the outgoing Stokes vector ~Sout is given by:

~Sout = R̂(α) · Γ̂(δ, β) · ~Sin =


1

cos(2θ) cos(2β − 2γ) + cos(δ) sin(2θ) sin(2β − 2γ)

sin(2θ) cos(2β − 2γ)− cos(δ) cos(2θ) sin(2β − 2γ)

sin(2β − 2γ) sin(δ)

 , (4.1)

where we defined θ = α + β. The orientation angle γ of incoming linear polarization

is controlled by the rotation mount of the polarizer and set to be around 0◦ when the

polarizer transmission axis is approximately (±5◦) aligned with the optical table.

If we consider only the relative fraction of circular polarized light S/I, then the absolute

rotation of the linearly polarized fraction is irrelevant. According to Eq. 4.1 we expect

the circular polarized fraction of light to vary as a function of the polarizer transmisson

angle γ as following:

S/I = sin δ sin(2β − 2γ). (4.2)

To perform the measurement of the birefringence axis angle β, the polarizer needs to

be rotated (corresponding to the variation of γ) while the relative fraction of circular

polarization S/I is recorded by the polarimeter. The results are shown in Fig. 4.2. To

account for possible systematic errors an offset parameter o in the fit function is added

to the ideal case of Eq. 4.2:

(S/I)fit = sin δ sin(2β − 2γ) + o. (4.3)

From the fit to the data for S/I in Fig. 4.2 we find 2β = 0.39(5)◦ and δ = 0.1284(2).

The offset parameter is o = (−0.061± 0.015)% which is below the estimated systematical

uncertainty discussed in the previous chapter. The fact that β ≈ 0◦ means that the

birefringence axis is approximately aligned with the optical table.

The values for δ and β from the fit of S/I are used to fit the data for M/I and C/I where

the remaining free parameter is α. From the fit of M/I this parameter is determined to

be α = −4.68(4)◦ and agrees with the result from the C/I fit of α = −4.64(5)◦. Recall

that this angle describes the rotation of linear polarization. However, since the reference
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4 Polarimetry Measurements on ACME

plane for the polarimeter is defined by the calibration polarizer which is aligned with

the optical table by eye to ±5◦, a non-zero value of α could also correspond to slightly

different orientations of the calibration polarizer and the polarizer from Fig. 4.1 used for

this measurement. Note also that the polarimeter is placed on a different optical table

than the one in front of the vacuum region, which could also be misaligned by few degrees

w.r.t. each other. The only way to put a precise limit on the linear rotation angle α

would be to use the polarizer before the vacuum region as a calibration polarizer leaving

the polarimeter on the other optical table. This would require to dismount the windows

and the field plates for calibration and mount them back in for the above measurement

of δ, β and α. But as mentioned in Chapter 2, the global polarization rotation as well

as the relative angle between the state preparation and readout laser beams do not affect

the electron EDM signal, assuming they are uncorrelated with other parameters of the

experiment. Therefore, in principle, the precise determination of α is not important.

However, it is discussed that the ACME Generation II setup could use additional rota-

tion stages with half- and quarter-waveplates on both state preparation/refinement and

read-out laser beams for fine polarization control [62]. These waveplates would have the

purpose to manipulate the polarizations after the laser beams are being polarized but

before they enter the vacuum region. In this case the linear rotation angle α could play

a role and would need to be reconsidered more carefully.

In Fig. 4.2 (b) the four data points for S/I where the orientation of the polarizer is

such that its transmission axis is aligned with the birefringence axis are shown. Note

that the relative fraction of circularly polarized light S/I is minimized every 90◦. For

these orientations of the polarizer transmission axis, S/I can be reduced to fractions of a

percent as is demonstrated in this figure.

4.1.2 Mechanical Stress Birefringence due to Vacuum Window

Mounts

From the results of the total birefringence axis measurement in the previous subsection, we

know that an orientation of the polarizer around 45◦ w.r.t. the optical table maximizes

the birefringence effect. Hence, for the following measurements this orientation of the

polarizer transmission axis is chosen.

The mechanical birefringence in the state preparation region is characterized in detail.

The results are shown in Fig. 4.3. To distinguish contributions of the two windows and the

field plates, measurements were performed in gradual steps. First, the relative circular

polarization S/I was measured across the whole optically accessible window region of

∼ 40 mm with windows on both sides of the vacuum chamber as well as the two field

plates inside the chamber. The results depicted with blue data points in Fig. 4.3 (a) show

that the relative fraction of circular polarized light is ∼ 14% varying by ∼ 1% across the

48



4.1 Mechanical Stress-induced Birefringence

S�I
M�I
C�I

�50 0 50 100 150 200 250 300�100

�50

0

50

100

Polarizer orientation Γ w.r.t. the optical table �deg�

S�I,M
�I,C�I

���

(a)

�50 0 50 100 150 200 250 300�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

Polarizer orientation Γ w.r.t. the optical table �deg�

S�I��
�

(b)

Figure 4.2: Determination of the birefringence axis of the combined system of windows and
field plates. (a) The relative Stokes parameters S/I, M/I and C/I as a function of the angle
γ between the optical table and the polarizer transmission axis. The data for S/I is fitted
with a function from 4.3. The data for M/I and C/I is fitted according to Eq. 4.1 with fit
parameters δ and β fixed to those from the fit of S/I. (b) Zoom into (a): the four data points
where the S/I is minimal together with the fit from (a) are shown. This plot demonstrates
that the offset in S/I can be eliminated to fractions of percent by aligning the polarization
with the birefringence axis which is found to be approximately aligned with the optical table.
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Figure 4.3: (a) Measured total birefringence in the state preparation region across the whole
horizontal optically accessible window region. Blue data points show the first measurement
set where both windows are in. Afterwards the east window was removed, see red data points.
Finally, shown in orange, after the second window is removed only the contribution of field
plates remains. (b) Gradual steps with corresponding polarimetry measurements of removing
the second window. Measurements were performed in the window center. The first step
(‘screws tight’) corresponds to the red data point in the center of figure (a), whereas the last
step (‘window removed’) agrees with the center orange point in figure (a).
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whole window. However, note that between two neighboring data points in the center

region of the window, S/I does not vary significantly above a fraction of percent. The

values are separated spatially by 2.5 mm, which is about the width of the laser beam.

Later polarimetry tests on the ACME experiment (see Fig. 4.10 in the following section)

confirmed that within the horizontal laser beam width, there are no gradients of S/I

above 0.1%.

Afterwards the window facing the outgoing laser beam from the vacuum region (‘east

window’) was removed and the scan of S/I was repeated, see red data points in Fig.

4.3 (a). The mean value of S/I across the window dropped from ∼ 14% to ∼ 8% by

removing one window. Similar to the setup with both windows in, the value of S/I varied

by ∼ 1% from the center to the edges of the window. As previously, the value of S/I did

not change significantly within the width of the laser beam which is approximately equal

to the distance between two neighboring data points. Since the ThO molecules travel

between field plates, with the east window being removed the polarimeter measures most

closely the polarization which is ‘seen’ by the molecules. As later measurements show, the

field plate on the east side distorts the polarization from the region in between the field

plates not above ∼ 2%. Therefore, one can expect that the laser light which prepares or

refines the required state in the ThO molecules, has a circular polarization of ∼ 6 − 8%

if the linear polarized light is diagonally or anti-diagonally oriented w.r.t. the optical

table. However, as demonstrated in the previous section, recall Fig. 4.2 (b), by aligning

the linear polarization with the birefringence axis the S/I can be reduced to fractions of

percent.

In the final step the west window was removed gradually. Each step a polarimetry

measurement was recorded in the center of the window. Fig. 4.3 (b) shows the results. In

the first step the screws are tight and the window is in place. This measurement agrees

with Fig. 4.3 (a), red data points in the center of the window. In the second step the

screws are loosen such that they are still holding the window. Doing so, the value of S/I

dropped by ∼ 2%. Further decrease in S/I is observed by about the same amount when

the screws are removed. During this polarimetry measurement the window was held in

place by hands. Finally the window was removed and the residual S/I of ∼ 2% coming

from the field plates was observed.

4.1.3 Residual Birefringence due to Material Properties

According to the specifications of Corning 7980 fused silica glass from which the second-

generation field plates and the windows are made, the residual birefringence is ∆n ≤
1 nm/cm [22]. With a field plate thickness of t = 12.7 mm and a wavelength of λ = 703 nm,

we obtain a maximum retardance of

δ = 2π t∆n/λ ' 1.17 · 10−2. (4.4)
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Recalling Eq. 4.2, with a birefringence axis being oriented at β = 45◦ w.r.t. the incoming

linear polarization, and for δ � 1, this retardance causes a relative fraction of circular

polarized light of approx. the same amount:

S/I = sin δ ' δ ' 1.2%. (4.5)

Having two field plates and therefore twice the thickness, leads to an S/I of up to 2.4%

which is above the measured value of 2.2% and therefore within the specifications. Since

the windows have a similar thickness of t = 1.9 cm, the estimate of residual birefringence

also agrees with the measurement from step 3 to 4 in Fig. 4.3 (b) where the window

without the screws was removed and a change of ∼ 2% in S/I was observed.

4.1.4 Effect of Differential Pressure Across the Window

Pumping out the chamber puts a differential pressure of one atmosphere across the win-

dows. Therefore, the mechanical stress changes and the resulting birefringence is modified.

We can make an order-of-magnitude estimate by assuming the stress of σ = 1 atm and

relating it to the resulting birefringence. The stress-optics law [54, 24] states that the

difference in principal stresses results in a change of the refractive index ∆n as:

∆n = K(σxx − σyy), (4.6)

where K is the stress-optical coefficient, and σxx, σyy are the corresponding principal

stresses in the x or y direction, respectively. For Corning 7980 glass, K = 3.5·10−3 GPa−1.

Assuming σxx− σyy ' 1 atm, the refractive index changes by ∆n ' 3.5 · 10−7 which leads

to a change in the retardance of

∆δ = ∆n · 2πt/λ ' 5.9 · 10−2, (4.7)

where t = 1.9 cm is the thickness of the window and λ = 703 nm the used wavelength of

light. According to Eq. 4.5 this change in retardance corresponds to ∆S/I ' 6%.

The experimental results reveal an effect on the estimated scale, though lower than

expected. During the pump down, the polarimeter measured continuously at one position

of the window, as shown in Fig. 4.4 (a). When the pump is switched on, the value of S/I

drops by ∼ 2%. After that, a mechanical relaxation is observed, where the S/I increases

by ∼ 0.5% on a scale of around 15 minutes. A day after the pump down a polarimetry

scan across the whole window was taken and compared to the measurement before the

pump down, see Fig. 4.4 (b). The differential pressure changed the value of S/I by 1−3%

and the distribution of S/I across the window is comparable to the one in Fig. 4.3 (a).

Note that the windows were removed and mounted back in between those data sets. Since
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Figure 4.4: (a) Stress-induced ellipticity change during the pump down. Around 6 minutes
after the polarimetry measurements started, the pump is switched on. This results in a differ-
ential pressure across the windows of around one atmosphere within seconds. A mechanical
relaxation after the pump down on a scale of ∼ 15 min. is observed. (b) Change of S/I across
the whole state preparation region after pumping out the vacuum chamber. Blue data points
show the measurement set before the pump down, whereas orange data points were taken on
the next day after the pump down.

small changes in tightening strength of the window screws affect the S/I on the order of

2%, it is not surprising that the S/I differs by few percent between Figs. 4.3 and 4.4

4.2 Thermally-induced Birefringence in the Electric Field

Plates

In addition to purely mechanical stress birefringence due to mounts or differential pres-

sure, the polarization imperfection in the laser beams may be caused thermally. For

example, this effect was observed in UHV vacuum windows [82], laser output windows

[27], and Nd:YAG rods [53]. In the ACME Generation I measurement thermally-induced

birefringence contributed to a systematic error mechanism that dominated the system-

atic uncertainty [8]. The high power laser beams were intense enough to create thermal

gradients in glass electric field plates coated with a conducting layer of indium tin oxide.

The absorbed heat leads to mechanical stress which, as we have seen in the previous sec-

tion, causes birefringence. For the second-generation ACME setup new field plates were

designed which should suppress this effect. This section discusses a detailed investiga-

tion of these second-generation field plates. After summarizing a theoretical model for

thermally-induced birefringence and estimating the size of the effect, a direct experimen-

tal comparison of first- and second-generation plates on a separated setup is presented.

Finally, a test on the ACME Generation II setup demonstrates that thermally-induced

birefringence is not a concern for the next-generation electron EDM measurement.
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4.2.1 Theoretical Model and Estimates

First, let us introduce a model for thermally-induced birefringence. The discussion pre-

sented here uses results of [46, 41] and goes beyond it by considering the thermally-induced

offset in S/I, relating the gradient and offset coefficients to each other, and making an

estimate of both coefficients for the first- and second-generation field plates. As we shall

see in the next subsection where the experimental results are presented, the offset in

S/I turns out to be a more accurate tool for the characterization of thermally-induced

birefringence because it is more sensitive to thermal effects.

The thermally-induced stress in a material is related to the deposited position-dependent

heat per unit volume, Q(~r), via the following equation [7]:

∇4φ =
Eβ

κ
Q(~r). (4.8)

Here, we introduced the Airy stress φ and the following three material properties: E

– the Young’s modulus, β – the coefficient of thermal expansion, and κ – the thermal

conductivity of the material. The Airy stress is related to the usual principal stresses in

the x or y directions and the shear stress σxy via

∂2φ

∂x2
= σyy,

∂2φ

∂y2
= σxx,

∂2φ

∂x∂y
= σxy. (4.9)

For thermal stresses the shear terms σxy vanish [7].

Assuming a small fraction of absorbed light intensity, the absorbed heat per unit volume

Q(x, y) can be expressed through the incoming intensity of the laser light I(x, y) and the

absorbance α as:

Q(x, y) = α I(x, y). (4.10)

Given the wavelength λ, the absorbance α can be calculated from the imaginary part of

the refractive index, also called extinction coefficient µ = Imn [10]:

α = 4πµ/λ. (4.11)

The transmitted intensity of light is given by I(z) = I0 Exp[−α z] which is the Beer-

Lambert law [95]. For α z � 1 we obtain I(z) ' I0(1− α z), and the absorbed intensity

per unit length is therefore α I0 in agreement with Eq. 4.10.

We already discussed how to obtain the change in S/I from the mechanical stress in the

previous section. As previously, we consider the case where the birefringence in maximal,

i.e. where the birefringence axis is oriented at 45◦ w.r.t. the incoming linear polarization

transmission axis. Recalling Eqs. 4.6 and 4.7, the relative Stokes parameter is related to
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the principal stresses as:

SI ≡ S/I =
2πt

λ
K(σxx − σyy), (4.12)

where K is the stress-optical coefficient, λ the wavelength of incident light and t the

thickness of the material. It should be remarked that the same intensity I enters Eq.

4.10 for the absorbed heat as is used to normalize the Stokes parameter in Eq. 4.12. But

the latter is not affected by the derivatives on the left side of Eq. 4.8 where we relate

the stress to the relative Stokes parameter. Eq. 4.8 describes the impact of intensity for

the absorbed heat which has already been included on the right side of this equation.

Therefore, for clarity, we define the symbol for the relative Stokes parameter representing

the circular polarization as

SI ≡ S/I. (4.13)

To find the solution to Eq. 4.8, we need to know the distribution of the intensity which

for a Gaussian beam is given by

I(x, y) = I0 e−2x2/w2
x−2y2/w2

y , (4.14)

where wx and wy are the beam waists in the x and y directions, and I0 the peak intensity

which is related to the total power of the laser beam,

Ptot =

∫ ∞
−∞

∫ ∞
−∞

I(x, y)dxdy =
π

2
I0wxwy. (4.15)

Let us assume that we have a stretched beam wy � wx, and can approximate I(x, y) '
I(x) around the center of the beam, y ' 0. Then the intensity can be written as:

I(x) =
2Ptot

πwxwy
e−2x2/w2

x . (4.16)

Due to the assumption of a stretched beam, we can make the approximation that the

stresses change only along x and hence, ∂2σxx/∂y
2 ' 0. Combining this result with Eqs.

4.10-4.12 and 4.16, Eq. 4.8 simplifies to:

∂2

∂x2
SI(x) =

4 g√
2πwx

e−2x2/w2
x , (4.17)

with g being a constant which we call ‘gradient coefficient’ dependent on the material as

well as properties of the laser beam:

g = 4π
√

2π
Ptot

λ2wy

KEβµ

κ
t. (4.18)
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Due to the symmetric intensity distribution, the boundary conditions are SI(0) = const ≡
o and ∂SI(0)/∂x = 0. After integrating Eq. 4.17 we find the analytical solution:

SI(x) = g
(
wx

(
1− e−2x2/w2

x

)
−
√

2πxErf(
√

2x/wx)
)

+ o. (4.19)

Note that the gradient of SI(x) is given by:

∂

∂x
SI(x) = g Erf(

√
2x/wx). (4.20)

When the intensity of the laser beam has dropped to 13.5%, at x = wx, the gradient value

is already close to its maximum since Erf(
√

2) ' 0.95:

∂

∂x
SI(x)|x=wx '

∂

∂x
SI(x)|max ' g. (4.21)

We remark that the solution in Eq. 4.19 becomes unphysical for large x: SI → ±∞
for x → ±∞ where obviously SI(±∞) = 0 should be true. The reason is the following:

In the derivation we assumed the intensity I(x, y) to be independent of y and therefore

neglected the change of stresses in the y direction which is not a good assumption for

large x. Therefore, we cannot derive an analytical expression for the thermally-induced

offset o from the case of a stretched beam. We shall rather examine the solution for a

circular Gaussian beam with wx = wy = w, Icirc.(r) = I0 e−2r2/w2
. By transforming the

biharmonic operator on the right side of Eq. 4.8 into cylindrical coordinates, one can find

the solution which fulfills the boundary conditions SI(±∞) = 0 and ∂SI(0)/∂x = 0 [46]:

SI circ.(x) = o
w2 (1− e−2x2/w2

)

2x2
, (4.22)

with

o = 2π
Ptot

λ2

KEβµ

κ
t. (4.23)

Note that SI circ.(0) = o according to L’Hôpital’s rule. Far from the center of the beam,

the elongated shape of the beam can be approximated to be circular. Therefore, the offset

parameter o derived from the case of a circular beam can be used as an estimate for the

offset in the case of a stretched beam; comparing Eq. 4.18 with Eq. 4.23 yields:

o

g
≈ wy

5
. (4.24)

The dependence on the vertical width of the beam wy in the gradient coefficient g can

be viewed as a reduction of the effective power in the horizontal direction, whereas in

the case of a circular beam the power in both dimensions is included. Both, the gradient

and offset coefficients, have the same dependence on material properties as well as the

55



4 Polarimetry Measurements on ACME

total power and wavelength of light. As we shall see, the most relevant and changeable

quantities are the thickness of the material t, its thermal expansion coefficient β, and

the total light power Ptot. Thus we can summarize the dependence of thermally-induced

birefringence as following:

(S/I)Thermal ∝ t · β · Ptot. (4.25)

To minimize the effect of thermally-induced birefringence, we shall look for a material with

a low thermal-expansion coefficient β, reduce the thickness t, and minimize the needed

total laser power Ptot.

Let us now consider two materials superimposed on each other, e.g. glass coated with

some other transparent material, where both materials contribute to thermally-induced

birefringence due to the incident laser beam. In the first material the retardance δ1 is

induced whereas in second it is δ2. Since for thermally-induced stresses the birefringence

axis β is solely determined by the geometry of the beam, this axis is equal for both

materials, β1 = β2. Therefore, the two materials can be viewed as a single retarder with

a total retardance of δ = δ1 + δ2. In this case, as becomes evident from Eq. 4.5, for small

retardances δ1 � 1 and δ2 � 1, their impact on S/I is simply given by their sum:

SI ' δ1 + δ2. (4.26)

Recalling the thermal cause for this birefringence, SI is then given by Eq. 4.19 with the

gradient coefficient

g = 4π
√

2π
Ptot
λ2wy

(
K1E1β1µ1

κ1

t1 +
K2E2β2µ2

κ2

t2

)
, (4.27)

and an analogous expression for the offset coefficient o:

o = 2π
Ptot
λ2

(
K1E1β1µ1

κ1

t1 +
K2E2β2µ2

κ2

t2

)
. (4.28)

The subscript ‘1’ denotes the properties of the first material (i.e. the glass) and the

subscript ‘2’ of the second (i.e. the coating).

Let us now examine the thermally-induced birefringence in a glass plate coated with

indium-tin-oxide (ITO) more quantitatively. Table 4.1 lists an overview over the material

properties which enter Eqs. 4.27 and 4.28 for three types of glasses as well as the ITO

coating.

For glasses, the stress-optical coefficient K, the Young’s modulus E, the extinction

coefficient µ and the thermal conductivity κ are all comparable to each other within a

factor of 1 to 1.5. The decisive property is the thermal expansion coefficient β which is

about an order of magnitude lower for fused silica as opposed to borosilicate glass. Fused

silica is the better material for the suppression of thermally-induced birefringence, and
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Material property
Glass Coating

Borosilicate
(Borofloat)

Borosilicate
(N-BK7)

Fused silica
(Corning 7980)

Indium-tin-
oxide (ITO)

Stress-optical coeff.
K [10−3 GPa−1]

4.0 [77] 2.77 [23] 3.5 [22] ∼ 1 ([92, 97, 61])

Young’s modulus
E [GPa]

64 [77] 82 [23] 73 [22] 116 [60]

Thermal exp. coeff.
β [10−6/K]

3.25 [77] 7.1 [23] 0.52 [22] 8.5 [30]

Extinction coeff.
µ = Imn

10−7 [49] 10−7 [49] 10−7 [49] ∼ 10−2 [29, 71]

Thermal conductivity
κ [W / (m K)]

1.2 [77] 1.11 [23] 1.38 [22] 5.86 [4, 94]

Product
KEβµ/κ [fm / W]

69 145 9 ∼ 107

Table 4.1: Material properties relevant for thermally-induced birefringence according to Eqs.
4.27 and 4.28 where the product KEβµ/κ determines the decisive material factor. Three types
of glasses as well as the indium-tin-oxide (ITO) coating for electric field plates are compared.
Comparing the product of material properties, the choice of fused silica glass suppresses the
thermally-induced birefringence whereas the high impact of ITO demands to make the coating
as thin as possible.

was therefore chosen for the second-generation field plates.

For the inevitable ITO coating needed to make the field plates electrically conduc-

tive, the product of material properties contributing to thermally-induced birefringence,

KEβµ/κ, is several orders of magnitude higher than for glass. The value for the stress-

optical coefficient of indium-tin-oxide is not found in the literature but can be assumed to

be on the same order of magnitude as for other transparent materials. Comparing more

than 50 different materials, the stress-optical coefficient is always around 10−3 GPa−1

within a few factors [92, 97, 61]. The most important property of ITO responsible for

the high impact on thermally-induced birefringence is the extinction coefficient which is

around 100,000 larger compared to glass. It is therefore important to make the coating

as thin as possible.

The specific estimates of gradient and offset coefficients for the first- and second-

generation field plates is presented in Tab. 4.2. Furthermore, the lenses for the beam

expansion are included, since, as we shall see, they are found to contribute to thermally-

induced birefringence. Apart from the material properties discussed above, the total power

of the laser beam Ptot, the wavelength of light λ, and the thicknesses of the glass and the

coating, t1 and t2, enter Eqs. 4.27 and 4.28. In addition, the vertical width of the beam,

wy, is needed to determine the gradient coefficient which is set to wy ' 30 mm according

to the experimental setup. The wavelength of light is set to λ = 1090 nm while both the
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System Gen. I plate Gen. II plate Lenses

Glass type
Borosilicate
(Borofloat)

Fused Silica
(Corning 7980)

Borosilicate
(N-BK7)

Glass thickness t1 [mm] 12.7 12.7 ∼ 10 (aver.)
ITO coating thickness t2 [nm] 200 20 0 (no ITO)
Gradient coeff. per total power
g/Ptot [%/(mm ·W)],
for wy = 30 mm, see Eq. 4.27

0.25 0.03 0.13

Offset coeff. per total power
o/Ptot [%/W],
see Eq. 4.28

1.52 0.17 0.77

Table 4.2: Estimates of thermally-induced birefringence coefficients per total power based
on the theoretical model described in Sec. 4.2.1. Three systems are compared: the generation
I and II electric field plates coated with indium-tin-oxide (ITO), and the lenses used for the
beam expansion. The relevant material constants are summarized in Table 4.1. Using those,
the gradient and offset coefficients per total laser beam power are calculated for the wavelength
of λ = 1090 nm according to Eqs. 4.27 and 4.28.

offset and gradient coefficients are calculated per total power. For both generations the

field plates have the same thickness of 0.5” = 12.7 mm. The first-generation field plates

are made of borosilicate ‘Borofloat’ glass whereas for the second generation the better glass

was used, ‘Corning 7980 0A’ fused silica. Furthermore, the second-generation field plates

feature a ten times thinner coating, 20 nm instead of 200 nm. This makes them to be

around an order of magnitude better in terms of their contribution to thermally-induced

birefringence.

As described in Ch. 2, the beam needs to be expanded in the vertical direction to

reach all the molecules passing through the interaction region. The large vertical width of

wy ' 30 mm requires to polarize the beam before it passes through the lenses. Therefore,

the lenses may also introduce polarization imperfections, in particular through thermally-

induced birefringence. Easily available lenses are made of N-BK7 borosilicate glass. The

averaged thickness of the lenses is estimated to be ∼ 10 mm. However, it is not clear how

the varying thickness of the material will influence the thermal effects described by the

theoretical model in this section. Also note that the beam is circular when it enters the

first lens, and elongated when it passes the second lens. This could change the gradient

and offset coefficients in S/I in an unexpected way. Nevertheless, we can make a rough

estimate with the average thickness. According to this estimate, presented in the last

column of Table 4.2, the lenses could significantly contribute to the thermally-induced

birefringence.

Finally, we remark that the estimate of offset coefficients in Table 4.2 is around six

times larger than that of gradient coefficients, see Eq. 4.24. Therefore, we expect the
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4.2 Thermally-induced Birefringence in the Electric Field Plates

Figure 4.5: Experimental setup to measure the thermally-induced birefringence in electric
field plates. After being polarized, the laser beam passes through the telescope (a set of two
lenses) which expands the beam in the vertical direction to reproduce the elongated beam
shape used in the ACME experiment. The polarimeter is placed directly after the field plate
on a linear rotation stage to scan across the beam profile and thereby to record polarization
gradients and offsets. For a separate measurement of thermally-induced birefringence in the
lenses, the field plate is removed.

offset in S/I to be a more sensitive probe for thermally-induced birefringence. However,

recall that it is the ellipticity gradient which substantially contributes to the systematic

error mechanism in the ACME experiment.

4.2.2 Separate Measurements on First- and Second-generation Field

Plates

The thermally-induced birefringence in the first- and second-generation field plates was

directly compared on a separated setup, see Fig. 4.5. We start with a collimated high-

power laser beam with the total power of up to 6 W, wavelength 1090 nm, and a circular

Gaussian beam shape with waists of wx ' wy ' 1.4 mm. The laser beam is first polarized

with the Glan-Laser polarizer, with its transmission axis being oriented at 45◦ w.r.t. the

x axis (which is the birefringence axis) to maximize the birefringence effect. Then the

beam is expanded in the y direction using two cylindrical lenses with focal lengths of

f = 10 mm (LJ1878L2-C) and f = 200 mm (LJ1309L1-C), so that the beam shape is

elongated with wx = 1.4 mm � wy ' 30 mm. The laser beam then passes through the

glass plate and enters the polarimeter. S/I is measured as the polarimeter is translated

on a linear translation stage in the x direction across the narrow illuminated area on the

field plate.

The measurement results are shown in Fig. 4.6. The intensity profile of the laser beam

in the x direction is the gray curve. The spatial variation of S/I for the first-generation

plate are the blue points, the data from the second-generation plate is shown in orange.

From both data sets the contribution of lenses was substracted (red data points) which

was measured separately by removing the field plate. The smooth curves represent the
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Figure 4.6: Thermally-induced birefringence measurements for total laser powers of 2 W,
4 W, and 6 W, produced with the experimental setup shown in Fig. 4.5. The first-generation
(in blue) and second-generation (in orange) field plates are compared to each other, with the
separately measured contribution of the lenses (in red) substracted. All data was fitted with
the function from Eq. 4.19, fit results are summarized in Table 4.3. To visualize the gradient
more clearly, on the right the same data is presented with a subtracted offset. Measurements
were taken with an elongated Gaussian laser beam at 1090 nm with waists wx = 1.4 mm �
wy ' 30 mm. Error bars represent a quadrature sum of statistical and systematic uncertainties
discussed in Ch. 3.
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Coefficient
Ptot = 2 W Ptot = 4 W Ptot = 6 W

Lenses FP I FP II Lenses FP I FP II Lenses FP I FP II

g [%/mm] 0.25(3) 0.63(3) 0.02(2) 0.65(5) 1.78(10) 0.03(5) 0.63(10) 3.45(20) 0.43(8)

o [%] 0.76(1) 3.80(1) 0.12(1) 1.68(2) 7.36(6) 0.53(2) 2.55(5) 12.10(9) 0.72(3)

Table 4.3: Thermally-induced gradient and offset coefficients in S/I from the fits to the
data in Fig. 4.5 with the function from Eq. 4.19. The fit results are summarized for three
systems (the first- and second-generation field plates, denoted as ‘FP I’ or ‘FP II’, and the
lenses) at three total power values of Ptot = 2 W, 4 W, and 6 W.

Gen I FP
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Gen II FP
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Figure 4.7: Thermally-induced birefringence offset SI(x = 0) = o in dependence on total
power Ptot with fit results from Table 4.3. The linear power dependence matches the prediction
by Eq. 4.28. For first-generation field plates a linear fit yields o/Ptot = 1.95(5) [%/W], for
lenses o/Ptot = 0.42(1) [%/W], and for second-generation field plates o/Ptot = 0.12(1) [%/W].
These values agree within a factor of 1-2 with the theoretical estimate from Table 4.2.

fits to the data with a function from Eq. 4.19. The left figures (a), (c) and (e) show

the absolute value of S/I, whereas on the right side, figures (b), (d) and (f), an offset

to the corresponding left figures is substracted to visualize and compare the gradients.

Both, the offset and gradient in S/I, are clearly magnified with increasing power. For the

second-generation field plates the gradient starts to be visible only at the highest power

value, whereas for the first-generation field plates the gradient is on the order of 1− 3%.

The polarization gradients observed in the first-generation polarimetry measurements

on ACME were larger, on the order of 5−10% with a total power of 2−4 W [8, 9, 41]. This

is due to the fact that these measurements were performed not on a separated setup, but

directly on the first-generation ACME experiment. In this case two field plates and two

windows are subject to thermally-induced birefringence. In addition, the first-generation

vacuum windows were made of borosilicate (BK7) glass which has a large impact on
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thermally-induced birefringence as discussed in the previous subsection. Therefore, the

total thermally-induced S/I gradients observed on the first generation ACME experiment

were a few factors larger compared to the measurements from a separated setup where

the contribution of one field plate is isolated.

The fit results to the data shown in Fig. 4.6 are summarized in Tab. 4.3. Recall that

the theoretical estimates of these coefficients are given in Table 4.2. As predicted, the

gradient coefficient g is always smaller than the offset o. The ratio o/g is around 2−6 mm

as expected from Eq. 4.24 with wy ' 30 mm. Comparing the experimental values of

o and g to theoretical estimates, we find an agreement within a few factors. Given the

simplicity of the theoretical model, and taking the uncertainty in the material properties

of ITO and various imperfections into account, this agreement is very satisfying.

The offset coefficients from Table 4.3 are represented graphically as a function of the

total power in Fig. 4.7. We find the expected linear dependence from Eq. 4.28. Per-

forming a linear fit, the offset coefficients per total power can be extracted. For the

first-generation field plates we obtain the value of o/Ptot = 1.95(5) %/W which is a factor

of 16 larger than the corresponding value for the second-generation plates. This agrees

well with the theoretical estimate from Table 4.2 where an order of magnitude difference

was predicted. For lenses we find a value which is about a factor of two smaller than

expected, o/Ptot = 0.42(1) %/W. The thermally-induced birefringence in lenses can be

suppressed by an order of magnitude by replacing them with fused silica lenses. A lot of

effort has been put to order large (f = 200 mm) custom-made fused silica lenses made of

‘Corning 7980 0A’ but unfortunately the surface quality was very unsatisfying. However,

at planned laser powers of ∼ 0.2 W in the second-generation ACME experiment, even

the current lenses should not produce a concerning amount of thermally-induced bire-

fringence. Furthermore, the state preparation/refinement and readout procedure can be

set such that the birefringence axis is aligned with the state preparation/refinement and

readout laser beams. This can be achieved by setting the corresponding magnetic field

strengths such that the phase precesses by an angle equal to integer values of 90◦.

Finally, we would like to test the prediction that the birefringence axis for thermally-

induced birefringence is aligned with the symmetry axes of the elongated beam. For this

measurement the polarizer before the lenses, depicted in Fig. 4.5, was placed on a rotation

mount. The value of S/I was recorded by the polarimeter as the input polarization

orientation was varied. Measurements were performed at the center of the beam where

the thermally-induced birefringence is maximized. The results are shown in Fig. 4.8. Since

the output beam of the laser has some polarization, the power had to be adjusted with

a power-meter every time the polarizer was rotated. This puts an additional uncertainty

on S/I (according to the linear dependence on the incident laser power) which makes

the error bars larger for higher values of S/I. The data is fitted with a cos(2β)-function

according to Eq. 4.2. As predicted, the impact of thermally-induced birefringence is
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Figure 4.8: Thermally-induced S/I in dependence on the orientation of incoming linear
polarization w.r.t. the elongated beam axes. The prediction of the beam axes defining the
birefringence axis is confirmed. Measurements were performed in the center of the beam with
a total power of ∼ 5.5 W. The uncertainty of the power is added to the error bars on measured
S/I according its linear power dependence. This makes the error bars larger for higher values
of S/I.

minimized when the input polarization is aligned with the x or y axes of the elongated

beam, corresponding to the orientation of input polarization of 0◦ or 90◦. This result

demonstrates that the birefringence axis matches the symmetry of the elongated beam.

4.2.3 Thermally-induced Birefringence Test on the Generation II

ACME Setup

After the second-generation field plates were investigated on a separated setup, a test

for thermally-induced birefringence was performed on the second-generation ACME ap-

paratus. The setup is depicted in Fig. 4.9. We start with a circular Gaussian laser

beam, wx = wy = 1.4 mm, at the wavelength of 703 nm which is used in the state

preparation/refinement and readout region for the second-generation ACME measurement

scheme. This laser beam is polarized by the Glan-Laser polarizer and enters the telescope

consisting of two cylindrical lenses with f = 10 mm (Thorlabs LJ4918 or AYL1210-

B) and f = 200 mm (Thorlabs LJ1309L1-B). After that the elongated Gaussian beam,

wx = 1.4 mm and wy ' 30 mm, passes the two windows and two second-generation field

plates in the vacuum region of the ACME experiment. On the other side of the vacuum

chamber the polarimeter is placed on a linear translation stage to record the polarization

across the x profile of the laser beam. After fiber coupling and impure polarization losses

the highest achievable power after the polarizer is around 1.1 W. Measurements were
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performed at low power, ∼ 10 mW, and the highest possible power of 1.1 W.

The results are shown in Fig. 4.10. The upper red curve is the intensity profile of the

beam in the x direction. Blue and purple data points show the measurements at low

power with the LJ4918 lens and the a-cylindrical AYL12010-B lens, respectively. Orange

and pink data points are the corresponding high-power data points. As discussed in the

previous section, mechanical stress in the vacuum windows gives rise to a significant offset

Figure 4.9: Setup for the thermally-induced birefringence test on the second-generation
ACME apparatus. After the laser beam passes through the Glan-Laser polarizer, it is expanded
in the vertical direction by two lenses with focal lengths of f = 10 mm and f = 200 mm,
leading to beam waists of wx = 1.4 mm and wy ' 30 mm. Then the laser beam is transmitted
through the vacuum chamber, where two vacuum windows and two field plates are on its way.
Finally, the polarization of the laser beam across the x direction is measured by the polarimeter
on a linear translation stage. Diagram not to scale.

10 mW, LJ4918 lens
1.1 W, LJ4918 lens
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Figure 4.10: Thermally-induced birefringence test on the second-generation ACME appa-
ratus. The upper red curve is the intensity profile of the laser beam with the wavelength of
λ = 703 nm. Measurements were performed at low power (10 mW) and highest possible
power (1.1 W) with two different lenses. Blue (at 10 mW) and orange (at 1.1 W) data
points show measurements with the Thorlabs LJ4918 lens, purple (at 10 mW) and pink (at
1.1 W) data points were taken with the a-cylindrical Thorlabs AYL1210-B lens. No significant
thermally-induced S/I is observed. Error bars represent a quadrature sum of statistical and
systematic uncertainties discussed in Ch. 3.
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in S/I. This offset, S/I ≈ 14%, was subtracted from the measured values to visualize

the contribution of the thermal effect. We find that no significant thermally-induced

birefringence is produced by the intense laser beam passing through the windows and

the field plates. Only a small offset of ∼ 0.2% is visible. This value is approximately in

agreement with the results from the separated setup. Since the power is barely sufficient

to show an effect of thermally-induced birefringence we expect the value to be lower than

in the linear regime. Naturally, the process would not start linearly, but rather as a more

smooth higher-order dependence on the power.

For the second-generation ACME experiment the use of a five times lower power than

in the above measurements, ∼ 0.2 W, is planned. Since no concerning deviation in S/I

even at ∼ 1 W was observed, we conclude that thermally-induced birefringence is not an

issue for systematics in the ACME’s second-generation electron EDM measurement.

4.3 Tests of Optical Elements

This section summarizes the tests of typical optical elements used in the ACME laboratory,

including half- and quarter-waveplates, windows and polarizers. Of a special interest is

the polarization purity of the sideport of the Glan-Laser polarizer. This polarizer is used

for polarization switching which is described in Ch. 2. A different polarization purity

in the transmitted and reflected beams of the Glan-Laser polarizer could be a serious

cause of systematic errors. The manufacturing company does not guarantee the same

extinction ratio for the sideport as for the transmitted port, and even states it to produce

only partially polarized. As we shall see, contrary to the specifications of the company,

the laser beam coming through the sideport of the Glan-Laser polarizer is found to be as

good polarized as the transmitted beam. This result is important because it means that

the Glan-Laser polarizer can be undoubtedly used for polarization switching.

4.3.1 Imperfection of the Retardance in Half- and

Quarter-Waveplates

Let us first consider one of the most common optical elements in the lab, the waveplates.

For ACME, the imperfections of waveplates are particularly interesting, if the proposed

scheme [62] to manipulate the polarization with two waveplates directly before the laser

beam enters the vacuum region of the experiment is realized. However, even in the current

setup, the waveplates are the last optical elements before the laser beam enters the vacuum

region. Half-waveplates are used after the polarizer to dither the polarization angle and

thereby measure the contrast (see Ch. 2 for details). Imperfections of those affect the

polarization which reaches the molecules.

Let us assume that we start with a horizontally polarized beam and would like to
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modify its polarization with the help of a waveplate with retardance δ. The incoming

Stokes vector is therefore ~Sin = (1, 1, 0, 0), with the total intensity being normalized to 1.

According to the Mueller calculus, the outgoing Stokes vector is

~Sout = Γ̂(δ, β) · ~Sin =


1

sin2(2β) cos δ + cos2(2β)

sin(4β) sin2(δ/2)

sin(2β) sin δ

 , (4.29)

where Γ̂(δ, β) represents the waveplate with a retardance δ and the birefringence axis

oriented at an angle β (see App. A.2 for the explicit form of this matrix). For a near

half-waveplate we can approximate δ ' π + ∆ and obtain:

~SHWP '


1

∆2/4 + (1−∆2/4) cos(4β)

(1−∆2/4) sin(4β)

−∆ sin(2β)

 . (4.30)

The approximation δ ' π/2 + ∆ for a near quarter-waveplate yields:

~SQWP '


1

1/2−∆/2 + (1 + ∆) cos(4β)/2

(1 + ∆) sin(4β)/2

(1−∆2/2) sin(2β)

 . (4.31)

Note that even the perfect quarter-waveplate (∆ = 0) apart from changing the amount

of circular polarization also rotates the remaining fraction of linear polarization by up to

45◦ corresponding to a variation of M/I from 0 to 100%.

Since the definition of the absolute linear rotation angle is arbitrary, let us consider

for simplicity and clarity only the relative Stokes parameters M/I and S/I. For a near

half-waveplate, from Eq. 4.30 we find:

(M/I)HWP ' ∆2/4 + (1−∆2/4) cos(4β), (4.32a)

(S/I)HWP ' −∆ sin(2β). (4.32b)

Analogously, from Eq. 4.31, for a near quarter-waveplate the following expressions are

valid:

(M/I)QWP ' 1/2−∆/2 + (1 + ∆) cos(4β)/2, (4.33a)

(S/I)QWP ' (1−∆2/2) sin(2β). (4.33b)
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Waveplate type
Specified
wavelength

Part number
(TL = Thorlabs,
NP = Newport)

Measured ∆, from fits
shown in Figs. 4.12(a)
and 4.13(b) [rad]

Quarter-Waveplates
Achromatic 690-1000 nm NP 10RP54-2 0.008(3)
Monochrom. 694 nm TL WPQ05M-694 0.019(2)
Monochrom. 532 nm NP 05RP34-532 0.417(3)
Half-Waveplates
Achromatic 690-1200 nm TL AHWP05M-980 0.0935(3)
Monochrom. 694 nm TL WPH05M-694 0.0288(2)
Monochrom. 633 nm TL WPH05M-633 0.2557(6)

Table 4.4: Overview of the tested half- and quarter-waveplates with corresponding part
numbers. The measurements were performed at λ = 690 nm with results presented in Figs.
4.12 and 4.13. In the last column the values for the retardance deviation ∆ from the perfect
case of a half- or quarter-waveplate are written. They were extracted from fits to the data in
Figs. 4.12(b) and 4.13(a) according to Eqs. 4.32b and 4.33a.

We obtain the useful and interesting result that for a quarter-waveplate, the deviation

from the perfect retardance has a first-order impact on circular polarization and second-

order impact on linear polarization. Oppositely, for a half-waveplate, the imperfection in

the retardance is a first-order effect for linear polarization and second-order for circular

polarization.

After some theoretical considerations, let us now consider the observations. The sim-

ple setup to test the waveplates is depicted in Fig. 4.11. We start with a low-power

(∼ 10 mW) laser beam, wavelength λ = 690 nm, which is polarized by the Glan-Laser

polarizer. The waveplate is placed on a rotation stage between the polarizer and the

polarimeter. The orientation of the waveplate is changed in gradual steps, typically 4◦.

Within each step the polarimeter measures the outgoing polarization.

Here, we present measurements of three zero-order half-waveplates and three zero-

order quarter-waveplates. For each of the two waveplate categories, following types were

Laser Polarizer Waveplate Polarimeter

Figure 4.11: Experimental setup to test waveplates. The laser beam (power ∼ 10 mW,
wavelength 690 nm) is polarized by the Glan-Laser polarizer and is transmitted through the
waveplate which is tested. The orientation of the waveplate is changed by the rotation stage
while the polarimeter measures the polarization.
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Figure 4.12: Polarimetry measurements for the three half-waveplates (HWP) listed in Table
4.4: achromatic HWP (orange), monochromatic HWP for 694 nm (blue), monochromatic
HWP for 633 nm (red). (a) Circular polarization represented by the relative Stokes parameter
S/I with fits according to Eq. 4.32b (b) Linear polarization represented by the relative Stokes
parameter M/I with fits according to Eq. 4.32a.
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Figure 4.13: Polarimetry measurements for the three quarter-waveplates (QWP) listed in
Table 4.4: achromatic QWP (orange), monochromatic QWP for 694 nm (blue), monochro-
matic QWP for 532 nm (red). (a) Circular polarization represented by the relative Stokes
parameter S/I with fits according to Eq. 4.33b (b) Linear polarization represented by the
relative Stokes parameter M/I with fits according to Eq. 4.33a.

chosen: an achromatic waveplate, a monochromatic waveplate at the closest to λ =

690 nm available specified wavelength, and a monochromatic waveplate with the specified

wavelength being substantially different from the used wavelength of λ = 690 nm. For

each waveplate, the data is fitted with Eqs. 4.32 (for half-waveplates) or Eqs. 4.33 (for

quarter-waveplates). The value of ∆ is determined from the fit of the relative Stokes

parameter which is most sensitive to a change in retardance. As discussed above, for

half-waveplates the value of S/I is most affected by ∆, whereas for quarter-waveplates it

is M/I. The overview of the results is reported in Tab. 4.4 and displayed in Figs. 4.12
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and 4.13.

Let us first look at Fig. 4.12 where the measurements from half-waveplates are depicted.

Note that the initial birefringence axis orientation is different for each waveplate which

is why the curves are shifted w.r.t. each other. Looking at linear polarization, M/I in

Fig. 4.12(b), we barely see a difference between the waveplates. This observation follows

our prediction from Eq. 4.32(a) where a small ∆ is a second-order deviation from the

perfect case of a half-waveplate. On the contrary, in the data for S/I, Fig. 4.12(a), we

see a substantial difference since ∆ enters Eq. 4.32(b) to a first order. As expected,

the best half-waveplate is the monochromatic one specified for λ = 694 nm. However,

this waveplate still produces elliptical polarization with an S/I of up to ∼ 3% which

corresponds to ∆ ∼ 3 · 10−2 rad. Given a small deviation of 4 nm from the specified

wavelength which leads to ∆ ∼ 1 · 10−2 rad, and the specified retardance accuracy of

λ/300 which translates into ∆ ∼ 2 · 10−2 rad, this value is just within our expectations.

The achromatic waveplate is designed with a retardance accuracy of λ/55 corresponding

to ∆ ∼ 10−1 rad which matches our observed value of ∆ = 0.0935(3) rad. It is interesting

to compare this number to the monochromatic half-waveplate for 633 nm which produces

an S/I of up to ∼ 25% with ∆ = 0.2557(6) rad.

The measurement results for quarter-waveplates are shown in Fig. 4.13. As expected,

the deviation ∆ from the perfect case of a quarter-waveplate has a smaller impact on

circular polarization represented by S/I than for linear polarization represented by M/I.

Even the monochromatic waveplate for 532 nm, see red data points in subfigure (a),

shows little deviation from the perfect behavior of a quarter-waveplate for S/I. On the

contrary, if we look on corresponding red points for M/I in subfigure (b), this deviation

is substantial. Instead of varying between 0% and 100%, the value of M/I reaches values

only between ∼ 40% and 100%. Comparing the data for the achromatic waveplate (in

orange) and monochromatic waveplate for 694 nm (in blue), we surprisingly find that

the achromatic one is closer to the perfect scenario. Looking at the value of ∆ in Table

4.4, for the achromatic waveplate we find ∆ ∼ 0.01 rad compared to ∆ ∼ 0.02 rad for

the monochromatic one. However, the last value is also within our expectations from the

specifications of the retardance accuracy of λ/300 corresponding to around the same value

of ∆ ∼ 0.02 rad.

To summarize, for typical waveplates we find an imperfection in the retardance at least

on the order of ∆ ∼ 10−2 rad. This leads to the deviation of at least few percent from the

perfect behavior in the relative Stokes parameters. To achieve better retardance values,

one could make use of the mechanical stress birefringence. By applying a small stress on

the waveplate (e.g. with little screws), one could tune the retardance closer to the desired

value.
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4.3.2 Mechanical Stress Birefringence in Broadband Precision

Windows

As discussed in Sec. 4.1, mechanical stress leads to birefringence. Apart from investigating

stress-induced birefringence in the large vacuum windows, smaller and thinner circular

windows of one or two inches diameter with a thickness of 5 or 12 mm were tested.

These broadband precision windows are for example used for reference cavities. The part

numbers are Thorlabs WG11050-B, WG12012, and WG41050-B.

Even given the fact that two different glass substrates were used (borosilicate N-BK7

and fused silica UVFS), no significant difference was observed between the windows.

Without tightening the windows onto their mounts, almost no birefringence was observed

and the value of S/I was different from zero by only 0.1 − 0.2%. However, when the

windows are only slightly fixed onto their mounts, an increase in the measured S/I is

observed on the order of fractions of per cent. When tightening them with a typical

strength, the value of S/I is around 1− 3%.

To investigate the stress-induced birefringence in windows more quantitatively, a sepa-

rated setup would be needed where one could determine the applied stress. However, in

practice this investigation would not be very useful since one does not typically measure

the stress while mounting the windows. Instead, one could measure the birefringence

directly. As a rule of thumb, when using the windows with usual mounts, one may expect

a change in the relative Stokes parameters of a few percent.

4.3.3 Extinction Ratio of a Polarizing Beamsplitter Cube compared

to the Glan-Laser Polarizer

As other optical elements, polarizers are not ideal. Their performance is limited by the

extinction ratio r = Imin/Imax which is defined as the ratio of the smallest achievable

intensity after a succession of two identical polarizers, Imin, and the corresponding largest

possible intensity, Imax.

In a simple model of a partial polarizer, light is perfectly transmitted along one axis

whereas along the orthogonal axis only a small fraction r of the incoming light intensity

remains. The Mueller matrix P̂imp(α) for such an optics, where α is the orientation

of the transmission axis, is given in App. A.2. From this model, let us determine the

residual fraction of circular polarization after the imperfect polarizer in dependence on the

incoming value of S/I. The largest variation of the relative fraction of circular polarization

S/I can be produced by a quarter-waveplate. Assuming linearly polarized light going into

the waveplate, the Stokes vector after the quarter-waveplate, ~SQWP, is given by Eq. 4.29

with δ = π/2 (where we neglect imperfections in the retardance). The value of S/I after
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linear polarized light passed through the quarter-waveplate is:

(S/I)QWP = sin(2β), (4.34)

where β is the orientation of the birefringence axis of the waveplate. This value of S/I

enters the imperfect polarizer whose ability to suppress circular polarization we wish to

determine. We can calculate the Stokes vector after the polarizer as

~Sout = P̂imp(α) · ~SQWP. (4.35)

From the ratio of the last and first components of this vector, we obtain the following

value for S/I after the polarizer:

(S/I)out '
4
√
r sin(2β)

cos(4β − 2α) + cos(2α)− 2
, (4.36)

where we expanded the solution in series for small r and kept the leading term only.

Therefore, we expect a residual fraction of circular polarization of up to 2
√
r having a

polarizer with an extinction ratio of r. For a typical polarizing beam splitter, r is around

10−3− 10−4 which leads to a residual S/I of 2− 6%. Glan-Laser polarizers have r < 10−5

and should therefore produce a residual fraction of circularly polarized light of less than

0.6%.

Let us now turn to the experimental test of polarizers. The setup is depicted in Fig.

4.14(a). We start with a laser beam (∼ 10 mW, 690 nm) which is polarized and passes

through a quarter-waveplate on a rotation stage to obtain a varying elliptical polarization

as in Eq. 4.34. The polarizer which we wish to test is placed between the waveplate and

the polarimeter. The incoming S/I into the polarizer is gradually changed by the rotation

stage of the waveplate, and the outgoing S/I is measured by the polarimeter. We compare

the suppression properties of a usual polarizing beam splitter (Thorlabs PBS102-B) to a

Glan-Laser polarizer (Thorlabs GL10-B).

The results are shown in Fig. 4.14(b). The S/I before the tested polarizer is depicted in

orange with a fit according to Eq. 4.34. This data was taken separately by removing the

polarizer between the waveplate and the polarimeter. The right orange scale demonstrates

that the incoming S/I varies between approx. −100% and 100% as expected. The left

blue scale refers to the data with a tested polarizer suppressing this incoming circular

polarization.

For the polarizing beam splitter we find a residual S/I of up to ∼ 3% agreeing with

our estimates above, see circled blue data points. This data is fitted with a function from

Eq. 4.36. Naively one may expect that the S/I after the suppression of the polarizer

follows the sin(2β)-function of the incoming S/I. However, as we found from Eq. 4.36

this is not the case and the shape of the sin(2β)-dependence is highly distorted. Looking
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Figure 4.14: Test of how well polarizers suppress the circular polarization. (a) Experimental
setup. The varying fraction of circular polarization is produced by a polarizer followed by a
quarter-waveplate (QWP) on a rotation stage. The polarizer whose suppression properties we
wish to determine is placed directly afterwards, with a polarimeter measuring the outgoing
polarization. (b) Measurement results. The orange data points with the right scale show
the relative fraction of circular polarization S/I before the tested polarizer, varying between
−100% and 100% according to Eq. 4.34. The blue data points with a left scale show the
suppressed S/I after the tested polarizer. Circled points with a fit according to Eq. 4.36
represent a typical polarizing beam splitter (PBS) where the residual variation of S/I is clearly
visible. Squared data points which show almost no residual S/I refer to measurements with
a Glan-Laser polarizer with a much better extinction ratio.

at the observed variation of S/I, this prediction is clearly confirmed which supports our

model of the imperfect polarizer. However, we also find that the variation of S/I after the

polarizer is not symmetric around zero, but has an offset of ∼ 1% which our model fails to

predict. This shows the limitation of our simple model where we neglected some possible

changes of internal birefringence properties, for instance due to the cement between the

two prisms, or depolarization effects.

In contrary to the polarizing beam splitter, no variation of outgoing S/I from the Glan-

Laser polarizer is detected, see squared blue data points. The residual S/I is around

0.1% corresponding to an extinction ratio r ' 3 · 10−7 which is smaller than the specified

r < 10−5. Given the fact that some companies offer Glan-Laser polarizers with an

extinction ratio of r < 10−8 upon request [11], the extinction ratio of our polarizer is
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not surprising, though it is better than expected. Since our polarimeter is limited by

systematics on the order of ∼ 0.1% (as discussed in Ch. 3), a better extinction ratio is

not needed for our purposes. In addition to the Glan-Laser polarizers, also the Glan-

Taylor, Glan-Thompson and Wollaston polarizers have been tested. They all showed a

residual S/I of 0.1% or less.

4.3.4 Extinction Ratio of the Sideport of the Glan-Laser Polarizer

As described in Ch. 2, in the ACME experiment the polarization of the readout laser beam

needs to be rapidly switched between the orthogonal states of linear polarization in order

to normalize the measured phase against molecule number fluctuations. To implement

this switching scheme, a polarizer which splits the beam into orthogonal ordinary and

extraordinary rays is most practical. As we have seen in the previous subsection, usual

polarizing beam splitters do not produce a pure enough polarization. Not all the polarizers

provide the opportunity to use both beams, e.g. the Glan-Thompson polarizer is only

designed with a transmission port. In addition, the polarizer has to be immune against

the high intensities used in the ACME experiment.

The Glan-Laser polarizer has one of the best available extinction ratios, features a

sideport and is suitable for high intensities. However, the extinction ratio is only specified

for the transmission port, and not for the sideport which was thought to produce only

partially polarized light.2 Nevertheless, after looking closer at the design of the Glan-Laser

polarizer in Ch. 3, recall Fig. 3.6(b), we have good reasons to believe that the reflected

ordinary ray has a very pure polarization. The small portion of the extraordinary ray

which could diminish the polarization purity escapes the sideport at a different angle.

The two reflected rays are separated by ∼ 7◦ and can easily be distinguished from each

other. Therefore, we predict the reflected ordinary ray to have a high extinction ratio.

Indeed, the residual fraction of circular polarization from the sideport of the Glan-Laser

polarizer was measured with the polarimeter and, as we shall see below, was found to be

around 0.1% as in the transmitted port.

As for the polarizer tests in the previous subsection, we measure the residual fraction

of circular polarization S/I from the sideport in dependance on the circular polarization

coming from a polarizer followed by the quarter-waveplate as described by Eq. 4.34. This

leads to highest possible incoming S/I of around 100% corresponding to fully circular

polarized light and therefore to the ‘worst case scenario’ for a polarizer whose purpose is

to suppress circular polarization. Since the transmitted and reflected beams of the Glan-

2Thorlabs states in the description of the Glan-Laser polarizer: ‘Extinction ratio is only defined for
the output ray. A significant amount of reflected light escapes the polarizers through the side port,
including all of the ordinary ray and some of the extraordinary ray. As such, the escape ray is not
fully polarized. The output ray has a very pure polarization with an extinction ratio of 100 000:1.
While these transmitted extraordinary rays are highly polarized, the reflected ordinary rays are only
partially polarized.’ [88]

73



4 Polarimetry Measurements on ACME

Laser polarizer are orthogonally polarized, the sideport can be modeled as a polarizer

rotated by 90◦ with a corresponding Mueller matrix P̂ (90◦) (see App. A.2 for its explicit

form). The Stokes vector of the beam coming out of the sideport can therefore be calcu-

lated as ~Ssideport = P̂ (π/2) · ~SQWP with ~SQWP from Eq. 4.29 with δ = π/2. Comparing

the first component of ~Ssideport to Eq. 4.34 we find that the intensity transmitted through

the sideport varies with the same dependence on β as (S/I)QWP:

Isideport(β) = I0 sin2(2β) = I0 (S/I)2
QWP. (4.37)

By fitting the transmitted intensity through the sideport, we can therefore deduce the

incoming circular polarization after the quarter-waveplate.

The experimental setup is shown in Fig. 4.15(a). The laser beam (∼ 10 mW, 690 nm)

passes through the polarizer followed by a quarter-waveplate on a rotation stage to produce

a varying fraction of circular polarization as in Eq. 4.34. After that the light enters the

Glan-Laser polarizer. The transmitted beam is blocked whereas the polarization from the

sideport is monitored by the polarimeter while the quarter-waveplate is gradually rotated.

The measurement results are presented in Fig. 4.15(b). The gray data points with

a dashed fit curve represent the transmitted intensity through the sideport. From this

intensity, according to Eq. 4.37, we deduce the relative fraction of circular polarized light

before the Glan-Laser polarizer and after the quarter-waveplate, (S/I)QWP, see the orange

curve with the right scale. The blue data points show the S/I measurements from the

sideport revealing a very pure polarization with a residual fraction of circular polarized

light of around 0.1%. No variation of residual S/I in dependence on the incoming S/I is

detected. Based on the discussion in the previous subsection 4.3.3, we therefore conclude

that the sideport has the same extinction ratio as for the transmitted beam of r < 10−6.

This result has been communicated with Thorlabs.

Since we demonstrated that both ports of the Glan-Laser polarizer have the high extinc-

tion ratio to produce very pure linear polarized light, this polarizer meets the requirements

for polarization switching in ACME. Note that in this case the sideport is used as the

incoming port whereas in our measurements above, see Fig. 4.15(a), it is the port for the

outgoing beam. If unpolarized or partially polarized light enters the sideport, it will be

separated into an ordinary and extraordinary ray. Because the beam enters the sideport

of the polarizer at an angle of ∼ 66◦, see Fig. 3.6(b), the two rays will be spatially sep-

arated since they are not parallel or orthogonal to the optical axis of the crystal. Due

to the Fermat’s principle of light, the ordinary ray follows the same path as in the mir-

rored case where it goes in the opposite direction like our test setup of Fig. 4.15(a). The

extraordinary ray will be emitted at a different angle and therefore does not disturb the

ordinary ray which we care about. Therefore, the sideport of the Glan-Laser polarizer

can unquestionably be used for polarization switching of the ACME readout laser beam.

74



4.3 Tests of Optical Elements

Laser Polarizer QWP G.-L. Polarizer

Polarimeter

(a)

0 10 20 30 40 50 60

0

20

40

60

80

100

S�I,b
ef
or
e
G
.�
L.
po
la
riz
er
���

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

QWP rotation angle �deg�

S�I,si
de
po
rt
of
G
.�
L.
po
la
riz
er
���

Transmitted intensity through
sideport of G.�L. polarizer �data and fit� �a.u.�

(b)

Figure 4.15: Measurement of polarization purity from the sideport of the Glan-Laser po-
larizer. (a) Experimental setup. The varying fraction of circular polarization is produced by
a polarizer followed by a quarter-waveplate (QWP) on a rotation stage. The Glan-Laser po-
larizer is placed afterwards, with the transmitted beam being blocked and the beam from
the sideport being measured by the polarimeter. (b) Measurement results. The transmitted
intensity through the sideport in dependence on the QWP rotation angle is represented by
gray data points. From this data the S/I after the QWP was deduced according to Eq. 4.37,
see the orange curve with the right scale. The blue data points with the left scale refer to
S/I measurements from the sideport. No variation of the residual S/I is observed which is
around 0.1% independent of the incoming polarization. Error bars represent a quadrature sum
of systematic and statistical uncertainties (see Ch. 3).
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5 Summary

This thesis presents a contribution to the second-generation ACME experiment which

aims for the most precise electron electric dipole moment (EDM) measurement. A more

precise limit on the electron EDM restricts various models of particle physics beyond the

Standard Model and is important for the progress in fundamental physics, in particular

for the research on the matter-antimatter asymmetry of the universe. The ACME collab-

oration utilizes the great advantage of a high effective electric field in a thorium monoxide

molecule to perform a spin-precession measurement in a carefully chosen state allowing

to suppress many possible systematic effects.

The leading systematic errors in the previous generation of the ACME experiment

were due to imperfect polarizations present in the laser light preparing and reading out

the states of the molecules. In particular, a high intensity laser propagating through

glass plates coated with indium tin oxide deposits heat onto the plates, thereby leading

to thermally-induced birefringence. In addition to the known procedures to suppress this

systematic error in the ACME’s first-generation measurement, future generations of the

ACME experiment use field plates with improved thermal and optical characteristics as

well as lower laser intensities to minimize this effect. A precise characterization of the

laser light polarization is needed to monitor the polarization purity on ACME as well as

to test the thermally-induced birefringence in the new field plates. Therefore, polarimetry

is a focus of this thesis.

A self-calibrating polarimeter with improved performance that allows to carefully char-

acterize the polarization state of the ACME experiment lasers, in particular the ellipticity

present in the laser beam, has been developed in this work. This device precisely deter-

mines the relative Stokes parameters that characterize the polarization of laser light. In

comparison to previous laboratory realizations and commercially available polarimeters,

the polarimeter presented in this thesis has high power-handling capabilities, is immune

against intensity fluctuations in the measured laser beam, and is calibrated internally

without the need for removing or realigning any optical elements. The calibration pro-

cedure is critical for the low uncertainties that have been achieved. A detailed study of

various systematic uncertainties shows that the relative amount of circular polarization

can be measured to better than 0.1%.

The polarimeter’s usefulness is demonstrated by performing various polarimetry mea-

surements on ACME. In particular, the first-generation field plates are directly compared
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to the new field plates in terms of the thermally-induced birefringence. The characteri-

zation of circular polarization across a nominally linearly polarized laser beam reveals a

greatly suppressed thermally-induced polarization change in the second-generation field

plates. Furthermore, the stress-induced birefringence in vacuum windows is found to be

of no concern and various optical elements are investigated. Contrary its specifications,

the sideport of the Glan-Laser polarizer is found to produce very pure linear polarization

and can therefore be undoubtedly used for polarization switching on ACME.

To conclude, a polarimetry test on the second-generation ACME setup demonstrates

that the circular polarization gradient is below 0.1% even at the highest possible second-

generation laser intensity. This value is one to two orders of magnitude lower than in

ACME’s first-generation setup. Therefore, the polarization of laser light for the second-

generation electron EDM measurement is well under control. The substantial reduction

of thermally-induced birefringence as well as the precise monitoring of polarization with

the improved polarimeter are crucial for suppressing and excluding systematic errors in

future generations of ACME.
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A.1 Estimate of the Baryon-to-Photon Ratio

Even at night, our universe is full of ‘light’ - not visible light, though, but microwave

radiation from the Cosmic Microwave Background (CMB). Remarkably, on average all

the photons coming from visible light (for instance from all the stars) are negligible in

comparison to the number of photons from the CMB. Therefore, the present density of

photons in our universe is approximately nγ ' 400/cm3 which is simply given by the

T ' 2.7 K cold blackbody radiation distribution:

nγ =
2ζ(3)

π2

(
k T

~ c

)3

, (A.1)

with 2ζ(3)/π2 ' 0.244. The density of baryons is around a billion times smaller, today

we find on average one baryon per four cubic meters. However, as we shall see below, this

number is huge compared to the estimate from the standard cosmological model which

points to the lack of understanding of the origin of baryons in our universe.

Note that the baryon-to-photon ratio nb/nγ remains constant after the baryons fall

out from thermal equilibrium. While the number of baryons is conserved to a very good

approximation, as the universe expands, their density is decreased with the third power

of the scale factor a, nb ∝ a−3. The number density of photons is given by the blackbody-

radiation temperature T of the universe and scales as nγ ∝ T 3. Our universe cools down

and the temperature of the CMB decreases as T ∝ a−1 [59]. Therefore, the ratio nb/nγ is

‘frozen’.

We set throughout the following calculation ~ = c = k = 1. The temperature of

the photon field when baryons and anti-baryons stop annihilate is determined by the

‘freeze-out’ condition:

Γ ' H, (A.2)

where Γ is the interaction rate and H is the expansion rate of the universe determined by

the Hubble equation:

H =

√
8πG

3
ρ, (A.3)

where G is the gravitational constant and ρ the total energy density. In the beginning,

our universe was radiation dominated. This era lasted for thousands of years. When the
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baryons decoupled from thermal equilibrium, our universe was younger than a second,

even a millisecond [59]. At that time certainly being radiation dominated, the energy

density is given by the Stefan-Boltzmann law:

ρ =
π2

30
g∗T 4, (A.4)

where g∗ =
∑

B gB + 7/8
∑

F gF is the effective number of the degrees of freedom for

relativistic species consisting of bosons with gB and fermions with gF [59]. Therefore the

expansion rate of the universe in a radiation dominated era is given by:

H =

√
8π3 g∗

45

T 2

MPl

, (A.5)

where we inserted the Planck mass MPl =
√
~c/G = 1/

√
G ' 1.2 · 1019 GeV.

The interaction rate is given by Γ = nb〈σv〉, where nb is the baryon density, σ the

interaction cross section and v the velocity of baryons [59]. The product 〈σv〉 for the

nucleon-antinucleon annihilation is approximately given by the inverse of the mass of the

pion squared, 〈σv〉 ' 1/m2
π with mπ ' 140 MeV [64]. This relation goes back to Quantum

Chromodynamics, where the interaction between nucleons can be approximated by a pion

exchange.

From statistical mechanics, we know that the number density of non-relativistic parti-

cles with energy E(~p) ' m� T in thermal equilibrium is given by

n =
g

(2π)3/2

∫
f(~p)d3p ' g

(2π)3/2
(mT )3/2e−m/T , (A.6)

where g is the number of the degrees of freedom (e.g. spin states) and f(~p) = [exp(E(~p)/T )±
1]−1 ' exp(−m/T ) is the Fermi-Dirac or Bose-Einstein distribution. Therefore, for tem-

peratures T � mb ' 0.94 GeV the baryon density in thermal equilibrium is given by:

nb '
gb

(2π)3/2
(mbT )3/2e−mb/T . (A.7)

Combining the above equations, Eq. A.2 simplifies to:

√
mb/T e−mb/T '

√
4

45
π3

√
g∗

gb

m2
π

MPl mb

' 1.3 · 10−20, (A.8)

where g∗ = 10.75 (photons, three neutrinos species, electrons and positrons, two spin

orientations) and gb = 4 (protons and neutrons with two spin orientations). Solving this

equation numerically, we find mb/T ' 49 which means that the baryon number freezes

out at T = mb/49 ' 19 MeV. Inserting this temperature into corresponding expressions
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for nb (Eq. A.7) and nγ (Eq. A.1) yields:

nb
nγ
∼ 10−18 − 10−19. (A.9)

This result is in agreement with [21].

In the above derivation we neglected the chemical potential µ. That is why our estimate

predicts the same number of baryons and anti-baryons. Taking the chemical potential into

account, one can show that the excess of particles over antiparticles is given by [59]:

nb − nb '
gb T

3

6 π2

∂J
(3)
∓

∂β
, (A.10)

where β ≡ µ/T and J
(3)
∓ is a lengthy function given in [59] dependent on β and α ≡ mb/T .

The chemical potential is determined by the sum over the relevant quantum numbers Qa:

µ =
∑

aQaµa. Eq. A.10 illustrates how the matter-antimatter asymmetry arises in the

Standard Model.

However, even if we assume that in our above estimate all the anti-baryons are washed

away, the discrepancy between the observed baryon-to-photon ratio of ∼ 10−9 and our

estimate of ∼ 10−18 remains. This nine order of magnitude difference between the ob-

served and the estimated baryon-to-photon ratio is a striking indication for our lack

of understanding of the origin of matter in our universe, even without mentioning the

matter-antimatter asymmetry [21]. Likely, the decoupling of ordinary matter (baryons)

is somehow connected to the decoupling of dark matter. The reason is that the apparent

amount of dark matter is on the same order compared to the amount of ordinary matter,

which is surprising or fine-tuned if their decouplings from thermal equilibrium are not

related.

A.2 Mueller Matrices

The Mueller matrices can be found in the standard literature on optics and polarization

[34, 18, 50, 10, 78]. Here we give the explicit form of Mueller matrices used in this thesis.

This includes a waveplate, a perfect polarizer and an imperfect polarizer.

The Mueller matrix for a waveplate with retardance δ and the fast axis aligned with

the reference plane is:

Γ̂(δ, 0) =


1 0 0 0

0 1 0 0

0 0 cos δ sin δ

0 0 − sin δ cos δ

 (A.11)
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The Mueller matrix for a linear polarizer with its transmission axis aligned with the

reference plane is:

P̂ (0) =
1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (A.12)

In the simplest model, the imperfect linear polarizer with a finite extinction ratio r per-

fectly transmits light along one axis whereas along the orthogonal axis only a small fraction

r of the incoming light intensity remains. The Mueller matrix for such an optics is:

P̂imp(0) =
1

2


1 1− 2r 0 0

1− 2r 1 0 0

0 0 2
√
r(1− r) 0

0 0 0 2
√
r(1− r)

 (A.13)

A rotation by an angle θ is described by the matrix:

R̂(θ) =


1 0 0 0

0 cos(2θ) − sin(2θ) 0

0 sin(2θ) cos(2θ) 0

0 0 0 1

 (A.14)

For rotated optical components the Mueller matrices transform as:

M̂(θ) = R̂(θ)M̂(0)R̂(−θ). (A.15)

For a waveplate with a retardance δ and the birefringence axis oriented at an angle β the

Mueller matrix is therefore given by

Γ̂(δ, β) = R̂(β)Γ̂(δ, 0)R̂(−β), (A.16)

where the evaluation yields:

Γ̂(δ, β) =


1 0 0 0

0 cos2 2β + cos δ sin2 2β cos 2β sin 2β(1− cos δ) − sin 2β sin δ

0 cos 2β sin 2β(1− cos δ) cos δ cos2 2β + sin2 2β cos 2β sin δ

0 sin 2β sin δ − cos 2β sin δ cos δ

 (A.17)

Analogously, the Mueller matrix for a linear polarizer with transmission axis oriented at
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an angle α can be calculated as:

P̂ (α) = R̂(α)P̂ (0)R̂(−α) =
1

2


1 cos 2α sin 2α 0

cos 2α cos2 2α cos 2α sin 2α 0

sin 2α cos 2α sin 2α sin2 2α 0

0 0 0 0

 (A.18)

The expression for the Mueller matrix of an imperfect polarizer oriented at an angle α,

P̂imp(α), is too lengthy to include here but can be calculated analogous to Γ̂(δ, β) or P̂ (α).

A.3 Derivation of Linearized Calibration Equations

Here, the linearized calibration equations 3.29 shall be derived. Recall that we define the

reference plane parallel to the transmission axis of the calibration polarizer. Then the

incident light has the relative Stokes vector (1,0,0) and from Eq. 3.16 we obtain for α̃ = 0:

M

I
= 1 =

2
1−cos(δ)

[C4 cos(2α0 − 4β0) + S4 sin(2α0 − 4β0)]

C0 − 1+cos(δ)
1−cos(δ)

· [C4 cos(4α0 − 4β0) + S4 sin(4α0 − 4β0)]
, (A.19)

C

I
= 0 =

2
1−cos(δ)

[S4 cos(2α0 − 4β0)− C4 sin(2α0 − 4β0)]

C0 − 1+cos(δ)
1−cos(δ)

· [C4 cos(4α0 − 4β0) + S4 sin(4α0 − 4β0)
. (A.20)

We have three parameters to calibrate, so we need a third equation. We can rotate

the polarizer in the polarimeter by a degree α̃ and use Eq. A.19 with α0 → α0 + α̃.

Note, that using Eq. A.20 with α0 → α0 + α̃ does not help since they would be linearly

dependent. Therefore, from Eqs. A.19, A.19 with α0 → α0 + α̃, and A.20 the equation

set for calibration is determined to be:

C0 −
1 + cos(δ)

1− cos(δ)
[C4 cos(4α0 − 4β0) + S4 sin(4α0 − 4β0)]

=
2

1− cos(δ)
[C4 cos(2α0 − 4β0) + S4 sin(2α0 − 4β0)], (A.21a)

C̃0 −
1 + cos(δ)

1− cos(δ)
· [C̃4 cos(4α0 + 4α̃− 4β0) + S̃4 sin(4α0 + 4α̃− 4β0)]

=
2

1− cos(δ)
[C̃4 cos(2α0 + 2α̃− 4β0) + S̃4 sin(2α0 + 2α̃− 4β0)], (A.21b)

arctan
S4

C4

= 2α0 − 4β0. (A.21c)

Let us define γ = 2α0 − 4β0. We use the following trigonometric identities:

cos (2α0 + γ) = cos 2α0 cos γ − sin 2α0 sin γ

sin (2α0 + γ) = sin 2α0 cos γ + cos 2α0 sin γ (A.22)
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With this, the first calibration equation A.21a can be rewritten as:

C0 = cos γ

(
2C4

1− cos δ
+

1 + cos δ

1− cos δ
[C4 cos 2α0 + S4 sin 2α0]

)
+

sin γ

(
2S4

1− cos δ
+

1 + cos δ

1− cos δ
[S4 cos 2α0 − C4 sin 2α0]

)
. (A.23)

With the approximation cos δ ' π
2
− δ for δ ≈ π/2 we can find the linearized solution for

the retardance δ:

δ =
π

2
+ 1 +

2(−C0 + C4 cos γ + S4 sin γ)

C0 + C4 cos (2α0 + γ) + S4 sin (2α0 + γ)
. (A.24)

Furthermore, we know from Eq. A.21c that:

cos γ = cos arctan(S4/C4) =
C4√

S2
4 + C2

4

, (A.25)

sin γ = sin arctan(S4/C4) =
S4√

S2
4 + C2

4

. (A.26)

Therefore the equation A.24 for δ simplifies to:

δ =
π

2
+ 1 + 2

−C0 +
√
C2

4 + S2
4

C0 + cos 2α0

√
C2

4 + S2
4

. (A.27)

Using this result for the second calibration equation A.21b we obtain:

δ =
π

2
+ 1 + 2

−C̃0 +
√
C̃2

4 + S̃2
4

C̃0 + cos(2α0 + 2α̃)
√
C̃2

4 + S̃2
4

(A.28)

The comparison of the two above equations leads to an equation for α0:

−C0 +
√
C2

4 + S2
4

C0 + cos 2α0

√
C2

4 + S2
4

=
−C̃0 +

√
C̃2

4 + S̃2
4

C̃0 + cos(2α0 + 2α̃)
√
C̃2

4 + S̃2
4

. (A.29)

Now we perform a trigonometric expansion and linearize in α0 (cos 2α0 ' 1, sin 2α0 ' 2α0)

which leads to:

−C0 +
√
C2

4 + S2
4

C0 +
√
C2

4 + S2
4

=
−C̃0 +

√
C̃2

4 + S̃2
4

C̃0 + cos(2α̃)
√
C̃2

4 + S̃2
4 − 2α0 sin(2α̃)

√
C̃2

4 + S̃2
4

. (A.30)

84



A.3 Derivation of Linearized Calibration Equations

Resolving this equation for α0 yields:

α0 =

(
C̃0 −

√
C̃2

4 + S̃2
4

)(
C0 +

√
C2

4 + S2
4

)
−
(
C̃0 + cos(2α̃)

√
C̃2

4 + S̃2
4

)(
C0 −

√
C2

4 + S2
4

)
2 sin(2α̃)

√
C̃2

4 + S̃2
4

(√
C2

4 + S2
4 − C0

) .

(A.31)

We can simplify this expression using the identity following Eq. 3.15 with α̃ = 0 and

α̃ 6= 0: √
C2

4 + S2
4 =

√
C̃2

4 + S̃2
4 =

1− cos δ

2
. (A.32)

Note, that we cannot use this identity to determine δ. We neglected a constant pre-factor

in Eq. 3.13 because we are not measuring the absolute intensity but rather the normalized

relative Stokes parameters. In the case of an absorbance or intensity-voltage conversion

factor a in Eq. 3.13, the above equation reads√
C2

4 + S2
4 =

√
C̃2

4 + S̃2
4 = a

1− cos δ

2
. (A.33)

Since we do not know a, we cannot use this identity to determine δ.

Using Eq. A.32, we arrive at the simplest form of the linearized expression for α0:

α0 =
C̃0 −

√
S2

4 + C2
4 + cos2(α̃)

(√
C2

4 + S2
4 − C0

)
sin(2α̃)

(√
C2

4 + S2
4 − C0

)
=

cot α̃

2
− 1

sin(2α̃)

√
S2

4 + C2
4 − C̃0√

S2
4 + C2

4 − C0

. (A.34)

From Eq. A.21c, β0 is given by:

β0 =
1

4

(
arctan

S4

C4

− 2α0

)
. (A.35)

From Eq. A.27, the solution for δ for small α0 is:

δ =
π

2
+ 1− 2

C0 −
√
C2

4 + S2
4

C0 +
√
C2

4 + S2
4

. (A.36)

Note that this expression is independent of α̃ which means that the precision of the

rotation stage with the polarizer affects the calibration of δ only to the second order.

Furthermore, Eq. A.36 means that to a good approximation the retardance δ can be

calibrated without using the second rotation stage.

Eqs. A.34, A.35, and A.36 form the set of linearized calibration equations used to derive

the optimal calibration rotation angle α̃ in Sec. 3.5.
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A.4 Averaging Error of Ellipticity Gradients

When measuring the ellipticity gradients shown in Fig. 4.5, the polarimeter is translated

on a linear stage1 in the x direction across the laser beam. The linear stage is controlled

electronically via LabView with an accuracy of less than 1µm. Therefore, the polarime-

ter can resolve spatial polarization changes on a micrometer scale. Typically, this high

resolution is not needed and the polarimeter measures spatial polarization changes on a

scale of fractions of a millimeter, as in Fig. 4.5. However, the measured polarization is

an average over the aperture before the polarimeter which has a diameter of d ' 1 mm.

Here we shall briefly examine how the averaging changes the measured shape of gradients

depicted in Fig. 4.5 with corresponding fit results in Table 4.3.

Assume that we measure a spatially dependent circular polarization SI,true(x) described

by the function from Eq. 4.19 with an aperture of diameter d. The polarimeter measures

n averaged values at positions xn = xs + n∆x, where ∆x is the incremental step and xs

the initial position. The averaged data points are given by:

SI,aver(xn) =
1

d

∫ xn+d/2

xn−d/2
SI,true(x) dx. (A.37)

Fig. A.1 shows an example of the simulated scenario with wx = 1.4 mm, g = 0.63 %/mm,

o = 3.80%, ∆x = 100µm, d = 1 mm, xs = 0 mm. The orange curve shows the true

function SI,true from Eq. 4.19 with these parameters. The blue points represent the

averaged values according to Eq. A.37. These points are fitted with the function from

Eq. 4.19 leaving the parameters g and o free. From the fit to the blue averaged points we

obtain the result g = 0.60 %/mm and o = 3.73%. Compared to the true values, the error

is gerr = 0.03 %/mm and oerr = 0.07 %.

The above calculation is performed for every measured gradient from Fig. 4.5 with fit

results in Table 4.3. The errors from averaging over the aperture of the polarimeter are

listed in the lower part of Table A.1. As expected, the deviation from the true values

is small. For both coefficients we find an error of only a few percent: gerr/g ∼ 5% and

oerr/o ∼ 1 − 4%. Note that the uncertainty from the fit for g and o is on the same

order. Therefore, the error from averaging over a finite aperture can be neglected for the

gradients described by the function from Eq. 4.19.

The reason that the averaging does not considerably affect the measured shape of the

gradient is the following. For SI,true(x) ∝ x we find that the averaged value exactly

matches the true value:

SI,aver(xn) = SI,true(xn) for SI,true(x) ∝ x. (A.38)

1Zaber linear actuator T-NA08A25-S with translation stage TSB28E
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True
Averaged
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2.5

3.0

3.5

4.0

Position �mm�

S�I��
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Figure A.1: Calculated difference between the true function SI,true (orange curve) from Eq.
4.19 and the averaged blue points SI,aver(xn) according to Eq. A.37. The parameters are
set to experimental values: wx = 1.4 mm, g = 0.63 %/mm, o = 3.80%, x → x − x0 with
x0 = 1.4 mm, d = 1 mm, ∆x = 100µm, xs = 0 mm and n = 28. The blue points are fitted
with the same function from Eq. 4.19 leaving the parameters g and o free. The fitted values
are g = 0.60 %/mm and o = 3.73%. Therefore, the difference between the averaged and the
true gradient or offset coefficients is negligible.

Coefficient
Ptot = 2 W Ptot = 4 W Ptot = 6 W

Lenses FP I FP II Lenses FP I FP II Lenses FP I FP II

g [%/mm] 0.25(3) 0.63(3) 0.02(2) 0.65(5) 1.78(10) 0.03(5) 0.63(10) 3.45(20) 0.43(8)

o [%] 0.76(1) 3.80(1) 0.12(1) 1.68(2) 7.36(6) 0.53(2) 2.55(5) 12.10(9) 0.72(3)

Errors from averaging over an aperture with diameter d = 1 mm:

gerr [%/mm] 0.012 0.031 0.001 0.032 0.087 0.001 0.031 0.169 0.021

oerr [%] 0.027 0.069 0.002 0.071 0.195 0.003 0.069 0.378 0.047

Table A.1: Upper part is identical to Table 4.3 which lists the thermally-induced gradient
and offset coefficients in S/I from the fits to the data in Fig. 4.5 with the function from Eq.
4.19. The lower part shows the calculated errors due to averaging over the aperture before
the polarimeter. The errors are found to be on the order of the uncertainties from the fits.

Indeed, for the function given in Eq. 4.19 we find that this is true for x & wx:

SI(x) ' g(wx −
√

2πx) + o for x & wx. (A.39)

We conclude that the averaging error due to the aperture before the polarimeter is

negligible for thermally-induced gradients described by Eq. 4.19. The observed gradient

and offset coefficients are reduced by . 3% compared to true values.
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[20] D. Colladay and V. A. Kostelecký. CPT violation and the Standard Model. Phys.

Rev. D, 55:6760–6774, Jun 1997.

[21] P. Coppi. How Do We know Antimater is Absent? eConf, C040802:L017, 2004.

[22] Corning Inc. CorningTM 7980 Fused Silica Datasheet. https://www.corning.com/

media/worldwide/csm/documents/5bf092438c5546dfa9b08e423348317b.pdf.

Accessed: 2016-11-06.

[23] Crystran Inc. N-BK7 Technical Datasheet. http://www.crystran.co.uk/

optical-materials/optical-glass-n-bk7-and-others. Accessed: 2016-11-06.

[24] J. W. Dally and W. F. Riley. Experimental stress analysis. New York: McGraw-Hill,

1978.

90

http://www.b-halle.de/EN/Downloads/BHalleCatalogEN.pdf
http://www.b-halle.de/EN/Downloads/BHalleCatalogEN.pdf
https://www.corning.com/media/worldwide/csm/documents/5bf092438c5546dfa9b08e423348317b.pdf
https://www.corning.com/media/worldwide/csm/documents/5bf092438c5546dfa9b08e423348317b.pdf
http://www.crystran.co.uk/optical-materials/optical-glass-n-bk7-and-others
http://www.crystran.co.uk/optical-materials/optical-glass-n-bk7-and-others


Bibliography

[25] J. DiSciacca, M. Marshall, K. Marable, G. Gabrielse, S. Ettenauer, E. Tardiff,

R. Kalra, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel,

D. Grzonka, W. Oelert, and T. Sefzick. One-particle measurement of the antiproton

magnetic moment. Phys. Rev. Lett., 110:130801, Mar 2013.

[26] J.-F. Donati, C. Catala, G. A. Wade, G. Gallou, G. Delaigue, and P. Rabou. Dedi-

cated polarimeter for the musicos chelle spectrograph. Astronomy and Astrophysics

Supplement, 134:149–159, 01/1999.

[27] S. Eisenbach, H. Lotem, Z. Horvitz, G. Miron, M. Lando, and S. Gabay. Thermally

induced window birefringence in high-power copper vapor laser. Proc. SPIE, 1972:13–

26, 1993.

[28] J. Engel, M. J. Ramsey-Musolf, and U. van Kolck. Electric dipole moments of

nucleons, nuclei, and atoms: The standard model and beyond. Progress in Particle

and Nuclear Physics, 71:21 – 74, 2013. Fundamental Symmetries in the Era of the

LHC.

[29] M. S. Farhan, E. Zalnezhad, A. R. Bushroa, and A. A. D. Sarhan. Electrical and

optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD)

at room temperature. International Journal of Precision Engineering and Manufac-

turing, 14(8):1465–1469, 2013.

[30] L. Filipovic and S. Selberherr. Performance and stress analysis of metal oxide films

for cmos-integrated gas sensors. Sensors (Basel), 15(4):72067227, 2015.

[31] T. Fleig and M. K. Nayak. Electron electric dipole moment and hyperfine interaction

constants for tho. J. Mol. Spectr., 300:16 – 21, 2014.

[32] H. Fujiwara. Principles of Spectroscopic Ellipsometry. John Wiley and Sons, Ltd,

2007.

[33] G. Gabrielse. The standard model’s greatest triumph. Physics Today, 66, 2013.

[34] D. Goldstein. Polarized Light. Marcel Dekker, 2003.

[35] J. S. Greaves, W. S. Holland, T. Jenness, and T. G. Hawarden. Magnetic field

surrounding the starburst nucleus of the galaxy M82 from polarized dust emission.

Nature, 404:732–733, 2000.

[36] O. W. Greenberg. CPT Violation Implies Violation of Lorentz Invariance. Phys.

Rev. Lett., 89:231602, Nov 2002.

[37] A. V. Gubskaya and P. G. Kusalik. The total molecular dipole moment for liquid

water. The Journal of Chemical Physics, 117(11):5290–5302, 2002.

91



Bibliography

[38] Y. Gurevich. Preliminary Measurements for an Electron EDM Experiment in ThO.

PhD thesis, Harvard University, 2012.

[39] T. J. Harries and I. D. Howarth. Linear spectropolarimetry of the H emission line of

η Puppis. Astronomy and Astrophysics, 310:533–546, 06/1996.

[40] C. He, J. Chang, Y. Wang, R. Liao, H. He, N. Zeng, and H. Ma. Linear polar-

ization optimized stokes polarimeter based on four-quadrant detector. Appl. Opt.,

54(14):4458–4463, May 2015.

[41] P. W. Hess. Improving the Limit on the Electron EDM: Data Acquisition and Sys-

tematics Studies in the ACME Experiment. PhD thesis, Harvard University, 2014.

[42] Hinds Instruments. PolSNAPTM and other polarimeters. http://www.

hindsinstruments.com/products/polarimeters/, accessed Nov 2016.

[43] J. Hough. Polarimetry: a powerful diagnostic tool in astronomy. Astronomy and

Geophysics, 47(3):3.31–3.35, 2006.

[44] J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A.

Hinds. Improved measurement of the shape of the electron. Nature, 473:493–496,

2011.

[45] W. Hui, Y. Wei, and W. Shibin. Superposition of optical glass stress birefringence.

High Power Laser and Particle Beams, 24(09):2068, 2012.

[46] N. R. Hutzler. A New Limit on the Electron Electric Dipole Moment: Beam Produc-

tion, Data Interpretation, and Systematics. PhD thesis, Harvard University, 2014.

[47] N. R. Hutzler, M. F. Parsons, Y. V. Gurevich, P. W. Hess, E. Petrik, B. Spaun, A. C.

Vutha, D. Demille, G. Gabrielse, and J. M. Doyle. A cryogenic beam of refractory,

chemically reactive molecules with expansion cooling. Physical Chemistry Chemical

Physics (Incorporating Faraday Transactions), 13:18976, 2011.

[48] R. Imazawa, Y. Kawano, T. Ono, and K. Itami. Development of real-time rotating

waveplate stokes polarimeter using multi-order retardation for iter poloidal polarime-

ter. Review of Scientific Instruments, 87(1), 2016.

[49] R. Kitamura, L. Pilon, and M. Jonasz. Optical constants of silica glass from extreme

ultraviolet to far infrared at near room temperature. Appl. Opt., 46(33):8118–8133,

Nov 2007.

[50] D. S. Kliger. Polarized light in optics and spectroscopy. Boston: Academic Press,

1990.

92

http://www.hindsinstruments.com/products/polarimeters/
http://www.hindsinstruments.com/products/polarimeters/


Bibliography

[51] D. S. Kliger, J. Lewis, and C. E. Randall. Polarized Light in Optics and Spectroscopy.

Academic Press Inc., 1990.

[52] Kliger, S. David and Lewis, W. James and Randall, E. Cora. Polarized Light in

Optics and Spectroscopy. Academic Press, Inc., 1990.

[53] W. Koechner. Thermal lensing in a Nd:YAG laser rod. Appl. Opt., 9(11):2548–2553,

Nov 1970.

[54] G. H. Lee. An introduction to experimental stress analysis. New York, Wiley, 1950.

[55] T. D. Lee and C. N. Yang. Parity nonconservation and a two-component theory of

the neutrino. Phys. Rev., 105:1671–1675, Mar 1957.

[56] T. Lepetit and B. Kante. Metasurfaces: Simultaneous Stokes parameters. Nature

Photonics, 9:709–719, 2015.

[57] G. Luders. On the Equivalence of Invariance under Time Reversal and under Particle-

Antiparticle Conjugation for Relativistic Field Theories. Kong. Dan. Vid. Sel. Mat.

Fys. Med., 28N5:1–17, 1954.

[58] J. W. Maseberg and T. J. Gay. Fluorescence polarization of helium negative-ion

resonances excited by polarized electron impact. Journal of Physics B: Atomic,

Molecular and Optical Physics, 39(23):4861, 2006.

[59] V. Mukhanov. Physical Foundations Of Cosmology. Cambridge University Press,

2005.

[60] D. Neerinck and T. Vink. Depth profiling of thin ito films by grazing incidence x-ray

diffraction. Thin Solid Films, 278(1):12 – 17, 1996.

[61] T. R. Nissle and C. L. Babcock. Stress-optical coefficient as related to glass compo-

sition. Journal of the American Ceramic Society, 56(11):596–598, 1973.

[62] B. O’Leary. AC Stark Shift Phases in ACME II. ACME Collaboration meeting

presentation, 04/05/2016.

[63] C. D. Panda, B. R. O’Leary, A. D. West, J. Baron, P. W. Hess, C. Hoffman, E. Kirilov,

C. B. Overstreet, E. P. West, D. DeMille, J. M. Doyle, and G. Gabrielse. Stimu-

lated raman adiabatic passage preparation of a coherent superposition of tho H3∆1

states for an improved electron electric-dipole-moment measurement. Phys. Rev. A,

93:052110, May 2016.

[64] C. Patrignani et al. Review of Particle Physics. Chin. Phys., C40:100001, 2016.

93



Bibliography

[65] J. Pavlin, N. Vaupotic, and M. Cepic. Direction dependence of the extraordinary

refraction index in uniaxial nematic liquid crystals. European Journal of Physics,

34(2):331, 2013.

[66] A. Peinado, A. Turpin, A. Lizana, E. Fernández, J. Mompart, and J. Campos. Conical

refraction as a tool for polarization metrology. Opt. Lett., 38(20):4100–4103, Oct

2013.

[67] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory.

Westview Press, 1995.

[68] A. N. Petrov, L. V. Skripnikov, A. V. Titov, N. R. Hutzler, P. W. Hess, B. R. O’Leary,

B. Spaun, D. DeMille, G. Gabrielse, and J. M. Doyle. Zeeman interaction in ThO

H 3∆1 for the electron electric-dipole-moment search. Phys. Rev. A, 89:062505, Jun

2014.

[69] M. Pospelov and A. Ritz. Electric dipole moments as probes of new physics. Annals

of Physics, 318(1):119 – 169, 2005. Special Issue.

[70] N. F. Ramsey. Electric-dipole moments of elementary particles. Reports on Progress

in Physics, 45(1):95, 1982.

[71] K. N. Rao. Optical and electrical properties of indium-tin oxide. Indian Journal of

Pure and Applied Physics, 42:201–204, 2004.

[72] B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille. New limit on the

electron electric dipole moment. Phys. Rev. Lett., 88:071805, Feb 2002.

[73] M. J. Romerein, J. N. Philippson, R. L. Brooks, and R. C. Shiell. Calibration method

using a single retarder to simultaneously measure polarization and fully characterize

a polarimeter over a broad range of wavelengths. Appl. Opt., 50(28):5382–5389, Oct

2011.

[74] A. D. Sakharov. Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry

of the Universe. Pisma Zh. Eksp. Teor. Fiz., 5:32–35, 1967.

[75] J. J. Sakurai. Modern Quantum Mechanics. Addison Wesley, 1994.

[76] Schafter + Kirchhoff: Optics, Metrology, and Photonics. Polarization Analyzer

SK010PA. http://www.sukhamburg.com/download/polAnalyzer_e.pdf. Accessed

Nov 2016.

[77] Schott AG. Schott Borofloat Glass, technical data sheet. http://www.us.schott.

com/borofloat/english/download/borofloat33_therm_usa_web.pdf. Accessed

Nov 2016.

94

http://www.sukhamburg.com/download/polAnalyzer_e.pdf
http://www.us.schott.com/borofloat/english/download/borofloat33_therm_usa_web.pdf
http://www.us.schott.com/borofloat/english/download/borofloat33_therm_usa_web.pdf


Bibliography

[78] W. Shurcliff. Polarized Light: Production and Use. Harvard University Press, 1966.

[79] L. V. Skripnikov and A. V. Titov. Theoretical study of thorium monoxide for the

electron electric dipole moment search, II: Electronic properties of H3∆1 in ThO. J.

Chem. Phys., 142:024301, 2015.

[80] F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino,

D. Mawet, J. Riedi, and J. S. Tyo. An overview of polarimetric sensing techniques and

technology with applications to different research fields. Proc. SPIE, 9099:90990B–

90990B–20, 2014.

[81] F. Snik, J. H. H. Rietjens, A. Apituley, H. Volten, B. Mijling, A. Di Noia, S. Heikamp,

R. C. Heinsbroek, O. P. Hasekamp, J. M. Smit, J. Vonk, D. M. Stam, G. van Harten,

J. de Boer, C. U. Keller, and 3187 iSPEX citizen scientists. Mapping atmospheric

aerosols with a citizen science network of smartphone spectropolarimeters. Geophys-

ical Research Letters, 41(20):7351–7358, 2014. 2014GL061462.

[82] N. Solmeyer, K. Zhu, and D. S. Weiss. Note: Mounting ultra-high vacuum windows

with low stress-induced birefringence. Review of Scientific Instruments, 82(6), 2011.

[83] B. Spaun. A Ten-Fold Improvement to the Limit of the Electron Electric Dipole

Moment. PhD thesis, Harvard University, 2014.

[84] G. Stokes. On the Composition and Resolution of Streams of Polarized Light from

Different Sources. Proceedings of the Cambridge Philosophical Society: Mathemati-

cal and physical sciences. Cambridge Philosophical Society, 1852.

[85] G. G. Stokes. Mathematical and Physical Papers, Vol. 3. Cambridge University,

1901.

[86] G. ’t Hooft. Symmetry Breaking through Bell-Jackiw Anomalies. Phys. Rev. Lett.,

37:8–11, Jul 1976.

[87] Thorlabs Inc. Free-space and fiber-coupled polarimeter systems: PAX5710 and

PAX5720 series. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_

id=1564. Accessed Nov 2016.

[88] Thorlabs Inc. Overview and specificiations of Glan-Laser Calcite Polarizers.

https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=815. Accessed

Nov 2016.

[89] A. Vutha. A search for the electric dipole moment of the electron using thorium

monoxide. PhD thesis, Yale University, 2011.

95

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1564
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1564
https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=815


Bibliography

[90] A. C. Vutha, W. C. Campbell, Y. V. Gurevich, N. R. Hutzler, M. Parsons, D. Patter-

son, E. Petrik, B. Spaun, J. M. Doyle, G. Gabrielse, and D. DeMille. Search for the

electric dipole moment of the electron with thorium monoxide. Journal of Physics

B: Atomic, Molecular and Optical Physics, 43(7):074007, 2010.

[91] A. C. Vutha, B. Spaun, Y. V. Gurevich, N. R. Hutzler, E. Kirilov, J. M. Doyle,

G. Gabrielse, and D. DeMille. Magnetic and electric dipole moments of the H 3∆1

state in ThO. Phys. Rev. A, 84:034502, Sep 2011.

[92] R. Waxler and A. Napolitano. Relative stress-optical coefficients of some National

Bureau of Standards optical glasses. Journal of Research of the National Bureau of

Standards, 59(2):121, 1957.

[93] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Experimental

test of parity conservation in beta decay. Phys. Rev., 105:1413–1415, Feb 1957.

[94] T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato. Analysis on

thermal properties of tin doped indium oxide films by picosecond thermoreflectance

measurement. Journal of Vacuum Science and Technology A, 23(4):1180–1186, 2005.

[95] A. Yariv. Photonics: optical electronics in modern communications. New York:

Oxford University Press, 2007.

[96] P. Yeh and C. Gu. Optics of Liquid Crystal Displays. Wiley, 2010.

[97] P. R. Yoder. Opto-Mechanical Systems Design, Third Edition. Taylor and Francis,

2005.

[98] X. Zhao, X. Pan, X. Fan, P. Xu, A. Bermak, and V. G. Chigrinov. Patterned dual-

layer achromatic micro-quarter-wave-retarder array for active polarization imaging.

Opt. Express, 22(7):8024–8034, Apr 2014.

96


	Acknowledgements
	1 Introduction
	2 The Advanced Cold Molecule Electron EDM (ACME) Experiment
	2.1 Motivation for the Search of an Electron EDM
	2.2 Measurement Principle and Advantages of Thorium Monoxide
	2.3 The ACME Experimental Setup
	2.3.1 First- and Second-generation State Preparation
	2.3.2 Phase Measurement and Switches
	2.3.3 Second-generation Upgrades

	2.4 Systematic Errors due to Imperfect Polarizations

	3 Self-calibrating Polarimeter to measure Stokes Parameters
	3.1 Introduction
	3.2 Stokes Parameters
	3.3 Measurement Principle of a Rotating Waveplate Polarimeter
	3.4 Laboratory Realization and Intensity Normalization
	3.5 Calibration of Angles and Retardance
	3.6 Uncertainties
	3.6.1 Statistical Uncertainty
	3.6.2 Calibration Parameters
	3.6.3 Waveplate Imperfections
	3.6.4 Misalignment
	3.6.5 Finite Extinction Ratios of Polarizers
	3.6.6 Summary of Systematic Errors


	4 Polarimetry Measurements on ACME
	4.1 Mechanical Stress-induced Birefringence
	4.1.1 Determination of the Birefringence Axis
	4.1.2 Mechanical Stress Birefringence due to Vacuum Window Mounts
	4.1.3 Residual Birefringence due to Material Properties
	4.1.4 Effect of Differential Pressure Across the Window

	4.2 Thermally-induced Birefringence in the Electric Field Plates
	4.2.1 Theoretical Model and Estimates
	4.2.2 Separate Measurements on First- and Second-generation Field Plates
	4.2.3 Thermally-induced Birefringence Test on the Generation II ACME Setup

	4.3 Tests of Optical Elements
	4.3.1 Imperfection of the Retardance in Half- and Quarter-Waveplates
	4.3.2 Mechanical Stress Birefringence in Broadband Precision Windows
	4.3.3 Extinction Ratio of a Polarizing Beamsplitter Cube compared to the Glan-Laser Polarizer
	4.3.4 Extinction Ratio of the Sideport of the Glan-Laser Polarizer


	5 Summary
	A Appendix
	A.1 Estimate of the Baryon-to-Photon Ratio
	A.2 Mueller Matrices
	A.3 Derivation of Linearized Calibration Equations
	A.4 Averaging Error of Ellipticity Gradients

	Bibliography

