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Abstract

A single electron in a quantum cyclotron yields new measurements of the electron

magnetic moment, given by g/2 = 1.001 159 652 180 73 (28) [0.28 ppt], and the fine

structure constant, α−1 = 137.035 999 084 (51) [0.37 ppb], both significantly improved

from prior results. The static magnetic and electric fields of a Penning trap confine

the electron, and a 100 mK dilution refrigerator cools its cyclotron motion to the

quantum-mechanical ground state. A quantum nondemolition measurement allows

resolution of single cyclotron jumps and spin flips by coupling the cyclotron and spin

energies to the frequency of the axial motion, which is self-excited and detected with

a cryogenic amplifier.

The trap electrodes form a high-Q microwave resonator near the cyclotron fre-

quency; coupling between the cyclotron motion and cavity modes can inhibit sponta-

neous emission by over 100 times the free-space rate and shift the cyclotron frequency,

a systematic effect that dominated the uncertainties of previous g-value measure-

ments. A cylindrical trap geometry creates cavity modes with analytically calculable

couplings to cyclotron motion. Two independent methods use the cyclotron damping

rate of an electron plasma or of the single electron itself as probes of the cavity mode

structure and allow the identification of the modes by their geometries and couplings,



iv

the quantification of an offset between the mode and electrostatic centers, and the

reduction of the cavity shift uncertainty to sub-dominant levels. Measuring g at four

magnetic fields with cavity shifts spanning thirty times the final g-value uncertainty

provides a check on the calculated cavity shifts.

Magnetic field fluctuations limit the measurement of g by adding a noise-model

dependence to the extraction of the cyclotron and anomaly frequencies from their

resonance lines; the relative agreement of two line-splitting methods quantifies a line-

shape model uncertainty.

New techniques promise to increase field stability, narrow the resonance lines, and

accelerate the measurement cycle.

The measured g allows tests for physics beyond the Standard Model through

searches for its temporal variation and comparisons with a “theoretical” g-value cal-

culated from quantum electrodynamics and an independently measured fine structure

constant.
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Chapter 1

Introduction

A particle in a box is the prototype of a simple and elegant system. This thesis

describes an experiment with a particle, a single electron trapped with static magnetic

and electric fields, surrounded by a cylindrical metal box. The interaction between the

electron and the electromagnetic modes of the box induces frequency shifts, inhibits

spontaneous emission, and, with the box cooled to freeze out blackbody photons,

prepares the electron cyclotron motion in its quantum-mechanical ground state.

By injecting photons into the box, we drive single cyclotron transitions and spin

flips, observing both through quantum nondemolition measurements. The photons

that most readily drive these transitions reveal the resonance lines and make preci-

sion measurements of the cyclotron frequency and the cyclotron–spin beat frequency.

Accounting for shifts from the trapping electric field, special relativity, and the inter-

action between the electron and the box (or cavity) modes allows us to determine the

electron g-value with a relative accuracy of 0.28 ppt.1 Such a measurement probes the

1parts-per-trillion = ppt = 10−12; parts-per-billion = ppb = 10−9; parts-per-million = ppm =
10−6

1
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(g / 2 - 1.001 159 652 000)  / 10 -12

180 185 190

ppt = 10
-12

0 5 10
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Harvard (2007)

Figure 1.1: Electron g-value comparisons [1, 2].

interaction of the electron with the fluctuating vacuum, allows the highest-accuracy

determination of the fine structure constant, with a precision of 0.37 ppb, and sensi-

tively tests quantum electrodynamics.

1.1 The Electron Magnetic Moment

A magnetic moment is typically written as the product of a dimensional size-

estimate, an angular momentum in units of the reduced Planck constant, and a

dimensionless g-value:

µ = g
−e~
2m

S

~
. (1.1)

For the case of the electron, with charge −e and mass m, the dimensional estimate

is the Bohr magneton (µB = e~/(2m)). For angular momentum arising from orbital

motion, g depends on the relative distribution of charge and mass and equals 1 if

they coincide, for example cyclotron motion in a magnetic field. For a point particle

governed by the Dirac equation, the intrinsic magnetic moment, i.e., that due to spin,

has g = 2, and deviations from this value probe the particle’s interactions with the
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vacuum as well as the nature of the particle itself, as with the proton, whose g ≈ 5.585

arises from its quark-gluon composition [3].2 The primary result of this thesis is a

new measurement of the electron g-value,

g

2
= 1.001 159 652 180 73 (28) [0.28 ppt], (1.2)

where the number in parentheses is the standard deviation and that in brackets the

relative uncertainty. This uncertainty is nearly three times smaller than that of our

2006 result [1] and more than 15 times below that of the celebrated 1987 University

of Washington measurement [2].

1.1.1 The fine structure constant

The fine structure constant,

α =
e2

4πε0~c
, (1.3)

is the coupling constant for the electromagnetic interaction. It plays an important

role in most of the sizes and energy scales for atoms, relating the electron Compton

wavelength, λe
− , to the classical electron radius, r0, and the Bohr radius, a0,

λe
− =

~
mc

= α−1r0 = αa0, (1.4)

as well as appearing in the Rydberg constant and fine structure splittings. It is one

of the 26 dimensionless parameters in the Standard Model, roughly half of which are

2In order to account for the proton and neutron deviations, Pauli introduced an additional term
to the Dirac equation, which treated an anomalous magnetic moment as an additional theoretical
parameter [4]. While this term preserves Lorentz covariance and local gauge invariance, it is not
renormalizable [5]. As described in Section 1.1.2, QED and the rest of the Standard Model do a fine
job quantifying anomalous magnetic moments, rendering the Pauli term obsolete.
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masses, i.e., Yukawa couplings to the Higgs field [6].3

Being dimensionless, one might hope to calculate the value of α to arbitrary

precision, much as may be done with the mathematical constant π, but no theory

yet allows such computation. Anthropic arguments based on observations such as

the existence of nuclei and the lifetime of the proton constrain its value to between

1/170 < α < 1/80, and anything outside a window of 4% of the measured value

would greatly reduce the stellar production of carbon or oxygen [7, 8]. Some have

suggested that inflationary cosmology allows the existence of a statistical ensemble of

universes, a “multiverse,” wherein many possible values of the fundamental constants

are realized and that, beyond the truism that we find α within the anthropically

allowed range, its value is in principle uncalculable [9, 10].

Because vacuum polarization screens the bare electron charge, the electromagnetic

coupling constant depends on the four-momentum in any interaction and Eq. 1.3 is

actually its low-energy limit. For a momentum change of q � mec, the “running”

constant is

α(q2) = α

(
1− α

15π

q2

m2
ec

2

)
, (1.5)

see e.g., [11, Sec. 7.5] or [12, Sec. 7.9]. Note that q2 is negative,4 so higher momentum

interactions see a larger coupling constant—they penetrate closer to the larger, bare

charge. For q � mec, the increase becomes logarithmic and by the energy-scale of

the Z-boson, α has increased 7% to α(mZ)−1 = 127.918(18) [13, p. 119]. In the next

section, a QED perturbative expansion relates g to α in the low-energy limit of Eq. 1.3

3There are many ways to parameterize the electroweak terms. For example, [6] uses the weak
coupling constant (gW ) and the Weinberg angle (θW ). A parameterization using the fine structure
constant is equally valid since α = g2

W sin2 θW /(4π).
4Eq. 1.5 assumes a (+−−−) metric and the only change is in q.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1.2: The second-order Feynman diagram (a), 2 of the 7 fourth-order
diagrams (b,c), 2 of 72 sixth-order diagrams (d,e), and 2 of 891 eighth-order
diagrams (f,g).

because the vacuum polarization effects are explicitly calculated.

1.1.2 QED and the relation between g and α

Vacuum fluctuations modify the electron’s interactions with a magnetic field,

slightly increasing g above 2. The theoretical expression is

g

2
= 1 +C2

(α
π

)
+C4

(α
π

)2

+C6

(α
π

)3

+C8

(α
π

)4

+ ...+aµ,τ +ahadronic +aweak, (1.6)

where 1 is g/2 for a Dirac point particle, Cn refers to the n-vertex QED terms involving

only electrons and photons, aµ,τ to the QED terms involving the µ and τ leptons,

and ahadronic and aweak to terms involving hadronic or weak interactions. Because

these terms have been evaluated to high precision and assuming Eq. 1.6 is a complete

description of the underlying physics, the series can be inverted to extract α from a

measured g. Conversely, an independent value of α allows a test of the fundamental



Chapter 1: Introduction 6

theories. The first three QED terms are known exactly:

C2 =
1

2
= 0.5 1 Feynman diagram [14] (1.7a)

C4 =
197

144
+
π2

12
+

3

4
ζ(3)− 1

2
π2 ln 2 7 Feynman diagrams [15, 16, 17] (1.7b)

= −0.328 478 965 579 . . .

C6 =
83

72
π2ζ(3)− 215

24
ζ(5) 72 Feynman diagrams [18] (1.7c)

+
100

3

[(
∞∑
n=1

1

2nn4
+

1

24
ln4 2

)
− 1

24
π2 ln2 2

]
− 239

2160
π4 +

139

18
ζ(3)

− 298

9
π2 ln 2 +

17101

810
π2 +

28259

5184
= 1.181 241 456 587 . . . ,

with the C6 calculations only finished as recently as 1996. Using many supercomputers

over more than a decade, Kinoshita and Nio have evaluated C8 numerically to a

precision of better than 2 parts in 103 [19, 20],

C8 = −1.9144 (35) 891 Feynman diagrams. (1.8)

Work is just beginning on evaluation of C10 using a program that automatically

generates the code for evaluating the 12 672 Feynman diagrams [21, 22]. Although

the value of C10 is unknown, our high experimental precision requires an estimate,

which we write as an upper bound:

|C10| < x. (1.9)

Following the approach of [23, App. B],5 we will use x = 4.6.

5The authors of [23] estimate, with a 50% confidence level (CL), that the magnitude of the ratio
of C10 to C8 will be no larger than that of C8 to C6, i.e., |C10| < |C8(C8/C6)|. Converting this to
the usual standard deviation (68% CL) gives an estimate of x = 4.6. There is no physical reason
the value of C10 should follow this scheme, and a genuine estimate of its size is expected soon.
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QED terms of fourth and higher order may involve virtual µ and τ leptons. These

coefficients up to sixth order are known as exact functions of the measured lepton

mass ratios and sum to [24]

aµ,τ = 2.720 919 (3)× 10−12. (1.10)

Additionally, there are two small non-QED contributions due to hadronic and weak

loops [25]:

ahadronic = 1.682 (20)× 10−12 (1.11)

aweak = 0.0297 (5)× 10−12. (1.12)

The hadronic contributions are particularly interesting because the quantum chro-

modynamics calculations cannot be done perturbatively. Instead, one must use dis-

persion theory to rewrite diagrams containing virtual hadrons into ones containing

real ones with cross-sections that may be measured experimentally, see e.g., [26]. One

class of diagrams that prove particularly troublesome involve hadronic light-by-light

scattering (as in Fig. 1.2e with hadrons in the virtual loop), which are both non-

perturbative and difficult to relate to experimental data and thus involve heavily

model-dependent calculations [27, Ch. 6]. This term is important when evaluating

the muon magnetic moment, for reasons discussed in Section 1.1.6, and has been

evaluated several ways with not entirely consistent results. Depending on the result

one chooses, the total ahadronic/10−12 in Eq. 1.11 may be written as 1.682 (20) [27, 28],

1.671 (19) [25, 29], or 1.676 (21). The last option is based on the “cautious” average

adopted by the Muon (g − 2) Collaboration for the hadronic light-by-light contribu-

tion to the muon magnetic moment [26, Sec. 7.3]. The consequence of this difference
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Figure 1.3: Theoretical contributions to the electron g

is negligible for our purposes; changing the value used for ahadronic would only alter

the last digit of α−1, which corresponds to the second digit of the uncertainty, by one.

Fig. 1.3 summarizes the contributions of the various terms to the electron g-value

and includes our measurement, which is just beginning to probe the hadronic contri-

butions. Using these calculations and our measured g, one can determine α:

α−1 = 137.035 999 084 (12)(37)(33) (1.13)

= 137.035 999 084 (51) [0.37 ppb]. (1.14)

In Eq. 1.13, the first uncertainty is from the calculation of C8, the second from our

estimate of C10, and the third from the measured g. For a general limit |C10| < x, as

in Eq. 1.9, the second uncertainty would be (8x). With the new measurement of g,

the uncertainty estimate for C10 now exceeds the experimental uncertainty. Eq. 1.14

combines these uncertainties and states the relative uncertainty. This result improves
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Figure 1.4: Various determinations of the fine structure constant with cita-
tions in the text.

upon our recent 0.71 ppb determination [30] by nearly a factor of two.

1.1.3 Comparing various measurements of α

The value of the fine structure constant determined from the electron g-value

and QED and given in Eq. 1.14 has over an order of magnitude smaller uncertainty

than that of the next-best determination. Nevertheless, independent values of α

provide vital checks for consistency in the laws of physics. Fig. 1.4 displays the most

precise determinations of α and includes an enlarged scale for those with the smallest

uncertainty.

The least uncertain determinations of α that are independent of the free-electron

g are the “atom-recoil” measurements, so-called because their uncertainty is limited

by measurements of recoil velocities of 87Rb and 133Cs atoms. These determinations

combine results from many experiments (described below) to calculate the fine struc-
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ture constant using

α2 =
2R∞
c

Ar(X)

Ar(e)

h

mX

, (1.15)

where R∞ is the Rydberg constant and Ar(X) is the mass of particle X (either 87Rb or

133Cs) in amu, i.e., relative to a twelfth of the mass of 12C. The Rydberg is measured

with hydrogen and deuterium spectroscopy to a relative uncertainty of 6.6 ppt [25].

The mass of the electron in amu is measured to a relative uncertainty of 0.44 ppb

using two Penning trap techniques: it is calculated from the g-value of the electron

bound in 12C5+ and 16O7+ [25, 31] and measured directly by comparing the cyclotron

frequencies of an electron and fully-ionized carbon-12 (12C6+) [32]. Another set of

Penning trap mass measurements determine Ar(
133Cs) to 0.20 ppb and Ar(

87Rb) to

0.17 ppb [33]. The ratio h/mRb is measured by trapping rubidium atoms in an optical

lattice and chirping the lattice laser frequency to coherently transfer momentum from

the field to the atoms through adiabatic fast passage (the equivalent condensed matter

momentum transfers are called Bloch oscillations) [34, 35]. Equating the momentum

lost by the field (2~k) to that gained by the atoms (mv) yields the desired ratio, since

k is known from the laser wavelength and v can be measured through velocity-selective

Raman transitions. The ratio h/mCs is calculated from optical measurements of two

cesium D1 transitions, measured to 7 ppt [36], and a “preliminary” measurement of the

recoil velocity of an atom that absorbs a photon resonant with one transition and emits

resonant with the other, measured as a frequency shift in an atom interferometer [37].

The results of these two determinations are

α−1(Rb) = 137.035 998 84 (91) [6.6 ppb] [35] (1.16)

α−1(Cs) = 137.036 000 00 (110) [8.0 ppb] [36]. (1.17)
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Using these values of α to calculate a “theoretical” g constitutes the traditional

test of QED, with the results∣∣∣∣δg2
∣∣∣∣
Rb

= 2.1 (7.7)× 10−12 (1.18a)∣∣∣∣δg2
∣∣∣∣
Cs

= −7.7 (9.3)× 10−12. (1.18b)

The agreement indicates the success of QED. Of the three contributions to these tests

(measured g-value, QED calculations, and independent α), the over-ten-times larger

uncertainty of the independent values of α currently limits the resolution. Higher-

precision measurements are planned for both the rubidium and cesium experiments,

the latter with a stated goal of better than 0.5 ppb [38].

There are many other lower-precision determinations of the fine structure con-

stant; their values are collected in [25, Sec. IV.A] and plotted in Fig. 1.4b. Recent

measurements of the silicon lattice constant, d220, required for the α determination

from h/mn, may shift its value of α from that listed in [25], and the plotted value is

one we have deduced based on the results in [39, 40].

1.1.4 Comparing precise tests of QED

Although it is the most precise test of QED, the electron g-value comparison is

far from the only one, and it is worthwhile examining others. Four considerations go

into determining the precision of a QED test: the relative experimental uncertainty,

the relative theoretical uncertainty due to QED and other calculations, the relative

theoretical uncertainty due to values of the fundamental constants, and the relative

QED contribution to the value measured. The net test of QED is the fractional



Chapter 1: Introduction 12

uncertainty in the QED contribution to each of these quantities.

The free-electron g-value

For example, the relative experimental uncertainty in the electron g is 2.8×10−13,

the relative theoretical uncertainty from the QED calculation is 3.3×10−13 (dominated

by our assumption about C10 in Eq. 1.9), the relative theoretical uncertainty from

fundamental constants is 7.7 × 10−12 (based on α(Rb) of Eq. 1.16), and the relative

QED contribution to the electron g-value is 1.2× 10−3, yielding a net test of QED at

the 6.6 ppb level. Table 1.1 compares this test to others of note.

Hydrogen and deuterium spectroscopy

Some measurements of hydrogen and deuterium transitions look promising be-

cause of high precision in both experiment and theory [41]. As tests of QED, they

are undone by the relatively low contribution of QED to the overall transition fre-

quencies [25, App. A]. Conversely, the transitions that are dominated by QED, e.g.,

the Lamb shifts, tend to have higher experimental uncertainty. After the hydrogen

1S1/2 − 2S1/2 transition, which sets the value of the Rydberg R∞, the deuterium

2S1/2 − 8D5/2 transition has the highest experimental precision (many others are

close). The theoretical uncertainties are smaller than that from experiment, with

the contribution from fundamental constants dominated by the uncertainty in R∞,

the deuteron radius, and the covariance between the two.6 The QED contribution

6Here, we use the 2002 CODATA values [25] for the fundamental constants even though
νD(2S1/2 − 8D5/2) was included in that least-squares fit. We have assumed that its contribution to
the relevant constants was small. We have been careful in cases where that assumption is not valid,
using α(Rb) instead of α(2002) for the free-electron g-value analysis and removing νH(1S1/2−2S1/2)
from the possible tests of QED because it is the primary contributor to R∞.
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to this frequency is only at the ppm level, undercutting the high experimental and

theoretical precision.

The hydrogen Lamb shift (2P1/2 − 2S1/2) is nearly entirely due to QED, but has

an experimental precision at the many ppm level and a large theoretical uncertainty

due to the proton radius, which is now extracted most accurately from H and D

spectroscopy measurements [25]. The hydrogen 1S Lamb shift can be determined

from a beat frequency between integer multiples of the 1S − 2S transition and either

of the 2S − 4S or 2S1/2 − 4D5/2 transitions. In Table 1.1, we specifically analyze the

difference given by (2S1/2−4S1/2)− 1
4
(1S1/2−2S1/2), the primary component of which

is still non-QED. The constants part of the theoretical uncertainty is still dominated

by the proton radius.

The bound-electron g-value

The bound-electron g-value has a QED calculation [25, App. D] similar to the free

electron g, but a measurement using a single ion is heavily dependent on the mass

of the electron, so much so that it is currently the standard for the relative electron

mass (Ar(e)). The relevant equation is number 48 of [25],

fs

(
12C5+

)
fc

(
12C5+

) = −
ge−
(

12C5+
)

10Ar(e)
×

[
12− 5Ar(e) +

Eb(12C)− Eb

(
12C5+

)
muc2

]
, (1.19)

where Ar(e) is determined from the measured electron spin and cyclotron frequencies

(the f ’s) and the calculated bound g-value and binding energies (Eb).

As a potential test of QED, a single bound-electron g-value measurement must rely

on a separate electron mass measurement. The experimental uncertainty is then dom-

inated by this independent electron mass measurement, which currently is known to



Chapter 1: Introduction 15

2.1×10−9 [32]. The relevant frequency ratio has been measured to 5.2×10−10 [31]. The

theoretical uncertainty is dominated by the theory calculations themselves, though

there is a small contribution from the fundamental constants. Note that there is a

measurement for 16O7+ similar to the 12C5+ measurement in Table 1.1 with a similar

result.

Another possibility that is not as heavily dependent on the electron mass is mea-

suring the ratio of bound g-values for two ions. This has been done, with the experi-

mental result

ge−
(

12C5+
)

ge−
(

16O7+
) = 1.000 497 273 70(90) [9.0× 10−10] [25, Eq. 55] (1.20)

and the theoretical calculation

ge−
(

12C5+
)

ge−
(

16O7+
) = 1.000 497 273 23(13) [1.3× 10−10] [25, Eq. D34]. (1.21)

To compare its quality as a test of QED, the 0.9 ppb measurement must be reduced by

the QED contribution, which cancels to first order and is only about 1 ppm, leaving

a test of QED in the 900 ppm range.

High Z ions

Because the perturbative expansion of QED involves powers of (Zα), much work

has been devoted to measuring atomic structure at high Z in search of a high-field

breakdown of the theory. These experiments are designed as probes of new regions

of parameter space rather than as precision tests of QED and both the experimental

and theoretical uncertainties are high. For example, measurements of the X-ray

spectra from radiative recombination of free electrons with fully-ionized uranium have
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determined the ground-state Lamb shift of hydrogen-like uranium, U91+, to 1% [42].

The theory has been calculated another order-of-magnitude better [43], and there

is negligible contribution from the fundamental constants. A measurement of the

2S1/2−2P1/2 transition in lithium-like U89+ has a much higher precision of 5.3×10−5,

but the theory is not yet complete [44].

1.1.5 Limits on extensions to the Standard Model

Despite its remarkable success in explaining phenomena as diverse as the elec-

tron’s anomalous magnetic moment, asymptotic freedom, and the unification of the

electromagnetic and weak interactions, the Standard Model does not include grav-

ity and does not explain the observed matter-antimatter asymmetry in the universe

and is thus incomplete. The high accuracy to which we measure the electron mag-

netic moment allows two classes of tests of the Standard Model. The first uses the

independent determinations of the fine structure constant, quantified in the compar-

isons of Eq. 1.18, to set limits on various extensions to the Standard Model, including

electron substructure, the existence of light dark matter, and Lorentz-symmetry viola-

tions. The second looks for differences between the electron and positron g-values and

searches for temporal variations of the g-value, especially modulation at the Earth’s

rotational frequency, to set limits on violations of Lorentz and CPT symmetries.

Electron substructure

As with the proton, deviations of the measured g-value from that predicted by

QED could indicate a composite structure for the electron. Such constituent parti-
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cles could unify the leptons and quarks and explain their mass ratios in the same

way that the quarks unify the baryons and mesons. The challenge for such a the-

ory is to explain how electrons are simultaneously light and small, presumably due

to tightly bound components with large masses to make up for the large binding

energy. Initially, one might use the inverse-mass natural scaling of magnetic mo-

ments in Eq. 1.1 to derive an additional component of the g-value that is linear in the

mass ratio δg/2 ∼ O(m/m∗) [45], where m∗ is the mass of the internal constituents.

This theory is naive because it would also predict a first-order correction to the self-

energy (δm ∼ O(m∗)), which must precisely be canceled by the binding energy to

explain the lightness of the electron. A more sophisticated theory suppresses the

self-energy correction with a selection rule. For example, chiral invariance of the

constituents removes the linear constituent-mass-dependence of both the self-energy

and the magnetic moment, leaving a smaller addition δg/2 ∼ O(m2/m∗2) but at the

cost of doubling the number of constituents required [45]. Assuming this model, the

comparisons of Eq. 1.18 set a limit on the minimum constituent mass,

m∗ &
m√
δg/2

= 130 GeV/c2, (1.22)

which suggests a natural size scale for the electron of

R =
~
m∗c

. 10−18 m. (1.23)

(We have used |δg/2| . 15 × 10−12.) If the uncertainties of the independent deter-

minations of α equaled ours for g, then we could set a limit of m∗ & 1 TeV. The

largest e+e− collider (LEP) probes for a contact interaction at E = 10.3 TeV [46], [13,

pp.1154-1164], with R . ~c/E = 2× 10−20 m.
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Light dark matter

The electron g-value has the potential to confirm or refute a hypothesized class of

light dark matter (LDM) particles. Visible matter accounts for only 20% of the matter

in the universe, and typical models for the remainder involve particles heavier than the

proton. Light (1–100 MeV) dark matter has been proposed [47] as an explanation

for 511 keV radiation (from e+e− annihilations) emitted from an extended region

(≈10◦) about the Milky Way’s galactic bulge [48]. The LDM would consist of scalar

particles and antiparticles interacting via the exchange of a new gauge boson and

a heavy fermion. The gauge boson, which has a velocity-dependent cross-section,

would dominate interactions in the early universe and explain the observed ratio of

luminous to dark matter, while the fermion would explain the presently observed

511 keV line [49]. Both would couple to electrons as well, allowing dark matter

annihilations to produce electron–positron pairs; this interaction would include small

shifts to the electron g-value [49]. The relative abundance of dark matter constrains

the boson coupling to be far smaller than that of the fermion. Because the fermion

coupling is constrained by the morphology of the 511 keV flux, the LDM theory makes

a prediction for the g-value shift, equal to

δg

2
= 10(5)× 10−12 (1.24)

times a geometric factor of order one that describes the dark matter profile in the

Milky Way [50]. Our g-value precision already exceeds that of this prediction; the

independent measurements of α are close to allowing observation of this size shift,

and further improvements can confirm or refute the light dark matter hypothesis.



Chapter 1: Introduction 19

A Standard Model Extension

In order to organize various tests of violations of Lorentz-symmetry and CPT-

symmetry, Colladay and Kostelecký have introduced a Standard Model extension

(SME), a phenomenological parameterization of all possible hermitian terms that can

be added to the Standard Model Lagrangian and that allow spontaneous CPT or

Lorentz violation while preserving SU(3)×SU(2)×U(1) gauge invariance and power-

counting renormalizability [51]. Although the terms in the SME allow spontaneous

Lorentz-symmetry breaking, they maintain useful features such as microcausality,

positive energies, conservation of energy and momentum, and even Lorentz-covariance

in an observer’s inertial frame, only violating it in the particle frame. The terms

relevant to this experiment are among those that modify the QED Lagrange density,

LQED = ψ̄γµ (i~c∂µ − qcAµ)ψ −mc2ψ̄ψ − 1

4µ0

F µνFµν , (1.25)

and are typically parameterized as

LSME = −aµψ̄γµψ − bµψ̄γ5γ
µψ + cµνψ̄γ

µ (i~c∂ν − qcAν)ψ

+ dµνψ̄γ5γ
µ (i~c∂ν − qcAν)ψ − 1

2
Hµνψ̄σ

µνψ

+
1

2~
(kAF)κ εκλµν

√
ε0
µ0

AλF µν − 1

4µ0

(kF)κλµν F
κλF µν .

(1.26)

Here, the SME parameters are aµ, bµ, cµν , dµν , Hµν , (kAF)κ, and (kF)κλµν , and the

remaining parts are the usual Dirac spinor field (ψ) and its adjoint (ψ̄), the usual

gamma matrices, the vector potential (Aµ), and the field strength tensor F µν ≡

∂µAν − ∂νAµ, see e.g., [12, Ch. 7], [11, Ch. 3]. Note that the terms with an odd

number of indices (aµ, bµ, and (kAF)κ) also violate CPT symmetry. Furthermore,

each SME coefficient can have different values for each particle; we concern ourselves
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here with those in the electronic sector.

Our sensitivity to QED’s radiative corrections allows us to set a robust limit on

the CPT-preserving photon term’s spatially isotropic component: k̃tr ≡ 2/3(kF)j0j0.7

This component is essentially a modification to the photon propagator, and if it were

non-zero, it would slightly shift the electron g-value from that predicted by QED [52]:

δg

2
= − α

2π
k̃tr. (1.27)

Given our limits in Eq. 1.18, we can set the bound

k̃tr . 10−8. (1.28)

This limit is almost four orders of magnitude below the prior one [53]. A tighter

bound can be set if one considers the effect of this coefficient on others in the overall

renormalization of the SME parameters, but this is heavily model-dependent [52].

Non-zero SME parameters would also modify the energy levels of an electron in

a magnetic field producing shifts in the cyclotron and anomaly frequencies (these

frequencies are defined in Chapter 2). To leading order, these shifts are [54]

δω±c ≈ −ωc(c00 + c11 + c22) (1.29)

δω±a ≈ 2(±b3 + d30mc
2 +H12)/~, (1.30)

where the ± refers to positrons and electrons. Here, the index “3” refers to the spin

quantization axis in the lab, i.e., the magnetic field axis, while “1” and “2” refer

to the other two spatial axes and “0” to time. The terms in the anomaly shift are

7Here I use the usual convention that Greek indices run over all space-time components 0, 1, 2,
3 (t, x, y, z) while Roman indices run over only the spatial ones.
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conventionally combined into a shorthand,

b̃j ≡ bj − dj0mc2 − 1

2
εjklHkl, (1.31)

which acts like a pseudo-magnetic field in its coupling to spin [55]. Both cij and b̃j

violate Lorentz-invariance by defining a preferred direction in space. Provided this

direction is not parallel to the Earth’s axis, the daily rotation of the experiment axis

about the Earth’s axis will modulate the couplings.8

In Chapter 8 we look for these modulations with anomaly frequency measure-

ments. Because νa is proportional to the magnetic field, any drift in the field could

wash out an effect. Since we occasionally see drifts above our sub-ppb frequency

resolution, we use the cyclotron frequency to calibrate the magnetic field. In the

process, we make our anomaly frequency measurement sensitive to several SME cµµ

coefficients through Eq. 1.29. Variations in the anomaly frequency are thus related to

the SME parameters in the lab frame via

δνa = −2b̃3

h
+ νa(c00 + c11 + c22), (1.32)

which contains three Lorentz-violation signatures: offsets between the measured anomaly

frequency and that predicted by the Standard Model (c00 and parts of the other coeffi-

cients do not vary with the Earth’s rotation) and modulations at one or two times the

Earth’s rotation frequency. We do not find any modulation of the anomaly frequency

and set the limit

|δνa| < 0.05 Hz = 2× 10−16 eV/h, (1.33)

8Note that this modulation occurs over a sidereal day (≈ 23.93 hours) not a mean solar day (24
hours). Since the two rephase annually, one can collect data at every time of the sidereal day despite
only running at “night.”
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an improvement by a factor of two on the previous single-electron result [56].9 Assum-

ing zero cjj-coefficients, this limit is
∣∣∣b̃3

∣∣∣ < 10−16 eV. Similarly, a zero b̃3 coefficient

yields a limit |c11 + c22| < 3×10−10. For proper comparison with other measurements,

the limits should be converted from the rotating lab coordinates (1, 2, 3) to a non-

moving frame, traditionally celestial equatorial coordinates; this is done in Chapter 8,

and the results are of similar magnitude.

While these limits can provide confirmation of other results, they are not the

leading constraints on the coefficients. The tightest bounds on cµν come from either

experiments with cryogenic optical resonators [57] or astrophysical sources of syn-

chrotron and inverse Compton radiation [58, 59], both setting limits of order 10−15.

The cavity-resonator experiments search for Lorentz-violating shifts in the index of

refraction of a crystal due to changes in its electronic structure. They require as-

sumptions that there are no corresponding Lorentz-violations that affect the nuclei.

The astrophysical limits focus on the way the cµν-coefficients alter the dispersion re-

lations among an electron’s energy, momentum, and velocity. For a given direction

in space, an electron’s velocity and energy are limited by cµν , so measurements of

large electron energies and velocities, as seen through their synchrotron and inverse

Compton radiation, constrain the various cµν coefficients.

The tightest bound on b̃j comes from an experiment with a ring of permanent

magnets suspended in a torsion pendulum [60]. The ring has a large net spin (≈1023

electron spins) with no net magnetic moment (the magnetic flux is entirely contained

within the torus), which greatly enhances the coupling to b̃j while decreasing mag-

9We do not get the same order-of-magnitude improvement here that we do for the g-value be-
cause the result (also from the University of Washington) came from a dedicated Lorentz-violation
experiment, optimized for detecting νa at the expense of poor precision of νc.
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netic interference. Hanging with the spin vector horizontal and rotating the entire

apparatus with a period on the order of an hour adds a faster modulation to any

signal, which would appear as an anomalous torque on the spins. By keeping track

of the apparatus orientation with respect to celestial coordinates, they place limits

in the range 10−21–10−23 eV on the components of b̃j, with tighter limits for the

components perpendicular to the Earth’s axis because they have additional diurnal

modulation [61].

Although other experiments set tighter limits on the cµν and b̃j parameters, our

g-value experiment has a distinct advantage in the ability to replace the electron with

a positron. Since the bµ term violates CPT, this replacement changes its coupling to

the particle spin, allowing a direct test of b3 rather than b̃3 [62]. Prior experiments

constrained b . 10−13–10−15 eV [63], with the wide range arising from a lack of

data over most of the sidereal day. By extending the data-taking period and taking

advantage of our improved g-value precision, future experiments using the techniques

of this thesis should reduce the lower end of that limit by over an order of magnitude.

Is the fine structure constant constant?

The use of the term “constant” for α is itself subject to scientific inquiry, and there

are active searches for its variation in space and time. Such an inconstancy would

violate the equivalence principle but is predicted by multidimensional theories since α

would be a mere four-dimensional constant and could depend on fields moving among

the other dimensions [7]. The most precise techniques for measuring α̇, reviewed in [7],

use either moderately precise techniques over long timescales or extremely precise
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techniques over shorter timescales. Analyses of a prehistoric, naturally-occurring

fission reactor at the present-day Oklo uranium mine in Gabon allow the calculation

of the cross-section for a particular neutron capture resonance in 149Sm as it occurred

2 × 109 years ago. Comparing these calculations with the present-day value of the

cross-section and assuming any temporal variation in α is linear yields a precision

on |α̇/α| of 10−17 yr−1, although various analyses disagree on whether the result

shows variation in α [64] or not [7]. Looking even further back in time, astrophysical

measurements using quasar absorption spectra allow the comparison of present-day

atomic lines to those from 1010 years ago and yield a precision on |α̇/α| of 10−16 yr−1,

although there are disagreements as to the interpretation of the results [65, 66]. High-

precision laboratory spectroscopy examines pairs of atomic transitions (perhaps in

different atomic species) that have different dependences on α. Monitoring their

relative frequencies over several years yields limits on the present-day variation of α

as good as |α̇/α| < 1.2 × 10−16 yr−1 [67]. Although our experiment is the highest-

precision measurement of α itself, we would need to monitor α over 106 years to

achieve a similar resolution of its time-variation.

1.1.6 Magnetic moments of the other charged leptons

The magnetic moments of all three charged leptons may be written as the sum of

the Dirac eigenvalue (g = 2), a QED expansion in powers of α/π, and hadronic and

weak corrections (see Table 1.2). The contributions of a heavy virtual particle of mass

M to the anomalous magnetic moment of a lepton with mass m goes as (m/M)2 [26]

and accounts quite well for the increasing size of hadronic and electroweak effects
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electron ge/2 muon gµ/2 tauon gτ/2
Dirac 1 1 1
QED 0.001 159 652 181 1(77) 0.001 165 847 1809(16) 0.001 173 24 (2)

hadronic 0.000 000 000 001 682(20) 0.000 000 069 13(61) 0.000 003 501(48)
weak 0.000 000 000 000 0297(5) 0.000 000 001 54 (2) 0.000 000 474 (5)
total 1.001 159 652 182 8(77) 1.001 165 917 85(61) 1.001 177 21(5)

Table 1.2: Dirac, QED, electroweak, and hadronic contributions to the theo-
retical charged lepton magnetic moments. The dominant uncertainty in the
predicted electron g is due to an independent fine structure constant (here we
use Eq. 1.16). The dominant uncertainties in the muon [26] and tauon [68]
g-values are from the experiments that determine the hadronic contribution.

for the heavier leptons. (The tauon hadronic contribution does not follow the ratio

because its heavy mass breaks the m � M assumption.) The heightened sensitiv-

ity to non-QED effects comes at the cost of theoretical precision because quantum

chromodynamics is a non-perturbative theory and the hadronic contributions must

be analyzed by relating the magnetic moment Feynman diagrams to scattering di-

agrams whose magnitude can be acquired from experiment. The general (m/M)2

scaling may also apply to sensitivity to effects beyond the Standard Model, as seen in

the electron substructure discussion of Section 1.1.5 and in [69]. Thus measurements

of the charged lepton magnetic moments may be used for complementary purposes:

the electron g-value, with its relatively low sensitivity to heavy particles, provides a

high-precision test of QED, while the heavier leptons, with the larger but less precise

contributions from hadronic and weak effects, search for heavy particles such as those

from supersymmetry.

The experimental limit on the tauon magnetic moment, derived from the total

cross-section of the e+e− → e+e−τ+τ− reaction, is [70]

0.948 <
gτ
2
< 1.013, 95% CL (1.34)
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and has not yet begun to probe the QED correction to the Dirac g.

There is a rich history of precision measurements of the muon magnetic mo-

ment [26]. The basic premise is a measurement of the anomaly frequency for a par-

ticle in a magnetic field, just as in the electron measurement, but the experimental

constraints of the middleweight lepton lead to a strikingly different apparatus. Pion

decays produce spin-polarized muons, which enter a 7 m-radius storage ring. When

the muon decays, it emits an electron with an energy correlated to the angle between

the electron momentum and the muon spin, and the precession of that spin axis about

the muon momentum occurs at the anomaly frequency. Whereas in the electron mea-

surement we calibrate the magnetic field with the electron cyclotron frequency, the

muon experiment uses a set of NMR probes on a “trolley” that traverses the storage

ring. The current experimental limit on the muon g, averaged for the values from µ+

and µ−, is [71]

gµ
2

= 1.001 165 920 80 (63) [0.63 ppb], (1.35)

with the statistical uncertainty dominating the systematic uncertainty: 0.54 ppb to

0.33 ppb. A comparison with the theoretical value in Table 1.2 reveals a tantalizing

3.4 standard-deviation discrepancy, inspiring a proposal for another run with the goal

of improving the precision by a factor of 2.5 [72, 73].

1.1.7 The role of α in a redefined SI

A system of units provides a set of common standards against which other quan-

tities are compared. Ideally, these standards are based on an invariant of nature so

that measured values change only when the measured quantity itself changes. That
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unit quantity
current

reference
proposed
reference

second (s) time ∆ν(133Cs)hfs ∆ν(133Cs)hfs

meter (m) length c c

ampere (A) electric current µ0 e

kilogram (kg) mass m(κ) h

kelvin (K) thermodynamic temperature TTPW k

mole (mol) amount of substance M(12C) NA

candela (cd) luminous intensity K(λ555) K(λ555)

Table 1.3: Current and proposed reference quantities for the SI

is, there should be no worry that the standard itself changed.10 As presently defined

the International System of Units, the SI, contains a mix of invariants of nature and

other quantities. The second and the meter, defined by the ground-state hyperfine

transition of cesium and the speed of light, as well as the kelvin, defined by the triple-

point of water, are all based on invariants, although TTPW is difficult to realize to

high accuracy [74]. The kilogram, however, is defined as the mass of an artifact in a

vault at the International Bureau of Weights and Measures (BIPM), and is the only

remaining standard not linked to a natural invariant. The ampere, mole, and candela

are currently defined relative to the vacuum permeability (µ0), the molar mass of

carbon-12 (M(12C)), and the spectral luminous efficacy of monochromatic radiation

of frequency 540 × 1012 Hz (K(λ555)—the wavelength is roughly 555 nm). While

these definitions appear to be defined in terms of invariants, they each are linked to

the kilogram in a manner analogous to the linking of the meter to the second by its

definition in terms of a velocity.

Recent progress in relating Planck’s constant to macroscopic masses through the

10As noted in Section 1.1.5, the “constant” nature of fundamental constants is itself subject to
experimental inquiry.
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moving-coil watt-balance [75] as well as improvements in the measurement of the

molar volume of silicon through X-ray-crystal-density experiments [76] have led to

the possibility of defining the kilogram by fixing the value of either Planck’s constant

(h) or Avogadro’s number (NA), both of which are invariants of nature, the latter

being an integer. A recent approach [74], summarized in Table 1.3, suggests doing

both and more, fixing the values of h, NA, the positron charge (e), and Boltzmann’s

constant (k), while allowing the SI values of µ0, TTPW, M(12C), and the mass of the

kilogram artifact to be measured quantities. In addition to the aesthetic pleasure of

having a system of units defined in terms of such fundamental quantities, it will also

allow higher precision measurements in the SI. For example, the Josephson constant

(KJ = 2e/h) and the von Klitzing constant (RK = h/e2) will become exact, allowing

the direct realization of the SI ampere, volt, ohm, watt, farad, and henry through the

Josephson and quantum Hall effects [74]. In addition, a number of other constants

will be exact in SI units as will conversions among joules, kilograms, inverse meters,

hertz, kelvins, and electronvolts.

The role of the fine structure constant in such a redefined SI is twofold. First, its

value will be used as part of the determination of the fixed values of the new reference

quantities. For example, e will be calculated from Eq. 1.3 using the measured value

of α and the recently fixed h; NA will be calculated from

NA =
cAr(e)Muα

2

2R∞h
, (1.36)

where Mu = 10−3 kg/mol is the molar mass constant. Second, with so many other

fundamental constants fixed, the uncertainty in expressing many quantities in SI units

will be greatly reduced and the precision of the measured α will set the new, lower
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uncertainty scale. For example, the electron mass in kilograms is calculated from

me =
2hR∞
cα2

. (1.37)

With the currently dominant uncertainty in h dropped to zero and the relative un-

certainty of R∞ two orders of magnitude lower than that in α, the fine structure

constant will set the mass uncertainty. In a similar way, α will set the limits on the

proton mass in kilograms (mp), the Bohr magneton (µB), the nuclear magneton (µN),

and the kg-amu conversion. Furthermore, with µ0 no longer fixed, a measurement of

α will set its SI value along with that of ε0 and Z0, the vacuum impedance. Lastly,

since it relies on referencing its measurements to the SI units and on using the fixed

value of ε0, the quantum Hall effect will no longer provide a measurement of the fine

structure constant; instead it will supply a direct calibration of resistance in the SI.

1.2 Measuring the g-Value

1.2.1 g-value history

The uncertainty in the measured electron g-value and that predicted by theory

have been closely linked since before the development of relativistic quantum mechan-

ics, with each providing motivation for further study in the other. The early history

is reviewed in [77] and extends from atomic measurements indicating g = 2 and Dirac

theory, to direct measurements of bound-electron g-values and the birth of QED, to

measurements at the University of Michigan on bunches of free electrons using the

g − 2 technique, a string of experiments culminating in the measurement of g at a

precision of 3.5 ppb.
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The trapping of a single electron [78] led to a new era in g-value measurements,

eliminating many of the plasma-related systematic effects. For over a decade, a series

of experiments at the University of Washington pushed down the uncertainty in g,

culminating in the famous 1987 measurement at a precision of 4.3 ppt, with the

interaction between the electron and the trap-electrode-cavity modes [79, 80] making

the primary contribution to the uncertainty [2].11

A number of improvements, described below and detailed in the remainder of

the thesis, have allowed two new measurements at Harvard. The first, published in

2006 [1], had a precision of 0.76 ppt, with the primary uncertainties split between

cavity-shifts and the agreement between the measured cyclotron and anomaly lines

and their theoretical lineshapes. A preliminary analysis of this measurement appears

in [83], and we include the final analysis in Chapter 6 with additional details in the

relevant chapters. The second measurement, details of which form the basis of this

thesis, is at a precision of 0.28 ppt, with the cavity shift uncertainty virtually elim-

inated and the lineshape model uncertainty reduced. With additional work already

underway, future improvements on these measurements seem likely.

1.2.2 An artificial atom

Insofar as an atom is an electron bound in the electromagnetic field of a nucleus,

our system, which traps a single electron in static magnetic and electric fields, is an

artificial “atom.”12 Although the 3 m-tall apparatus and rack full of electronics is

11A subsequent attempt at the UW used a lossy trap cavity, and thus a reduced mode-coupling, as
well as a variable “magnetic bottle” (see Section 2.3.4). While it provided bottle-scaling results for
several systematic effects, the g-value measurements were spread non-statistically over 14 ppt [81, 82].

12Hans Dehmelt coined it “geonium,” an electron bound “to an external apparatus residing on
the Earth” [84].
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not nearly as elegant of an electron trap as a single proton, it affords precise control

over the trapping potentials. Many familiar atomic features, such as well-defined

quantum levels, apply to our system, and we drive transitions between levels with

radio and microwaves. Our “atom” even has fine-structure, with tiny shifts from

special relativity playing an important role in our analysis.

The electron is stored in a Penning trap; a strong magnetic field confines the

electron radially, while a weak electrostatic quadrupole restricts the axial motion. In

addition to the spin frequency (νs ≈ 150.2 GHz), the electron motion is characterized

by three trap eigenfrequencies: the cyclotron frequency (ν̄c ≈ 150.0 GHz), the axial

frequency (ν̄z ≈ 200 MHz), and the magnetron frequency (ν̄m ≈ 133 kHz). Experi-

mentally, the g-value is twice the ratio of the spin frequency to the cyclotron frequency

in free space. Since the two are within a part-per-thousand of each other, i.e., g ≈ 2,

measuring their difference frequency directly is a higher-precision technique. This

beat frequency, the anomaly frequency (ν̄a ≈ 174 MHz), allows a sub-ppt determina-

tion of the g-value with sub-ppb precision on the frequencies. Since the frequencies

used in measuring the g-value should be the free-space values not the in-trap values,

we must include three corrections in our calculations:

1. Special relativity shifts the cyclotron frequency, leading to a ppt-scale correc-

tion [84].

2. The radial part of the trap’s electric field shifts the cyclotron and anomaly

frequencies in the trap by the magnetron frequency, giving a ppm-scale, but

precisely understood, correction [84].

3. Interactions with the radiation modes of a cavity formed by the trap electrodes
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n = 0

n = 1

n = 2

n = 0

n = 1

n = 2

νc - 5δ/2

νc - 3δ/2

νa

fc = νc - 3δ/2

νa = gνc / 2 - νc

νc - δ/2

Figure 1.5: The energy levels of an electron in a Penning trap, including ppb-
size shifts from special relativity. The red arrows indicate the transitions we
measure to determine g.

shift the cyclotron and anomaly frequencies, yielding ppt-scale shifts that de-

pend on the cyclotron frequency [80].

Including these corrections, the equation we use in calculating the g-value is

g

2
' 1 +

ν̄a −
ν̄2
z

2f̄c

f̄c +
3

2
δ +

ν̄2
z

2f̄c

+
∆ωc
ωc

, (1.38)

where the barred frequencies are the eigenfrequencies of the trap, 3
2
δ is the relativistic

correction, ν̄2
z/(2f̄c) is the magnetron correction, and ∆ωc/ωc is the cavity shift. The

label f̄c refers to the cyclotron transition between a specific pair of Fock states, as

described in the next section. A derivation of Eq. 1.38 and a discussion of its leading

corrections, all below our current precision, is in Chapter 4.

1.2.3 The Quantum Cyclotron

We have dubbed our apparatus a “quantum cyclotron” both because it contains

a single quantum of the electron field and because a 100 mK dilution refrigerator
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cools the electron cyclotron motion to the quantum ground state and we can resolve

single cyclotron jumps and spin flips [85] with a quantum nondemolition (QND) mea-

surement that couples the cyclotron and spin energies to frequency shifts of the axial

motion, which we detect directly. The advantage of cyclotron-state resolution lies in

the special relativistic shifts of the cyclotron frequency, which are state-dependent, as

indicated by the δ terms of Fig. 1.5. By resolving the cyclotron states, we may treat

these shifts exactly. In practice, we always measure the same cyclotron transition,

|0, ↑〉 ↔ |1, ↑〉, and refer to that frequency as f̄c.

An additional advantage of the 100 mK temperature is that it narrows the cy-

clotron and anomaly lines, which are primarily broadened by the same QND coupling

that allows cyclotron and spin state-detection [86]. In this case, it transfers axial

energy into cyclotron and anomaly frequency shifts, so a lower axial temperature

reduces the linewidth. We resolve the lines via single-quantum spectroscopy by ap-

plying drives at discrete frequencies, looking for excitations, and building a histogram

of the results.

The electrodes that establish the electrostatic potential form a high-Q microwave

resonator at the cyclotron frequency, allowing cyclotron energy to couple into cavity

modes. These coupled oscillators alter the cyclotron damping rate and shift the fre-

quency in ways that depend on the cyclotron–mode detuning. The former can be a

great advantage; by tuning the cyclotron frequency far from any cavity resonance, we

inhibit spontaneous emission by up to 100 times its free-space value, allowing more

time to detect cyclotron transitions before they decay. The frequency shifts, how-

ever, lead directly to shifts in the g-value and were a major part of the uncertainties
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in the 1987 and 2006 measurements. In both 2006 and this thesis, we control the

location of the cavity modes through the trap geometry and control the coupling of

the cyclotron motion to them by adjusting the relative detuning of the cyclotron and

mode frequencies. By using a cylindrical electrode geometry [87], invented precisely

for our purpose, the electromagnetic modes of the cavity as well as their coupling to

an electron may be analytically calculated [79, 80]. Aided by two independent tech-

niques that use a cloud of electrons or the single electron itself to probe the cavity

mode structure (Chapter 5), we measure g at four magnetic fields with cavity shifts

spanning over thirty times our g-value uncertainty, demonstrate our understanding

of the shifts, and at some fields nearly eliminate this once-dominant uncertainty.

Self-excitation of the electron axial motion [88], with a high signal-to-noise ratio

from the resulting large but stable oscillation amplitudes, enhances our ability to

detect the cyclotron state before it decays. We may thus make measurements closer

to cavity modes, where the cyclotron damping rate is higher and the g-value shift

larger, in order to compare measured g-value shifts to those predicted from cavity-

mode calculations.

The cyclotron and anomaly lines exhibit slight departures, which we do not fully

understand but attribute to magnetic field fluctuations, from their expected line-

shapes, limiting our measurement by adding a model dependence to their interpreta-

tion. Our primary analysis technique uses an invariant property of the mean of the

expected noise-free lineshapes to calculate g. In the presence of noise, this weighted-

mean method yields identical results, provided the noise spectrum is symmetric. A

second method, fitting the data to a lineshape, checks the results but requires the
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adoption of a specific model for the noise distribution (we choose a Gaussian). These

methods are discussed in Chapter 4, and their relative agreement quantifies a line-

shape model uncertainty (Section 6.1), which dominates the measurement. In addi-

tion, data at two of the four fields at which we measure g have higher axial tempera-

tures than the others for reasons not yet understood, though a deliberate temperature

increase found no systematic shift.

With new techniques suggested to increase the magnetic field stability (Chap-

ter 3), narrow the resonance lines, and speed-up the measurement’s rate-limiting step

(Chapter 7) as well as several spin-off experiments already underway (Chapter 9),

many opportunities lie ahead.



Chapter 2

The Quantum Cyclotron

Our quantum cyclotron [85] consists of a single electron trapped with static elec-

tromagnetic fields and cooled to the quantum-mechanical ground state of its cyclotron

motion, allowing quantum-jump spectroscopy of the cyclotron and anomaly transi-

tions. We detect the cyclotron and spin states through a quantum nondemolition

coupling to the axial motion, which is damped by a cryogenic amplifier to produce

our signal. Self-excitation of the axial motion increases the signal-to-noise ratio. This

chapter describes the techniques used to make a stable trapping potential and to

interact with the electron.

2.1 The Penning Trap

The Penning trap confines charged particles through a combination of static mag-

netic and electric fields. A homogeneous magnetic field, Bẑ, restricts the particle’s

transverse motion, pinning it in cyclotron motion about a field line. A superimposed

36
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magnetron
motion

cyclotron
motion

axial
motion

Figure 2.1: Cartoon of an electron orbit in a Penning trap. The relative
amplitudes and frequencies of the motions are not to scale and the cyclotron
“motion” is actually a quantum-mechanical stationary state.

electrostatic quadrupole, V ∼ 2z2 − ρ2, confines its axial motion along that field

line. The radial component of the quadrupole is anti-trapping; it slightly shifts the

cyclotron frequency and introduces a third motion, the “magnetron” motion, that is

intrinsically unstable but has a damping time so long that it is effectively stable. In

addition, Section 2.3.7 discusses a technique we routinely use to reduce the radius of

the magnetron motion by rolling it up the radial potential hill.

Our trap is composed of a high-homogeneity 6 T superconducting solenoid, man-

ufactured by Nalorac Cryogenics Corporation, and five gold-plated-silver electrodes,

shown in Fig. 2.2. Biases on the ring and endcap electrodes establish the electrostatic

quadrupole, and the compensation electrodes allow for adjustments to its harmonic-

ity. Section 2.4 discusses our use of feedback to allow harmonic axial motion over

a large range of amplitudes. In addition to providing axial confinement, the trap

electrodes form a high-Q microwave resonator, the modes of which can couple to the
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Figure 2.2: Sectioned view of the Penning trap electrodes

electron cyclotron motion. Since this coupling is an important systematic effect (see

Chapter 5), we use cylindrical geometry for the trap electrode cavity, creating modes

with well-defined, analytically calculable properties.

To load electrons, we put a potential of several hundred volts on an atomically

sharp tungsten rod, which field-emits high energy electrons through a hole in the

bottom endcap electrode. These electrons hit the top endcap electrode, releasing

some gas. Through collisions with this gas, some electrons lose enough energy to fall

into the trap. Trapping a single electron often begins with loading many electrons

then follows an iteration of inverting the electrostatic potential to discard them and

reloading with a lower voltage on the field-emission point or for a shorter time. Once



Chapter 2: The Quantum Cyclotron 39

parameter value coefficient value

ρ0 4549 µm C
(0)
2 0.125

z0 3833 µm D2 -0.0003
∆zc 766 µm C

(0)
4 -0.023

d 3538 µm D4 -0.066
B 5.36 T c1 0.784
VR 101.4 V c3 0.320
Vcomp 74 V

Table 2.1: Typical trap parameters and anharmonicity coefficients, with defi-
nitions and relationships defined in the text. The magnetic field and electrode
biases are adjusted to change the trap frequencies. The trap dimensions in-
clude thermal contraction to 0.1 K.

the appropriate loading parameters have been characterized, it is often easier to load

a single electron by beginning with the field-emission-point potential too low and

increasing it until loading “something.” We ensure it is only one by measuring its

axial signal strength, axial damping rate, and the change in its magnetic moment

with a single cyclotron jump, each of which changes in discrete steps for low numbers

of electrons.

2.1.1 Trap frequencies and damping rates

The typical electrode bias configuration has the endcaps grounded, the ring at

potential VR, and the compensation electrodes at potential Vcomp.1

The axial frequency is given by

νz =
1

2π

√
eVR
md2

(1 + C2). (2.1)

1Here, we define the potentials VR and Vcomp as we apply them in the experiment. Other articles,
e.g., [84], define the trapping potential in terms of V0 and Vc that are related to our potentials by
V0 = −VR and Vc = Vcomp − VR/2.
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Here, d is a characteristic trap dimension calculated in terms of the trap radius, ρ0,

and half-height, z0,

d2 =
1

2

(
z2

0 + ρ2
0/2
)
, (2.2)

and C2 is the coefficient of the second-order term in an expansion of the trapping

potential in spherical coordinates:

V = −VR
z2 − ρ2/2

2d2
− VR

2

∞∑
k=0
even

Ck

(r
d

)k
Pk(cos θ). (2.3)

The expansion uses both cylindrical (ρ) and spherical (r) radii, and Pk(x) are Legendre

polynomials. The Ck depend on the trap geometry and the ratio of the ring and

compensation electrode potentials. It is convenient to make this dependence explicit

by writing

Ck = C
(0)
k +Dk

(
1

2
− Vcomp

VR

)
, (2.4)

where the C
(0)
k and Dk now depend only on the trap geometry. The relevant expres-

sions for calculating the coefficients may be found in [87, 84]; Table 2.1 lists some

values for our trap. A useful trick when designing a trap is to make the aspect ratio

and compensation electrode height, ∆zc, such that D2 = 0. In such an “orthogonal-

ized” trap, C2 (and thus νz) is independent of Vcomp, which is used to tune the leading

anharmonicity coefficient, C4, to zero [87].

In general, the anharmonic terms in the electrostatic potential add a small depen-

dence on axial amplitude, A, to the axial frequency ([84, Sec. IX] and [89, Sec. 2.2]):

νz(A) ≈ νz

[
1 +

3C4

4 (1 + C2)

(
A

d

)2

+
15C6

16 (1 + C2)

(
A

d

)4
]
. (2.5)

Here, νz is the zero-amplitude axial frequency of Eq. 2.1, and we have assumed that

C2
4 � (1 + C2)C6, which is typically valid.
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motion frequency damping

magnetron νm ≈ 133 kHz γ−1
m ≈ 4 Gyr

axial νz ≈ 200 MHz γ−1
z ≈ 0.2 s

cyclotron νc ≈ 150.0 GHz γ−1
c ≈ 5 s

spin νs ≈ 150.2 GHz γ−1
s ≈ 2 yr

Table 2.2: Trap frequencies for the parameters listed in Table 2.1. The
magnetron and spin damping rates are calculated from radiative decay and
are too small to measure. The axial damping rate reflects its coupling to
a detection circuit and not the free-space radiative damping, which has a
timescale of days. The cyclotron decay time is controlled by tuning the
cyclotron frequency relative to the radiation modes of the trap cavity, greatly
altering its 90 ms free-space value.

In free-space, a magnetic field, B, determines the cyclotron and spin frequencies,

given by

νc =
1

2π

eB

m
(2.6)

νs = 2µB/h =
g

2
νc, (2.7)

where Eq. 2.7 uses the definition of the electron magnetic moment given in Eq. 1.1.

The electrostatic quadrupole leaves the spin degree of freedom unchanged but sepa-

rates the radial motion into two degrees of freedom with frequencies given by [84]

ν± =
1

2

(
νc ±

√
ν2
c − 2ν2

z

)
, (2.8)

which are a slightly modified cyclotron frequency and the aforementioned magnetron

frequency

ν ′c = νc − νm (2.9)

νm =
ν2
z

2ν ′c
. (2.10)
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Of the four electron degrees of freedom, only the cyclotron motion has a natu-

ral damping rate at an experimentally-relevant timescale. Cyclotron motion decays

through synchrotron radiation with a free-space rate of

γc =
1

4πε0

4e2ω2
c

3mc3
, (2.11)

which is around 90 ms for a typical cyclotron frequency. As discussed in Chapter 5,

we use the electromagnetic modes of the trap cavity to alter this rate by controlling

the density of states into which the cyclotron motion can radiate. By tuning the cy-

clotron frequency between mode frequencies, for example, we can inhibit spontaneous

emission by factors of over 100, producing lifetimes of excited cyclotron states that

exceed 10 s. We also alter the free-space damping rate of the axial motion with a

resonant detection circuit and feedback (Section 2.3.3 and Section 2.4).

2.1.2 The Brown–Gabrielse invariance theorem

The discussion thus far has assumed an ideal Penning trap with a quadrupole

described exactly by V ∼ 2z2 − ρ2 and perfectly aligned with the magnetic field. A

real trap will have some misalignments of the electrodes, both with the magnetic field

and with each other, as well as machining imperfections. After relaxing some of these

assumptions and examining a trap whose quadrupole is elliptical and misaligned with

respect to the magnetic field, Brown and Gabrielse derived an invariance theorem in

which the free-space cyclotron frequency can be expressed in terms of the measured

eigenfrequencies of the trap (here denoted with bars), irrespective of the degree of

ellipticity or misalignment [90], [84, Sec. II.D]:

ν2
c = ν̄2

c + ν̄2
z + ν̄2

m. (2.12)
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In addition, for a well-spaced hierarchy of trap frequencies,

ν̄2
c � ν̄2

z � ν̄2
m, (2.13)

the free-space cyclotron frequency may be approximated as

νc = ν̄c +
ν̄2
z

2ν̄c
(2.14)

with relative corrections of the order (ν̄z/ν̄c)
4 ≈ 10−12 times the square of the mis-

alignment or ellipticity ≈ (10−2)
2
. While Eq. 2.14 is strikingly similar to Eq. 2.9, it

is important to recognize the underlying hierarchy assumption, which may not be

satisfied in cases such as trapped ions. For a single electron, however, it relieves us

of the necessity of a precision measurement of the magnetron frequency.

2.2 Cooling to the Cyclotron Ground State

In order to perform single-quantum-jump spectroscopy, we must cool the electron

cyclotron motion to its ground state. Since that motion is coupled radiatively to the

trap electrodes, we simply cool the electrodes far below the energy spacing between

cyclotron levels, hνc/kB ≈ 7.2 K. Removing the blackbody photons from that part of

the spectrum reduces the average cyclotron occupation number, 〈n〉. Mounting the

electrodes on a dilution refrigerator running at 100 mK cuts 〈n〉 to 10−32, a level at

which we would expect thermal cyclotron excitations to be spaced by times longer

than the age of the universe.

Fig. 2.3 is a diagram of the assembled apparatus. The superconducting solenoid is

entirely self-contained, with a bore that can operate from room temperature down to
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Figure 2.3: The entire apparatus
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77 K. It possesses shim coils capable of creating a field homogeneity better than a part

in 108 over a 1 cm3 volume and has a special “shield” coil that reduces fluctuations

in the ambient magnetic field by over 150 (see Section 3.1 and [91]). When properly

energized, it achieves field stability better than a part in 109 per hour, and we regularly

observe drifts below 10−9 per night.

The trap electrodes are mounted in thermal contact with the mixing chamber of

a custom-designed Oxford Instruments Kelvinox 300 dilution refrigerator. They are

housed within a separate vacuum enclosure that is entirely at the base temperature.

Measurements on an apparatus with a similar design but at 4.2 K found the vacuum

in the enclosure to be better than 5 × 10−17 torr [92]; our lower temperature should

further reduce any background gas, allowing the retention of the same electron indef-

initely. Sitting atop the magnet is a large bath of liquid helium with a tail to lower

the bore temperature to 4.2 K and a 115 L volume that allows continuous operation

of the refrigerator with five to seven days between liquid helium fills.

2.3 Interacting with the Electron

2.3.1 Biasing the electrodes

To ensure stability of the axial frequency, we take great care with all connections

to the electrodes. Floating supplies source all DC biases on twisted pairs, which pass

through numerous LC and RC filters to eliminate any noise that might heat the axial

motion. In order to avoid ground loops, all ground connections are made on the trap

vacuum enclosure’s top flange, the pinbase, which contains the electrical feedthroughs
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into the enclosure. Fig. 2.4 contains the overall wiring diagram for the trap electrodes.

As mentioned above, the typical bias configuration minimizes the number of power

supplies by keeping the endcaps grounded and raising the ring to approximately 100 V.

Since the axial frequency goes as the square root of the trapping potential (Eq. 2.1),

the relative voltage stability need only be half the desired frequency stability. In

order to keep the 200 MHz axial frequency stable to within the 1 Hz axial line width,

we require voltage stability at the 10 ppb level (1 µV ). Our primary voltage source

is a Fluke 5720A voltage calibrator, which has a specified stability of 500 ppb over

24 hours. The Fluke charges a 10 µF metalized polypropylene film capacitor, which

is kept at the refrigerator’s base temperature and provides the short-term stability

for the axial potential. Along with the capacitor, two resistors form a large RC

filter (time constant over 15 min); a 1 MΩ resistor is at 100 mK and a 100 MΩ

resistor is at room temperature so it can be bypassed for quick voltage changes. We

monitor the ring voltage through the axial frequency and actively adjust the bias

by charge-pumping the capacitor with 50 ms pulses from a BiasDAC [93], a low-

drift, computer-controlled digital to analog converter (DAC) that is manufactured

in-house at the Harvard Electronics Instruments Design Lab. Normally at 0 V except

during the pulse, the BiasDAC voltage is stacked on top of the Fluke output, which is

updated after the charge-pump to maintain long-term stability. Because of the large

resistances in the ring RC filter, any leakage resistance must be eliminated or it will

form a voltage divider with the 100 MΩ resistor.

With an orthogonalized trap configuration, the compensation electrode potentials

are important for making the trap harmonic, but their affect on the axial frequency is



Chapter 2: The Quantum Cyclotron 47

1
 n

F

3
0

-F
ir
s
t 

S
ta

g
e

 G
 (

+
)

F
ir
s
t 

S
ta

g
e

 G
 (

-)

1
.0

 m
H

F
ir
s
t 

S
ta

g
e

 D
 (

-)

0
.2

2
 µ

F

0
.2

2
 µ

F

0
.2

2
 µ

F

1
 n

F
1

 n
F

1
 n

F

F
IR

S
T

 S
T

A
G

E
 A

M
P

L
IF

IE
R

1
 n

F

1
0

 n
F1

 n
F

1
0

0
 p

F

0
.2

2
 µ

H

1
0

 µ
F

1
0

0
 Ω

1
.0

 p
F

F
ir
s
t 

S
ta

g
e

D
 (

+
)

+ -

S
B

 D
ri
v
e

1
0

 p
F

P
IN

B
A

S
E

1
 n

F

C
o

m
p

 C
h

e
c
k

1
2

 n
H

1
8

0
 n

H

2
.6

 p
F

1
 n

F

+
T

o
p

E
n

d
c
a

p
0

.1
 µ

F

1
 n

F

1
0

0
 k
Ω

0
.2

2
 µ

F

1
.0

 m
H

1
.0

 m
H

1
.0

 m
H

1
.0

 m
H

1
.0

 m
H

R
in

g

1
 n

F

1
 n

F

0
.1

 µ
F

1
 n

F

-+

B
o

tt
o

m
E

n
d

c
a

p
0

.1
 µ

F
1

 n
F

1
 n

F

1
.0

 m
H

1
.0

 m
H

1
0

 p
F

A
n

o
m

a
ly

, 
R

in
g

,

E
n

d
c
a

p
 D

ri
v
e

 

1
 n

F

+ -

F
E

P

C
o

m
p

s

A
m

p
 T

e
m

p
 S

e
n

s
o

r

T
o

u
c
h

S
e

n
s
o

r 
1

 n
F

1
 µ

F

1
.0

 m
H

1
.0

 m
H

1
 n

F
 

1
.2

 µ
H

~
 1

0
0

 m
K

~
 1

 K

~
 3

0
0

 K
 

T
E

M
P

E
R

A
T

U
R

E
 C

O
L

O
R

 C
O

D
E

1
 n

F

S
E

C
O

N
D

 S
T

A
G

E
 A

M
P

L
IF

IE
R

1
0

0
 Ω

1
 n

F

R
F

D
C

B
ia

s
 T

1
0

0
 M

H
z

H
P

 F
ilt

e
r

5
 M

H
z

L
P

 F
ilt

e
r M

it
e

q
 A

m
p

S
ig

n
a

l

S
e

c
o

n
d

 S
ta

g
e

D
 (

+
)

0
.2

2
 µ

F

S
e

c
o

n
d

 S
ta

g
e

 

G
 (

+
)

S
e

c
o

n
d

 S
ta

g
e

D
 (

-)
 

S
e

c
o

n
d

 S
ta

g
e

G
 (

-)
 

1
2

 n
H

2
.6

 p
F

1
8

0
 n

H

1
 n

F

1
.0

 m
H

0
.2

2
 µ

F

1
.0

m
H

0
.2

2
 µ

F

1
.0

m
H

0
.2

2
 µ

F

1
.0

 m
H

1
 n

F

1
 k
Ω

2
0

 k
Ω

 
4

3
 n

H

8
2

0
 n

H

4
7

0
 n

H

1
 n

F

1
 n

F

1
 n

F

1
 n

F

1
 n

F
1

 n
F

T
ra

n
s
m

is
s
io

n
 L

in
e

 T
ra

n
s
fo

rm
e

r

H
e

a
t 

S
in

k

1
 n

F

1
 n

F

T
ri
m

C
o

a
x
ia

l

R
e

s
o

n
a

to
r

4
0

 Ω
4

0
 Ω

1
0

 Ω

4
0

 Ω
4

0
 Ω

1
0

 Ω

1
 M
Ω

 

1
 M
Ω

 
1

 M
Ω

 

1
 M
Ω

 
1

 M
Ω

 

1
0

 M
Ω

1
M
Ω

 
1

 M
Ω

1
0

 M
Ω

 
1

 M
Ω

 

1
 M
Ω

 
1

 M
Ω

1
 M
Ω

 
1

 M
Ω

 

1
 M
Ω

 

1
 M
Ω

 
1

 M
Ω

1
 M
Ω

 

1
0

0
 M
Ω

 

1
.2

 µ
H

1
.2

 µ
H

F
ig

u
re

2.
4:

T
ra

p
el

ec
tr

o
d
e

w
ir

in
g

d
ia

gr
am



Chapter 2: The Quantum Cyclotron 48

small, reducing their stability requirement. With the measured frequency dependence

of -2.00 Hz/mV, they need only be stable to 500 µV out of 74 V (7 ppm). To bias

the compensation electrodes, we stack three BiasDAC channels on top of the Fluke

output, providing a range for Vcomp of within 50 V above or below VR.

While the endcaps are normally grounded, we raise their potential above the ring’s

whenever removing electrons from the trap in order to prevent hysteretic effects in the

ring’s 10 µF capacitor. The endcap bias filters have shorter time constants (100 ms)

than the ring’s to allow for rapid changes of the axial potential. For example, an equal

bias on each endcap allows detuning of the axial frequency from the tuned circuit

resonance to decrease the axial damping rate. We have found that hysteresis in the

endcap capacitors during rapid detuning can be overcome by briefly overcompensating

upon retuning. For example, when switching from the endcaps detuned at −0.1 VR

to the endcaps grounded, one might spend 0.5 s at 0.1 VR. The actual magnitude

and length of this pre-retune bias is determined by trial and error. The detuning and

retuning is done via relay2 so that the endcaps can be retuned simply by shorting

them to ground.

Oppositely biasing each endcap offsets the potential minimum and moves the

electron along the axis of the trap. A pair of 10 MΩ resistors, with resistances matched

to better than 500 ppm at 4.2 K, facilitates an antisymmetric bias by allowing a

single potential, VA, to be applied between the “high” leads of each electrode, while

the “low” leads are left unconnected, forcing the same current to flow through both

resistors, which are grounded at the pinbase (see Fig. 2.5). This current sets the

endcap biases of ±VA/2; since the resistors are well-matched, any noise in VA affects

2Coto Technology reed relay, P/N 3501-05-511
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100 mK1 K

- 26 V

100 V

300 K

10 MΩ

10 MΩ

Normal
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Dumping

Electrons

Symmetric 

Bias

Antisymmetric 

Bias

VA

VEC

BiasDAC

or

battery

battery

only

200 V

Figure 2.5: Typical bias configurations for the top and bottom endcaps. For
simplicity, only components affecting DC operation are shown. The complete
wiring schematic is shown in Fig. 2.4

both electrode biases, yielding a more stable potential than if each had its own voltage

source. We typically source VA with a battery because the BiasDAC “low” is isolated

from ground by a 1 MΩ resistor and not truly floating.

The electrostatic potential of an antisymmetric bias my be expanded in a manner

similar to Eq. 2.3 [87, 84]:

V =
VA
2

∞∑
k=1
odd

ck

(
r

z0

)k
Pk(cos θ). (2.15)

There is a similar expansion for an antisymmetric potential applied to the compen-

sation electrodes, but we do not use that configuration in this work. To first order,

the shifted potential minimum, ze, is given by [87, 84]

ze
z0

=
1

2

(
d

z0

)2(
VA
VR

)
c1

1

1 + C2

. (2.16)

The altered electrostatic potential shifts the axial frequency, given by [87, 84]

∆νz
νz

= −3

4

(
d

z0

)4
c1c3

(1 + C2)2

(
VA
VR

)2

. (2.17)



Chapter 2: The Quantum Cyclotron 50

2.3.2 Driving the axial motion

Driving the electron at radio frequencies is accomplished by modulating the elec-

trode potentials. We wish to avoid any perturbation to the ring potential and we

use the top endcap electrode for detection (see the next section), so we apply most

rf drives to the bottom endcap. One may write a bottom endcap modulation of

magnitude VD and frequency ωD as the sum of two modulations applied to both end-

caps: a symmetric drive, −VD cos(ωDt)/2, and an antisymmetric drive, VD cos(ωDt)

(these cancel at the top endcap). The antisymmetric drive produces the potential of

Eq. 2.15 near the trap center. In particular, it creates an oscillating electric field that,

for ωD ≈ ωz, is capable of driving the axial motion directly.

The symmetric drive adds a modulation to the axial potential, which has a time-

dependent depth of VR+VD cos(ωDt)/2. When substituted for VR in Eq. 2.1, the axial

frequency becomes time-dependent,

ω2
z → ω2

z

(
1 +

VD
2VR

cos(ωDt)

)
= ω2

z (1 + h cos(ωDt)) , (2.18)

where we have introduced a dimensionless frequency modulation strength h ≡ VD/(2VR).

We have used such frequency modulation in two ways. First, a slow drive with

ωD � ωz produces sidebands at ωz ± ωD, and driving at one of these sidebands can

excite the axial motion. This slow modulation technique is one way to avoid an axial

drive feeding through to the top-endcap detection circuit because one can arrange

the sideband to be far from the circuit resonance. Second, a strong modulation at

ωD ≈ 2ωz can excite a parametric resonance displaying a wealth of phenomena includ-

ing threshold energies and spontaneous symmetry breaking; we explore this technique

further in Section 5.2.
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The drive signals are carried from room temperature to the electrodes via 50 Ω

semi-rigid coaxial transmission lines, which are heat-sunk at several temperatures to

reduce the heat load on the dilution refrigerator. To avoid heating the axial motion

with room-temperature 50 Ω Johnson noise, we include 20 dB attenuators at 1 K (see

Fig. 2.4). A transmission-line transformer ensures that the center conductor is well

heat-sunk.

2.3.3 Detecting the axial motion

The axial motion is the only degree of freedom that we detect directly. At

200 MHz, it lies in the radio-frequency (rf) range, which is more experimentally ac-

cessible than the microwave (sometimes called millimeter-wave) range of the 150 GHz

cyclotron and spin frequencies. Nevertheless, the standard rf techniques must be care-

fully tailored for our low-noise, cryogenic experiment. The electron axial oscillations

induce image currents in the trap endcaps. We send this current through an effective

resistor, damping the motion and creating a voltage signal that we amplify with two

single-transistor cryogenic amplifiers.

The current, I, induced in the endcap electrodes is proportional to the electron

velocity, ż [84, Sec. III],

I =
ec1

2z0

ż, (2.19)

where c1, often called κ in this context, is the same antisymmetric expansion coeffi-

cient seen in Eq. 2.15. An effective resistance, R, arises from intrinsic losses in an LC

circuit that is tuned to resonate at the axial frequency and composed of the capaci-

tance between trap electrodes, C, and a home-made inductor, L, which is connected



Chapter 2: The Quantum Cyclotron 52

to the top endcap. The losses in the inductor give the LC circuit a finite Q. On

resonance, the inductor and capacitor reactances cancel, and the circuit has a purely

resistive impedance of magnitude [94, Ch. 2]

R =
Q

ωzC
= QωzL. (2.20)

Since the electron signal is the voltage V = IR and the primary noise source, John-

son noise, only goes as R1/2, increasing the circuit Q increases the signal-to-noise.

Dissipation of the image currents in the tuned circuit resistance damps the electron

axial motion at a rate [84, Sec. III]

γz =

(
ec1

2z0

)2
R

m
. (2.21)

In our first-stage amplifier, whose input network is the LC circuit above, the

200 MHz axial frequency and 13 pF trap capacitance would require a traditional

inductor coil of a turn or two, a design incompatible with our tunability and high-Q

requirements. Instead, we use the distributed inductance of a coaxial transmission line

less than a quarter-wavelength long. The Q of the tuned circuit is around 600. The

signal is amplified by a single-gate high electron mobility transistor (HEMT).3 The

HEMT output impedance is matched to a 50 Ω transmission line via a “π-network”

and a resistor and inductor in parallel form a suppression circuit to add loss at high

frequencies. (The amplifier schematics appear in Fig. 2.4 and complete details may

be found in [89, Ch. 4].) In order to avoid feedback in the amplifier, it is crucial that

the input network be tuned slightly above the output network resonance.

Two other crucial features of our first-stage amplifier relate to its cryogenic envi-

ronment. First, since the dilution refrigerator can tolerate a heat-load of only 50 µW

3Fujitsu FHX13LG
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at 100 mK, the HEMT is operated three orders of magnitude below its 10 mW in-

tended power output. Second, the HEMT must be reliably heat-sunk because the

coupling of the electron and the tuned circuit keeps the electron in thermal equilib-

rium with the amplifier. Our precision measurements require the axial temperature

to rapidly cool when the amplifier is turned off. In practice, the HEMT is heat-sunk

using indium/tin solder to directly connect a source lead to a large block of silver,

which is mounted on the silver tripod that hangs below the mixing chamber.

A second-stage cryogenic amplifier, mounted on the refrigerator still, counteracts

the attenuation of the thermally-isolating but lossy stainless steel transmission lines

and boosts the signal above the noise floor of the first room-temperature amplifier. Its

design is conceptually similar to that of the first-stage amplifier, though the second-

stage input network uses surface-mount components and has a correspondingly lower

Q and higher bandwidth. The still can handle a much higher heat-load, and we

typically dissipate 250 µW with the second-stage amplifier.

At room temperature, immediately after exiting the refrigerator’s inner vacuum

chamber but still within an rf-shielded box, the signal passes through a bias-T (to

allow the second-stage drain to be biased down the signal line), a 100 MHz high-pass

filter, and a commercial broadband amplifier.4 It then follows the detection chain

pictured in Fig. 2.6, passing through additional stages of broadband amplification

with the bandwidth restricted via commercial filters5 and a home-made filter with a

2 MHz bandwidth. For easy detection via a signal analyzer6 or data acquisition card,7

4Miteq AU-2A-0110-BNC
5Mini-Circuits BHP-200 and BLP-200
6HP 3561A
7National Instruments PCI-4454



Chapter 2: The Quantum Cyclotron 54

5
0

 Ω

ν
a

2
0

0
 M

H
z

5
0

 Ω

5
0

 Ω
5

0
 Ω

2
5

 M
H

z
1

0
 d

B
ν

S
B

1
 d

B
3

 d
B

2
0

 d
B

1
5

0
 M

H
z

D
S

P

S
ig

n
a

l

A
n

a
ly

z
e

r

P
C

D
A

Q

X
-t

a
l

X
-t

a
l

ν
z
 -

 5
 M

H
z

100 MHz

S
p

e
c
tr

u
m

A
n

a
ly

z
e

r

+
3

0

+
2

0

+
2

0

2
0

0
 M

H
z

2
0

0
 M

H
z

2
 d

B
6

 d
B

2
 d

B

2
0

0
 M

H
z

2
 M

H
z
 B

W

2
 d

B
6

 d
B

10.7 MHz

5
0

 Ω
F

e
e

d
-

th
ru

3
0

 d
B

2
0

 d
B

1
.9

 M
H

z

1
 k

H
z
 B

W

6 kHz BW

5
 M

H
z

3
 d

B
4

.9
9

5
 M

H
z

+
3

0

+
3

0

+
3

0
+

3
0

+
3

0
2

0
 d

B

2
0

 d
B

+
3

0

F
ig

u
re

2.
6:

R
ad

io
fr

eq
u
en

cy
d
et

ec
ti

on
an

d
ex

ci
ta

ti
on

sc
h
em

at
ic

.
D

et
ai

le
d

sc
h
em

at
ic

s
fo

r
th

e
co

m
p

on
en

ts
w

it
h
in

th
e

d
as

h
ed

li
n
es

m
ay

b
e

fo
u
n
d

in
F

ig
.2

.4
.



Chapter 2: The Quantum Cyclotron 55

the 200 MHz signal is mixed down twice: first with a local oscillator8 at νz − 5 MHz

and then with a local oscillator9 at 4.995 MHz to a final frequency of 5 kHz.

In order to produce a detectable signal, the electron must be driven high above

its thermal amplitude. Indeed, driven by the tuned circuit’s Johnson noise alone, the

electron appears on the amplifier resonance as a dip of width γz [95, 84]. In the past,

axial excitation has been created by modulating the potential on the bottom endcap

with an independent oscillator that also serves as a reference in a phase-sensitive

detection scheme, see e.g., [84, 96]. We now use the electron itself as the oscillator,

feeding the detected signal back as a drive [88]. This self-excited oscillator allows us

to get much larger signal-to-noise and is discussed separately in Section 2.4. With

either excitation scheme, it is important to avoid the feedthrough that arises when

the first-stage amplifier picks up the drive and saturates. This can be eliminated by

simultaneously driving two electrodes, e.g., the bottom endcap and a compensation

electrode, with their relative amplitudes and phases adjusted to destructively interfere

at the top endcap. Alternately, we have applied a slow modulation, e.g., 5 MHz, to

the bottom endcap, allowing us to drive the axial motion at the sideband νz−5 MHz,

far enough away from the amplifier resonance to decrease the feedthrough. In order

to control the application and removal of the drives, all rf lines have switches10 that

may be toggled via software11 or a timing pulse.

8Programmed Test Sources PTS-250
9SRS DS345

10HP 8765A
11Using an HP 87130A switch driver
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2.3.4 QND detection of cyclotron and spin states

Since the cyclotron and spin frequencies are too high for practical direct ob-

servation, we apply a weak perturbation to the magnetic field that couples these

states to the axial potential. Called a “magnetic bottle,” a pair of nickel rings,

shown in Fig. 2.2, saturate in the magnetic field with magnetization µ0MNi/(4π) =

0.0485 T [84]. To lowest order, the rings offset the magnetic field by approximately

-0.7%. This is important when comparing NMR measurements of B with those from

the electron cyclotron frequency, but for our present purposes it merely redefines the

magnetic field strength. More important is the next-order perturbation; for a bias

field B ‖ ẑ, it is [84, Sec. VI]

B′ = B2

[(
z2 + ρ2/2

)
ẑ− zρρ̂

]
, (2.22)

with B2 calculated to be 1474(31) T/m2 and measured to be 1540(20) T/m2 (Fig. 2.7).

A different magnetic bottle of nominally identical geometry was measured to have

B2 = 1539(12) T/m2 [96, Sec. 4.1]. The disagreement between calculated and mea-

sured values suggests that the magnetization number above, MNi, may be off by a

few percent. High-precision knowledge of B2 is not required for our measurement.

The perturbation from the magnetic bottle alters the axial potential, making it

dependent on the total electron magnetic moment:

H ′z = −µ ·B′. (2.23)

Since the electron is always near the center of the trap and its magnetic moment is

always parallel to the bias field, we can set ρ = 0 and µ ‖ ẑ to get

H ′z = B2µBz
2 (2n+ 1 + gms) , (2.24)
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Figure 2.7: Displacing the electron axially shows the field of the magnetic
bottle.

where the magnetic moment has been written in terms of the Bohr magneton and

the orbital (from cyclotron motion) and intrinsic (from spin) quantum numbers n =

0, 1, 2, . . . and ms = ±1/2; we have neglected a small contribution from the magnetron

motion. The total axial potential is thus

Hz =
1

2
mω2

z0z
2 + 2B2µBz

2

(
n+

1

2
+
g

2
ms

)
, (2.25)

where ωz0 is 2π times the axial frequency in Eq. 2.1. Thus the axial frequency depends

on the cyclotron and spin states, shifting from its bottle-free value by

∆νz
νz

=
2B2µB

(
n+ 1

2
+ g

2
ms

)
mω2

z0

≈ 2× 10−8

(
n+

1

2
+
g

2
ms

)
, (2.26)

where we have made the assumption that B2µB/ (mω2
z0) ≈ 10−8 � 1. A cyclotron

jump (∆n = 1) or a spin flip (∆ms = 1) shifts the axial frequency by 20 ppb, about
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Figure 2.8: Two quantum leaps: A cyclotron jump (a) and spin flip (b)
measured in a QND manner through shifts in the axial frequency.

4 Hz, as seen in Fig. 2.8. The shifts are different by the part-per-thousand difference

between g and 2, but we cannot currently resolve the axial frequency to the 4 mHz

level. In addition to coupling the axial frequency to the cyclotron and spin energies,

the magnetic bottle couples the cyclotron and spin frequencies to the axial energy, at

topic explored in detail in Section 4.2.

The perturbation Hamiltonian of Eq. 2.24 formally commutes with the cyclotron

and spin Hamiltonians, so the determination of the cyclotron and spin states via the

axial frequency is a quantum nondemolition (QND) measurement. In practice, this

means that observing νz does not destroy the state |n,ms〉, and repeated measure-

ments of the cyclotron and spin states will return the same value unless they are

altered through other means, e.g., a cyclotron drive or spontaneous emission.

2.3.5 Making cyclotron jumps

The cyclotron motion, with its frequency nearly a thousand times that of νz,

cannot be driven with rf techniques like modulating the trapping potential because

the coaxial lines would attenuate the drive to nothing. Instead, we use a semi-

optical setup, depicted in Fig. 2.9, in which electromagnetic radiation travels through
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waveguides and is broadcast between microwave horns mounted at room and base

temperatures, focused by teflon lenses.

A drive at νc begins in an Agilent E8251A Performance Signal Generator (PSG)

as νc/10 ≈ 15 GHz. The PSG was purchased with a special low-phase-noise, 10 MHz

oven-controlled crystal oscillator (OCXO) that serves as the timebase for all frequency

synthesizers in the experiment.12 It can also perform amplitude, frequency, and phase

modulation and has a pulse function that is useful for ensuring uniformity of cyclotron

drive lengths. After exiting the PSG, the 15 GHz travels to a microwave circuit

mounted beneath the magnet, passing along the way through a section of waveguide

that removes all subharmonics.

In the circuit, manufactured by ELVA-1 Millimeter Wave Division, an impact

ionization avalanche transit-time (IMPATT) diode multiplies the frequency by ten

and outputs the νc drive at a power of 2 mW. The IMPATT diode was chosen for

its high-power capabilities, which are required for attempts to drive the sidebands of

the cyclotron frequency (Chapter 7). A direct cyclotron excitation, however, takes a

single photon, so the power must be much lower. In order to allow rapid switching

between high and low power, we have several voltage-controlled attenuators in the

waveguide; each pair can nominally attenuate 100 dB, and we have at various times

included one or two pairs. At this level of attenuation, however, the amount of

power leaking through waveguide flanges and elsewhere becomes significant. To plug

these leaks, we use carbon-loaded foam, which attenuates at 150 GHz due to its

12Since our measurement goal is a frequency ratio, we need not trace our timebase to the SI cesium
second but we must still refer all frequencies to a common standard. To aid us in this task, we use a
Spectra Dynamics (SDI) distribution amplifier, P/N HPDA-15RM/A, which distributes the 10 MHz
clock on isolated channels with minimal additional noise.
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Figure 2.9: The microwave system. The transmission lines are a combination
of cables (single lines) and waveguides (double lines) and long runs between
the experiment and the electronics rack are indicated by a break.

high resistivity. Quarter-inch thick sheets from Cuming Microwave Corp.13 stuck

directly on the multiplier and other components are particularly useful, though we

also employ large panels from Emerson & Cuming Microwave Products Inc.14 to arrest

any reflections from nearby materials.

We monitor the microwave power level on a diode immediately after the multiplier.

The system is also equipped with a 141 GHz oscillator and frequency mixer to allow

monitoring the significantly lower power after the first pair of attenuators. In practice,

the 141 GHz oscillator has not proved stable enough for routine use.

The drive exits the multiplier assembly via a horn, which broadcasts the signal

through a window into the magnet bore vacuum. There, several teflon lenses focus

13C-RAM MT 26 / PSA
14ECCOSORB CV-3, unpainted
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it through a window in the tail of the experiment liquid helium dewar. The signal

travels through the liquid helium into the refrigerator’s inner vacuum chamber and

is guided by another horn into a waveguide and finally into the trap electrode cavity.

The last portions of this path can be seen in Fig. 2.3 and Fig. 2.2. Based on the

nominal 2 mW multiplier output and the ability of a full-strength drive to heat the

mixing chamber by tens of microwatts, the drive reaching the low-temperature horn

is attenuated by roughly 20 dB.

The amount that actually makes it into the trap electrodes is much harder to

quantify and likely to be significantly lower. As mentioned in Section 2.1 and dis-

cussed fully in Chapter 5, the trap electrodes themselves form an important part

of this microwave circuit. They are designed to be a high-Q microwave resonator,

including such features as λ/4 choke-flanges at the gaps between electrodes to reflect

leaking power back into the cavity. Since we typically operate at cyclotron frequencies

between cavity modes, one would expect most of the drive power to be reflected.

The main limitation of our current g-value measurement lies in our model of the

cyclotron and anomaly lines, which appear slightly blurred compared to their expected

shape (Section 4.2). We model the blurring as magnetic field noise, but phase noise

on the drive could cause the same effect. Calculations of the expected frequency

deviations based on the signal generator’s specified phase noise and additional noise

from an ideal multiplier, see e.g., [97], suggest they should be over two orders of

magnitude below the level required to explain the blurring. In addition, our prior

measurements [1] saw a similar broadening using different microwave systems [98,

Sec. 2.6] and [83, Sec. 2.3], including a GaAs-Schottky-barrier-diode-based harmonic
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mixer as the frequency multiplier, suggesting that any noise is not from the cyclotron

drive itself.

2.3.6 Flipping the spin

As mentioned in the experimental overview (Section 1.2), we achieve greater pre-

cision by measuring the electron anomaly frequency directly rather than measuring

the thousand-times larger spin frequency. This simultaneous spin-flip and cyclotron

jump is driven with an oscillating transverse magnetic field near the center of the

trap. Since the electron radius vector, ρ, is changing direction at the trap cyclotron

eigenfrequency, ν̄c, the combination of transverse drive and cyclotron motion produces

beat frequencies at ν̄c plus and minus the drive frequency. The spin flips when the

beat frequency equals the spin frequency,

νs = ν̄c + ν̄a, (2.27)

where ν̄a is the anomaly frequency measured in the Penning trap. It is related to the

free-space anomaly frequency through

ν̄a = νs − ν̄c = νs − νc +
ν̄2
z

2ν̄c
= νa +

ν̄2
z

2ν̄c
(2.28)

νa = ν̄a −
ν̄2
z

2ν̄c
, (2.29)

where we have used the approximation for ν̄c of Eq. 2.14.

There are two standard methods for producing the transverse magnetic drive, see

e.g., [99, 81]. The first, which we do not use, splits the compensation electrodes in

half and drives the four halves with relative phases such that they form two effective

current loops producing the desired field. The second drives the electron axially
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through the zρρ̂ portion of the magnetic-bottle gradient, producing the required

oscillating radial field. Although we have split our compensation electrodes in half

for other purposes (see Section 2.3.7), we have solely used the bottle technique.

In the paper for their famous 1987 g-value measurement [2], Van Dyck, Schwin-

berg, and Dehmelt describe the superiority of the electrode current-loop method over

the bottle-driven method, which was limited by the size drive they could apply before

the increased liquid helium boil-off caused instabilities [99]. Our dilution refrigerator

restricts us to even lower powers; nevertheless, we use the bottle-driven method be-

cause our axial frequency is closer to νa, allowing an 8 dB weaker drive to achieve the

same transition rates, and our over-ten-times-lower axial temperature narrows the

anomaly line, decreasing the required drive power by an additional 20 dB.

2.3.7 “Cooling” the magnetron motion

Other than as a correction factor between the cyclotron and anomaly frequencies

in the trap and in free space, we have thus far ignored the magnetron frequency.

With its slow speed and long damping time, it plays little role in our measurement

provided its radius is negligibly small. Because an arbitrarily loaded electron will have

some finite magnetron radius and because various perturbations damp the motion,

increasing the radius, we need a method to add energy to the magnetron degree of

freedom to reduce its radius (it is unbound, so reducing the radius corresponds to

adding energy). This “cooling” is accomplished by coupling the magnetron motion to

the axial motion through a spatially inhomogeneous drive at their sum frequency [84,

Sec. IV]. Using half of a split compensation electrode, the drive at ν̄z + ν̄m creates an
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xz-gradient in the electric potential at the trap center. The cooling continues until

the temperature ratio is equal in magnitude to the frequency ratio,

Tm
Tz

= −νm
νz
, (2.30)

or, equivalently, until their thermally averaged quantum numbers are equal. The

sideband cooling increases the energy in the axial motion as well as the magnetron

motion, but the former stays in thermal equilibrium with the first-stage amplifier on

timescales longer than γ−1
z ≈ 0.2 s. The other sideband of the axial motion, ν̄z − ν̄m

increases the magnetron radius in a similar manner.

An analogous technique can couple the cyclotron motion to the axial and mag-

netron motions. This has the potential to reduce the axial motion to its quantum-

mechanical ground state but only if it is first decoupled from the amplifier by detuning

the axial frequency or physically breaking the electrical connection. Producing a drive

with the required gradient at a sideband of the cyclotron frequency is challenging, and

attempts at simply using a high-powered drive from the microwave system showed

excitation at the sideband frequency but low cooling rates. It may be possible to use

cavity modes with the appropriate geometry to build up the electromagnetic fields.

These ideas are further explored in Chapter 7.

2.4 The Single-Particle Self-Excited Oscillator

Since the electron signal is proportional to its axial velocity, ż (Section 2.3.3),

feeding this signal back as a drive alters the axial damping rate. For a noiseless

feedback loop, the fluctuation-dissipation theorem [100] relates a decreased damping
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rate to lower temperature [101]. An increased feedback gain can excite the electron

to large amplitudes that can be stabilized electronically. Such a self-excited oscillator

(SEO) is ideal for resolving the small frequency shifts caused by cyclotron jumps and

spin flips because it is always resonant and because the large amplitudes increase the

signal-to-noise ratio [88].

The feedback can be analyzed by including a drive force, Fd(t), in the axial equa-

tion of motion,

z̈ + γz ż + ωz(A)2z = Fd(t) /m, (2.31)

which includes the damping, γz, from the tuned circuit (Eq. 2.21) and the amplitude-

dependent axial frequency ωz(A) (Eq. 2.5). It is convenient to parameterize the drive

force as

Fd(t) /m = Gγz ż (2.32)

so unit feedback gain (G = 1) corresponds to exact cancellation of the tuned circuit

damping. Allowing for a relative phase φ between the signal and feedback drive, e.g.,

due to a time delay in the feedback loop, the damping cancellation occurs when [89,

Sec. 6.1]

G cosφ = 1 (2.33)

at a frequency

ν(A, φ) ≈ νz(A) +
γz
4π

tanφ. (2.34)

The self-excitation frequency is a useful diagnostic for adjusting the feedback phase.

For properly-tuned feedback, slowly increasing the gain above G = 1 will initiate

self-excitation at the same frequency as the center of the dip.



Chapter 2: The Quantum Cyclotron 66

Assuming a well-adjusted feedback phase, φ = 0, any deviation from unit gain

leads to exponential growth or decay of the axial amplitude. Since there is nothing

intrinsically stable about G = 1, a useful SEO requires an amplitude-dependent gain

G(A) in order to maintain a fixed amplitude A0. Substituting this gain into Eq. 2.31

yields

Ȧ = −1

2
γzA [1−G(A)] (2.35)

for the time evolution of the amplitude [102].

We regulate the feedback gain by adjusting a voltage-variable attenuator (VVA)15

in response to amplitude deviations from A0. The SEO amplitude is continuously

monitored by a digital signal processor (DSP).16 It reads the 5 kHz mixed-down

axial signal (Section 2.3.3), calculates its discrete Fourier transform, and declares

the signal amplitude to be the height of the bin with the largest magnitude. The

DSP then outputs a voltage, used to control the VVA, that depends on the difference

between this amplitude and the desired amplitude A0. The effective gain is a cubic

polynomial of this difference,

G(A) = 1 + a1 (A0 − A) + a2 (A0 − A)2 + a3 (A0 − A)3 , (2.36)

with the polynomial coefficients, ai, set in the DSP code. For a linear response

function (a2 = 0 = a3), small deviations away from A0 exponentially damp back. We

have found that adjustments to the a3 coefficient aid in decreasing the SEO rise time

from A = 0 to A0, a time that is especially important when attempting to detect

cyclotron jumps with short lifetimes.

15Mini-Circuits RVA-2500
16Texas Instruments TMS320F2812
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Since it ignores all Fourier transform bins except that with the highest amplitude,

the DSP acts as a filter with an effective bandwidth of 8 Hz (the width of each

bin) and a central frequency that tracks the axial frequency. This dynamic filtering

reduces the technical noise in the feedback loop. The total usable bandwidth of the

DSP depends on the number of frequency bins, limited by the physical memory and

available processor time. In our current implementation, we have 64 bins, spaced at

1 Hz intervals to ensure adequate overlap for a smooth response, for a total usable

bandwidth of approximately 64 Hz.

Although we have our choice of oscillation amplitude, a particularly useful one

is the amplitude at which the effects of the C4 and C6 terms of Eq. 2.5 cancel (C4

and C6 are of opposite sign). At this amplitude, often exceeding a few percent of

the trap height, the axial frequency is at a maximum and the oscillation is locally

harmonic despite the anharmonic potential. To a high degree, the axial frequency

loses its amplitude-dependence, and thermal amplitude fluctuations arising from the

detection circuit no longer correspond to frequency fluctuations. Since C4 and C6

depend on the compensation electrode potential, the stable oscillation amplitude may

be changed by adjusting Vcomp.

The large amplitude increases the signal-to-noise ratio (S/N), which may be esti-

mated as the ratio of the signal power, I2R from Section 2.3.3 with |ż| = ωzA, and the

noise power, derived from the Johnson noise of the amplifier acting over a bandwidth

∆f :

S/N =
Psignal

Pnoise

=
I2R

4kT∆f
=
A2ω2

zγzm

4kT∆f
. (2.37)

The anticipated frequency uncertainty, ∆ν, for a given signal averaging time ∆t can
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be estimated from the frequency-time uncertainty principle (∆ν ∆t ≥ 1/(4π)) and

the S/N as [103, Eq. 63]

∆ν ∆t ∼=

√
3

2π2 (S/N)
=

1

ωzA

√
6kT∆f

γzmπ2
. (2.38)

This uncertainty is a reasonable estimate for the resolution we actually observe, al-

though the predicted increase in precision with increasing amplitude eventually breaks

down as the next-order anharmonicity components to Eq. 2.5 become important.

2.5 Summary

Our quantum cyclotron allows detection of single cyclotron jumps and spin flips

via a quantum nondemolition coupling to the axial frequency. Measuring the axial

frequency involves specialized cryogenic amplifiers, enhanced signal from electron self-

excitation, and high stability and careful filtering of all electric potentials and radio-

frequency drives. Magnetic field stability is crucial to maintaining clean cyclotron

and anomaly resonances and forms the topic of the next chapter.
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Stability

Since the cyclotron and anomaly frequencies are both proportional to magnetic

field, their ratio in Eq. 1.38 is, in principle, independent of the field value. In practice,

it takes several hours to measure both frequencies and any magnetic field variation on

shorter timescales will add noise to the measurement. Such fluctuations could arise

from changes in the ambient magnetic field, including the motion of cars and the pow-

ering of the local subway; from the solenoid itself, including flux jumps and internal

stresses; from the motion of the trap electrodes in an inhomogeneous magnetic field,

including apparatus vibration and expansion of the dewar under room temperature

changes; or from the varying magnetic susceptibility of materials.

In this chapter, we discuss our techniques for lowering these fluctuations. We

wish to keep field noise far below 1 ppb, which corresponds to 1 ppt in the g-value.

Despite the efforts described in this chapter, we see noise (discussed in Chapter 4 and

Chapter 6) at the 0.5–1 ppb level, and only careful systematic checks allow us to beat

this noise limit in determining the resonant frequencies. We conclude the chapter by
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Figure 3.1: The subway effect, as measured by a flux-gate magnetometer
in the lab. Were it not for our self-shielding magnet design, these 10 ppb
fluctuations would limit our cyclotron and anomaly frequency resolution.

suggesting ways to further improve the field stability.

3.1 Shielding External Fluctuations

Our primary defense against external field fluctuations is a high magnetic field,

which makes them relatively smaller. Current solenoid designs limit our field to the

few-teslas range, with order-of-magnitude increases impractical, and we typically run

at 5–6 T. Our largest source of magnetic noise is the local subway. It runs daily from

approximately 05:00 to 01:00 and produces normally-distributed field fluctuations of

width ≈ 50 nT (10 ppb) in our lab. Figure 3.1 shows a week of the daily fluctuations

and nightly quiet periods.

These 10 ppb fluctuations would limit us to four hours of data per day if we

could not shield them from the electron. Typical mu-metal techniques are impracti-

cal because the large solenoid field would saturate the shields unless they were placed

far away. Eddy currents in the high-conductivity aluminum and copper cylinders of

the dewars, magnet bore, and fridge help shield high-frequency fluctuations [104]. A
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passive, self-shielding solenoid design cancels the long-term (seconds to hours) am-

bient fluctuations [91]. This design uses the coil geometry to make the central field

always equal to the average field over the coil cross-section, thus making the basic

solenoid property of flux conservation identical to central-field conservation. While it

is possible to make a single solenoid with a self-shielding geometry, such a coil cannot

simultaneously be optimized for homogeneity. We employ a set of superconducting

solenoids that are designed for high-homogeneity and add one additional coil, induc-

tively coupled to the others, with the geometry appropriate for making the entire

network self-shielding. The shielding-factor for our magnet has been measured to be

156 [105], which means the electron only sees 0.06 ppb field fluctuations from the

10 ppb subway noise.

3.2 High-Stability Solenoid Design

Details of the solenoid construction such as superconducting wire choice and wind-

ing method are crucial to the field stability. While some published information exists,

e.g., [106], much of these details lie in the realm of old-magnet-winders’ lore and trade

secrets. Our magnet uses single-core superconducting wire, which facilitates making

the persistent joint that turns the wire into a loop. Any resistance in this joint will

lead to field-decay with an L/R time constant. The use of single-core wire rather than

the now-industry-standard multi-filament wire increases the solenoid’s susceptibility

to flux-jumps [106, Ch. 7] and their resulting field-jumps or magnet quenches, so care

must be exercised in wire selection and coil design to minimize this risk.

Even with a well-designed persistent coil, the simple act of charging the magnet or
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Figure 3.2: The time it takes the magnetic field to settle after charging
strongly depends on the energization technique. This plot shows a partic-
ularly bad drift, which takes over a month to decay below 1 ppb/h. The
magnetic field was measured with the electron cyclotron frequency, while the
drift rate is calculated from linear fits.

changing its field alters the forces in the solenoid itself and the resulting stresses can

take months to stabilize. Figure 3.2 shows a particularly large charging drift. With

care, this drift can be minimized by “over-currenting” the magnet—when changing

the field, overshoot the target value by a few percent of the change, then undershoot

by a similar amount, then move to the desired field, pausing for several minutes

at each point.1 This slow ringing-in to a field presumably helps to pre-stress the

magnet. It was not used during the charging that resulted in the drift of Fig. 3.2, and

such an enormous drift has not been seen any time we have over-currented during

a field change. For most of our g-value data runs, magnet settling has not been a

1We have left the persistent switches energized during these pauses, with the magnet power
supplies continuing to source the solenoid current.
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major source of field drift, and on a typical night the field remains fairly constant,

see e.g., Fig. 4.6.

Many groups have seen improved field stability by regulating the pressure of the

liquid helium around the solenoid [107, 108, 109]. This vapor-pressure regulation

serves to stabilize the temperature of the helium bath and thus of the solenoid itself.

In addition, due to our historical apparatus design (see the next section), temperature

changes that alter the length of certain dewar parts can move the solenoid relative to

the trap electrodes, which could change the field seen by the electron. To minimize

such effects, we regulate the pressures of all five cryogen reservoirs [83] to ≈ 50 ppm.

3.3 Reducing Motion in an Inhomogeneous Field

Our superconducting magnet is equipped with nine shim coils that allow the field

homogeneity at the center to be tuned to better than 10−8 over a 1 cm diameter

sphere. We have built an adjustable-height spacer that allows us to position the

refrigerator such that the trap electrodes sit in this homogeneous region [110]. With

the magnet well-shimmed and the electrodes in the flattest field region, if the residual

field gradient is linear, the electron will see a 0.1 ppb field shift if the trap electrodes

move 100 µm.2

Our apparatus is particularly susceptible to such motions because the two parts

of the Penning trap, the solenoid and the electrodes, are supported in vastly different

2Although the amplitude of the electron axial motion routinely exceeds 100 µm when self-excited,
this motion through a linear gradient would appear as a fast modulation of the magnetic field which
would only add axial-frequency sidebands on the cyclotron and anomaly lines rather than blurring
them. A quadratic gradient would merely redefine the magnetic bottle strength of Section 2.3.4. We
are concerned here with motion on timescales slow compared to the inverse-linewidths of Section 4.2.
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Figure 3.3: The separate support structure of the magnet and electrodes
allows for their relative movement with room temperature or cryogen pressure
fluctuations. Here, the electrodes and magnet windings are shown in red and
their support structure in black. The entire apparatus is housed in a chamber
with the air temperature actively regulated via a refrigerated circulating
bath. Several fans increase convection and couple the water temperature to
the air via a radiator.
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ways. As shown in Fig. 3.3, the superconducting solenoid sits on the bottom of the

magnet helium dewar, which hangs from two 304 stainless steel stacks extending from

the magnet top plate. The trap electrodes hang 2.2 m below the mounting-plate of

the dilution refrigerator. That plate sits on an aluminum dewar, which sits on the

aluminum magnet bore. This peculiar arrangement results from the evolutionary

assembly of the apparatus and is not a design “feature.” In Section 3.5, we discuss a

new apparatus, currently under construction, explicitly designed to lock the solenoid

and electrodes together.

3.3.1 Stabilizing room temperature

Because some of the structure establishing the relative location of the trap elec-

trodes and the solenoid is at room temperature, changes in room temperature will

alter this structure and move the electron in the magnetic field. Based on the mate-

rials involved, the estimated expansion coefficient is 30 µm/K, which, assuming the

well-shimmed field mentioned above, corresponds to a field-change of 0.03 ppb/K.

This low field–temperature correlation would be negligible; unfortunately, we have at

various times measured it to be 0.7 ppb/K, 2.7 ppb/K, and 5.3 ppb/K, indicating a

range in our ability to shim the field and to position the electrodes in the flattest field

region (the last number was deliberately measured in a high-gradient region).

The temperature in our lab routinely cycles 1–2 K daily, so we house the apparatus

in a large, insulated, buffer air-mass that we actively regulate to 0.1 K. The boundary

of the regulated zone is a concrete pit, 10′ × 10′ and 8′ deep, sunk into the earth,

and covered with a plywood floor, along with an insulated shed sitting atop a hole
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in the plywood floor. The lower part of the apparatus sits on a large table in the

pit, and the upper part rises above the floor into the shed. Four fans and tubes force

airflow through the hole coupling the pit to the shed and help to keep a uniform

temperature throughout. A refrigerated circulating bath,3 located above the pit and

outside the regulated zone, pumps water into the pit and through an automobile

transmission fluid cooler, heating and cooling the water to maintain constant air

temperature. The transmission cooler was chosen for its ready availability and lack

of ferromagnetic parts. A fan mounted behind the cooler couples the water and air

temperatures. A similar system is described in [111].

3.3.2 Reducing vibration

Vibration can directly move the electrode position, and a 100 µm motion can arise

from movement along the apparatus axis or from a 0.0026◦ swing of the 2.2 m-long

moment-arm of the refrigerator. In addition to their noise and heat, the dilution

refrigerator vacuum pumps create large vibrations. We have gone to great lengths

to isolate these vibrations from our apparatus, including mounting the pumps on

springs4 and installing them in a different room at the end of a 12 m pipe run. The

pump room is located in a free-standing tower that is structurally not well connected

to the remainder of the building, and the vacuum tubes are encased in concrete within

the wall of the tower, coupling the tubes and wall and damping any residual vibration.

Figure 3.4 shows typical vibration levels on the pit floor after moving the pumps, as

3ThermoNeslab RTE-17
4We have found the wire-rope-isolator design particularly effective, e.g., Enidine Inc. WR5-900-

10-S.
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Figure 3.4: Typical vibration levels of the floor on which the experiment
stands (a) and the relative improvement in vibration from mounting the
refrigerator vacuum pumps on springs far away from the experiment (b).
Here, von and voff refer to the velocity spectral density (as in (a)) with the
pumps running or off.

well as the reduced vibration resulting from the move.5 Order-of-magnitude vibration

reductions are seen at frequencies related to the pump motion, though we have seen

no obvious improvement in the quality of our g-value data. The typical vibration

spectrum of Fig. 3.4a indicates a root-mean-square floor displacement of 0.4 µm. This

size displacement could not by itself cause a 0.5 ppb blurring of the resonance lines,

indicating that any vibration-induced field noise must come from a resonance in the

apparatus such as the refrigerator swinging.

One additional source of noise is plotted in Fig. 3.5. It appears as sharp drops

in the electron cyclotron frequency and occurs daily from 06:00 to 15:00 except on

Sundays and holidays. Since it is uncorrelated with ambient magnetic field readings

of a flux-gate magnetometer,6 its origins are presumed to be vibrational. This noise

limits us to taking data for only 60% of the day.

5The measurements in Fig. 3.4 were made with an accelerometer (PCB Piezotronics 393A03). We
independently measured the vibration using a Geospace Geophone GS-11D, which gave comparable
results.

6Macintyre Electronic Design Associates (MEDA) FVM-400
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Figure 3.5: Daytime field noise, seen from 06:00 to 15:00 except Sundays and
holidays. Plotted is the electron cyclotron frequency, offset from an arbitrary
value and with a 2 ppb/h linear drift removed.

3.4 Care with Magnetic Susceptibilities

Temperature-dependent paramagnetism is another source of potential field drift.

Others have documented woes related to the electronic paramagnetism of G-10 that

was not well-anchored thermally [109]. For our apparatus, the most important con-

cern is nuclear paramagnetism [83]. The T−1 dependence of the nuclear magnetization

from the Curie law leads to a T−2 dependence of dM/dT , which can be quite large at

dilution-refrigerator temperatures. We have taken great care to use only low-Curie-

constant materials at base temperature. The electrodes are gold-plated silver, which

has a Curie constant nearly 300 times lower than the usual copper. The insulating

spacers are quartz, 70 times better than the usual MACOR. The remainder of the

pieces are primarily titanium and molybdenum, with silver used where high thermal
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conductivity is important. For details of the trap materials and a table of the rele-

vant Curie constants, see [83, Sec. 3.3]. Temperature-dependent magnetizations only

matter if the temperature fluctuates, and we minimize the base-temperature changes

by regulating the mixing chamber to better than 1 mK with a LakeShore Cryogenics

370AC Resistance Bridge.

3.5 Future Stability Improvements

We currently see magnetic-field noise at the 0.5–1 ppb level, as can be seen in

the nighttime section of Fig. 3.5 and is discussed fully in Chapter 4 and Chapter 6.

Pushing the frequency resolution below our current level will require additional tech-

niques for stabilizing the magnetic field. In addition to the passive shielding from

external field changes described above, an additional shielding factor of 50 to 80 may

be attained by actively monitoring the ambient field and feeding back to a pair of

Helmholtz coils to compensate for the fluctuations [109]. Adding a small heater to

each cryogen reservoir would allow flow regulation in addition to pressure regulation

and would keep the exhaust system, parts of which are structural in our current

apparatus, at a constant vapor-cooled temperature.

The major change required for improved stability is locking the relative positions

of the superconducting solenoid and the trap electrodes. To accomplish this goal,

we have designed an entirely new dilution refrigerator, magnet, and dewar, which is

compared to our existing apparatus in Fig. 3.6. In the new apparatus, the dilution

refrigerator stands on the magnet itself rather than hanging from the top of the dewar.

The axial alignment of the trap electrodes in the magnetic field depends only on the
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Figure 3.6: Side-by-side comparison of a new, high-stability apparatus (right)
and the current one (left). (New apparatus figure courtesy of Janis Research
Company.)
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height of 4 K-to-100 mK carbon-fiber supports and of material at base temperature.

For the first time, we also have radial alignment of the trap electrodes, maintained

through a series of pins that center the trap electrodes with respect to the thermally-

floating radiation shield, then to the refrigerator inner-vacuum chamber, and finally to

the dewar bottom-plate. Additional stability comes from a reduction in the number of

cryogen spaces from five to two, with a helium space large enough to reduce pressure-

destabilizing fills from once every five days to once every few weeks. The refrigerator

is surrounded by a closed cylinder that allows differential pressurization in the dewar,

forcing liquid helium up the side of the IVC where it can be maintained at a constant

level. The dilution refrigerator, manufactured by Janis Research Company, and the

dewar, manufactured by Precision Cryogenic Systems, are complete; the magnet,

manufactured by Cryomagnetics, is nearing completion. After testing at Janis, we

expect an early 2008 delivery.
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Measuring g

4.1 An Experimenter’s g

What must we actually measure to determine the g-value? Experimentally, it is

convenient to measure frequency, which has well-developed techniques for attaining

high precision. A free-space electron interacts with a magnetic field through its intrin-

sic and orbital angular momenta, providing an experimenter’s definition of g in terms

of the spin and cyclotron frequencies. Since the two are within a part-per-thousand

of each other, directly measuring their beat frequency, the anomaly frequency, is a

higher-precision technique. Thus, in free-space,

g

2
=
νs
νc

=
νc + νa
νc

= 1 +
νa
νc
. (4.1)

There is a small but significant correction to this equation at the ppt-level in g

(ppb in ν̄c) due to special relativity, which modifies the cyclotron and spin frequencies

in a state-dependent way. The resolution of single quantum transitions, allowing exact

treatment of this shift, is one of the key advantages of the quantum cyclotron over

82
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Figure 4.1: Special relativity alters the cyclotron frequency in a state-
dependent manner, appearing as a ppb-scale shift between the frequencies
of the lowest cyclotron transition in the spin-down and spin-up ladders. The
horizontal lines are separated by the predicted relativistic shift. An overall
0.61 ppb/h drift has been removed from this data.

previous measurements [2], which excited a distribution of cyclotron states [99], each

with a different relativistic shift. The shift can be thought of as a relativistic mass

correction, whereby states with larger cyclotron energy have a reduced νc due to the

frequency’s inverse-mass dependence. Quantitatively, the Dirac-equation solution for

the transition between |n,ms〉 ↔ |n+ 1,ms〉 shows a reduction in frequency given

by [84, Sec. VII.B]

∆νc = −δ(n+ 1 +ms), (4.2)

where

δ

νc
=

hνc
mc2

≈ 10−9 (4.3)

and ms = ±1
2
. Since this ppb-scale shift is state-dependent, we must be consistent in

which pair of energy levels we use for measuring νc. The difference between |0, ↓〉 ↔

|1, ↓〉 and |0, ↑〉 ↔ |1, ↑〉 is on the order of our linewidth and easily resolved, as shown
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in Fig. 4.1.1 So that we may account for the relativistic shift exactly, we have chosen

always to measure the spin-up transition, whose frequency we designate fc. The

selection of this transition over the spin-down one is primarily for convenience—it

allows us to begin all measurement cycles in the |0, ↑〉 state. The anomaly frequency

has no relativistic shift, as the modifications of the cyclotron and spin frequencies

cancel.

The addition of the Penning trap’s electrostatic quadrupole makes two further

modifications to the equation for g. First, using the invariance theorem discussed in

Section 2.1.2, we replace the free-space cyclotron frequency with the trap eigenfre-

quency and its calculated-magnetron-frequency correction. The free-space anomaly

frequency is similarly replaced with the measured frequency using Eq. 2.29. Second,

we correct for the shift in the cyclotron frequency arising from the radiation modes

of the trap electrode cavity. The spin frequency is unchanged by these cavity modes,

but the anomaly frequency, through its definition in terms of the spin and cyclotron

frequencies, is also shifted. This cavity shift is the topic of Chapter 5 and is included

below as ∆ωc/ωc, a term defined in Eq. 5.20. The equation we will use in the g-value

measurement is

g

2
' 1 +

ν̄a −
ν̄2
z

2f̄c

f̄c +
3

2
δ +

ν̄2
z

2f̄c

+
∆ωc
ωc

. (4.4)

All the barred frequencies indicate those actually measured in the trap. Although ν̄a,

f̄c, δ, and ∆ωc/ωc vary with the magnetic field, their combination in Eq. 4.4 does not,

1Directly measuring δ and νc in SI units, together with the Rydberg constant, is an alternate
route to the fine structure constant (it is an h/m measurement like the atom-recoil methods of
Section 1.1.3). The data in Fig. 4.1 give δ/νc = 1.7(3) ppb, near agreement with the calculated
1.2 ppb, but far from the high precision required for an α determination.
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Figure 4.2: The energy levels of an electron in a Penning trap, including ppb-
size shifts from special relativity. The red arrows indicate the transitions we
measure to determine g.

provided the measured ν̄a and f̄c correspond to the same field. Corrections to Eq. 4.4

from higher-order terms in the invariance theorem expansion of Section 2.1.2 are of

the order 10−16, while those from applying the cavity shift to ν̄a and not f̄c are of order

(ν̄a/f̄c)(∆ωc/ωc) . 10−14. Both are below our current precision but straightforward

to include should our resolution increase.

The remainder of this chapter contains the procedure for measuring the three

required frequencies (f̄c, ν̄a, ν̄z). The combination of these frequencies with the cavity

shift to extract the g-value is the topic of Chapter 6.

4.2 Expected Cyclotron and Anomaly Lineshape

We measure f̄c and ν̄a by resolving their resonance lines, relying on an invari-

ant property of the expected lineshapes (their mean frequency) to determine the

frequencies with uncertainties less than the linewidths. The same magnetic bottle

that makes a QND coupling of the cyclotron and spin energies to the axial frequency
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(Section 2.3.4) couples the axial energy to the cyclotron and anomaly frequencies so

that the distribution of axial states broadens the cyclotron and anomaly lines, which

we shall see are two limits of the same nontrivial lineshape. Brown [86] derived the

lineshape treating the coupling of the axial state to the amplifier as random, ther-

mal, Brownian motion. D’Urso [89, Ch. 3] treated axial degree of freedom quantum-

mechanically through a density matrix with a thermal distribution of states. The

results of both Brown and D’Urso are in the low cyclotron damping limit.2 As we

shall see, our resolution of the anomaly line is fine enough that we may no longer

ignore the broadening from the finite lifetime of the |1, ↓〉 state, and we present the

result as a function of cyclotron damping rate, γc. Since the derivation including γc is

straightforward when following the detailed analyses in [86] and [89, Ch. 3], we state

the result without proof.

The drives used to excite the cyclotron and anomaly transitions are described in

Section 4.3. Assuming that they are left on for a time much longer than the inverse

linewidth and inverse axial damping rate, γ−1
z , at an amplitude low enough that the

transition rate remains small, the probability, P , that a transition will have occurred

after a time, T , is linear in that time,

P =
1

2
πTΩ2χ(ω). (4.5)

Here Ω is the Rabi frequency, whose specific value depends on the strength of the

2In one case, Brown does keep a non-zero cyclotron damping rate, with a result [86, Eq. 6.12]
identical to that presented here. Because the anomaly excitation technique employed at the time
involved maintaining a large cyclotron radius with a nearly-resonant drive, see e.g., [2], Brown
derives the anomaly lineshape with the radial coordinate ρ determined by the strength of this drive.
In the limit that the drive is white noise, i.e., its time-time correlation is a δ-function, the γc � γz

approximation is not necessary. Although our excitation technique, described in Section 2.3.6, is
different than the one used for Brown’s derivation, the only effect is a redefinition of the Rabi
frequency, as described in [112].
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drive. The factor of 1
2

applies exactly in the case of the anomaly transition, but

the radiative decay of cyclotron excitations will decrease its value for the cyclotron

transition if there is any delay between the end of the drive and the measurement of

the state. This effect is explored further in Section 4.2.4 along with a relaxation of

the weak-drive assumption. The last factor in Eq. 4.5 is the lineshape, χ(ω), to which

we now turn.

For an electron on axis (ρ = 0), the magnetic bottle adds a z2 dependence to the

magnetic field (see Eq. 2.22) and thus to the cyclotron and anomaly frequencies, here

collectively ω:

ω(z) = ω0(1 +
B2

B
z2). (4.6)

Our goal in understanding the lineshape is to take measurements of a cyclotron line

and an anomaly line and extract a pair of cyclotron and anomaly frequencies that

correspond to the same average z and thus the same magnetic field. These may then

be used to calculate the g-value. The conventional choice is z = 0, i.e., find ω0 in

Eq. 4.6, but we shall see that the root-mean-square (rms) thermal amplitude, zrms, is

also convenient.

It is useful to define a linewidth parameter3 in terms of this average, 〈z2〉,

∆ω ≡ ω0
B2

B

〈
z2
〉

= ω0
B2

B

kTz
mω2

z

, (4.7)

where in the last step we have used the equipartition of energy, 1
2
mω2

z 〈z2〉 = 1
2
kTz,

to express the rms amplitude of the axial oscillation in terms of the axial tempera-

ture. This substitution is allowed because the axial motion is in thermal equilibrium

3This linewidth parameter, ∆ω, is not to be confused with the relative cavity shift, ∆ωc/ωc, of
Eq. 4.4 and Chapter 5.
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with the detection amplifier. The axial damping constant, γz, sets the timescale of

the thermalization, and it is useful to examine the lineshape when this timescale is

much shorter or much longer than that set by the linewidth parameter ∆ω and the

uncertainty principle.

4.2.1 The lineshape in the low and high axial damping limits

For γz � ∆ω, the axial motion is essentially decoupled from the amplifier during

the inverse-linewidth coherence time. During that time, the electron remains in a

single axial state and the lineshape is a Lorentzian with the natural linewidth, γc,

and centered on the frequency given by Eq. 4.6 with the rms axial amplitude of that

state as z. We do not know which axial state that is, however, and since excitation

attempts occur on timescales longer than γ−1
z , subsequent attempts will be in different

states. Thus, the composite lineshape after many attempts is the convolution of the

instantaneous lineshape, the narrow Lorentzian, and the Boltzmann distribution of

axial states. That is, the lineshape is a decaying exponential with a sharp edge at

ω0. The cyclotron line is close to this “exponential” limit and should have a sharp

edge at the zero-axial-amplitude cyclotron frequency that is useful for quick field

measurements such as tracking drifts.

For γz � ∆ω, the axial motion is strongly coupled to the amplifier. During

the time required to resolve the line, the axial amplitude relaxes to the thermal zrms

yielding a lineshape that is a natural-linewidth Lorentzian offset from ω0 by ∆ω. This

limit is approached through a Lorentzian centered on ω0 + ∆ω with a full-width of

γc + 2∆ω2/γz. The anomaly line is near this Lorentzian limit.
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In both of these limits, the lineshape’s average frequency is ω0 + ∆ω and corre-

sponds to the magnetic field given by the rms thermal axial amplitude in the magnetic

bottle (Eq. 4.6). This average frequency is the same for all γz between these limits as

well, and this invariant forms the heart of the weighted-mean line-splitting method

introduced in Section 4.4.1.

4.2.2 The lineshape for arbitrary axial damping

The lineshape, for arbitrary γz and ∆ω, is given by three equivalent solutions,

χ(ω) =
4

π
Re

[
γ′γz

∫ ∞
0

dt
ei(ω−ω0)te−

1
2

(γ′−γz)te−
1
2
γct

(γ′ + γz)2 − (γ′ − γz)2e−γ′t

]
(4.8a)

=
4

π
Re

[
γ′γz

(γ′ + γz)2

∞∑
n=0

(γ′ − γz)2n(γ′ + γz)
−2n

(n+ 1
2
)γ′ + 1

2
(γc − γz)− i(ω − ω0)

]
(4.8b)

= − 4

π
Re

γz 2F1

(
1,−K; 1−K;

(γz − γ′)2

(γz + γ′)2

)
K(γz + γ′)2

 , (4.8c)

where

γ′ =
√
γ2
z + 4iγz∆ω, (4.9)

K =
2i(ω − ω0) + γz − γ′ − γc

2γ′
, (4.10)

and 2F1(a, b; c; z) is a hypergeometric function. The integral definition in Eq. 4.8a

plainly shows the effect of the cyclotron lifetime. The lineshape is the Fourier trans-

form of the product of a lifetime-independent term and the finite-lifetime correction.

The Fourier transform convolution theorem, see e.g., [113, Sec. 15.5], says the result is

the convolution of the Fourier transforms of the two terms. That is, the finite-lifetime
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Figure 4.3: The theoretical lineshape for various γz/∆ω and γc/γz. The
cyclotron line has γz/∆ω ≈ 10−2. The anomaly line has γz/∆ω ≈ 10. For
our γz, γc/γz = 10−1, 10−2 correspond to 1.6 s and 16 s lifetimes. The infinite-
lifetime limit is γc/γz = 0.

lineshape is the convolution of the infinite-lifetime lineshape with a Lorentzian of full-

width γc.

Figure 4.3 plots this lineshape for a range of γz/∆ω and γc/γz. The exponential

and Lorentzian limits are clearly visible, as is the broadening due to the cyclotron

damping rate.

Invariance of the lineshape mean from γz

An important feature of this lineshape, which we use in our primary line-splitting

technique (Section 4.4.1), is the independence of its mean from γz [86]. The average

frequency of the lineshape, 〈ω〉 =
∫∞
−∞ ω χ(ω) dω, always corresponds to that given
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by the thermal zrms in the magnetic bottle field (Eq. 4.6). That is,

〈ω〉 = ω0 + ∆ω (4.11)

or

〈(ω − ω0)〉 = ∆ω. (4.12)

The second-moment of ω − ω0 is also independent of γz and in the limit γc → 0 is

given by [86] 〈
(ω − ω0)2

〉
= 2∆ω2. (4.13)

A finite cyclotron lifetime broadens the line, and the second moment above is no

longer correct. The first moment is unchanged.

In Section 4.4.1, we will introduce a method for calculating the mean of a measured

resonance. These means will be our primary measurements of f̄c and ν̄a and will be

used directly in Eq. 4.4.

4.2.3 The cyclotron lineshape for driven axial motion

We have thus far assumed a thermal distribution of axial states. The case of driven

axial motion added to this thermal motion is also of interest because it corresponds

to what one measures with the self-excited oscillator running. While we turn off

the SEO and allow the axial motion to thermalize before g-value measurements, it is

necessarily driven during detection, and we make extensive use of this driven lineshape

in Section 5.4 for calibrating the absolute amplitude of the self-excited axial motion.

The driven lineshape for an arbitrary γz/∆ω appears as an integral in [86, Eq. 7.14].
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In the weak-coupling limit (γz � ∆ω) that corresponds to our cyclotron line, it is

χd(ω) = I0(
2
√

(ω − ω0)∆dω

∆ω
)θ(ω − ω0)

1

∆ω
exp(−ω − ω0 + ∆dω

∆ω
), (4.14)

where

∆dω = ω0
B2

B

A2

2
, (4.15)

A is the driven axial amplitude, θ(x) is the Heaviside step function, and I0(x) is the

order-zero modified Bessel function. Note that if the drive goes to zero (∆dω → 0),

we recover the exponential limit of χ(ω). If the driven amplitude is much larger than

the thermal one (∆ω → 0), the lineshape goes to a δ-function centered at ω0 + ∆dω,

corresponding to a cyclotron frequency shift given by the rms driven amplitude in the

magnetic bottle.

The mean frequency of the driven line for an arbitrary γz/∆ω is also invariant

from γz and equal to ω0 + ∆ω + ∆dω.

4.2.4 The saturated lineshape

We have thus-far assumed that the transition is driven for a long time compared

with the inverse-linewidth and γ−1
z and at an amplitude that produces a low transition

rate. If we relax the amplitude condition [86],

P =
1

2

[
1− exp

(
−πTΩ2χ(ω)

)]
. (4.16)

The transition probability saturates at 1
2

for large Rabi frequencies, Ω, or long drive

times, T , indicating equal chance to finish in either of the two states. For two states

coupled only by the drive, such as the anomaly transition, this saturation level is

observed. It must be modified for the cyclotron line because of possible cyclotron
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decays and transitions to states above |1〉. The state |1〉 decays back to |0〉 and may do

so after the drive is complete but before the amplifiers are on to look for a transition.

The 1
2

must therefore be multiplied by e−γct, where t is the warm-up time between the

end of the cyclotron pulse and the beginning of the data acquisition. Furthermore,

the cyclotron degree of freedom has a whole ladder of states and routinely driving

the electron above |1〉 would increase the saturation value to 1. The relativistic

anharmonicity of the cyclotron states helps some, but the cyclotron line is broader

then these ppb-shifts, so the exponential tail of the |1〉 ↔ |2〉 line extends into the

|0〉 ↔ |1〉 line. We account for these possibilities by including the exponential factor,

e−γct, in the cyclotron lineshape model and by keeping transition rates low enough

that excitations to |2〉 are rare.

Saturation also invalidates the relation of the frequency mean to ∆ω by making

it dependent on γz, Ω, and T . For example, the mean frequency for saturated lines in

the Lorentzian limit (γz � ∆ω) remains ω0 +∆ω, while that for saturated lines in the

exponential limit (γz � ∆ω) increases with the leading correction equal to πTΩ2/8.

In practice, we keep both the cyclotron and anomaly peak transition probabilities

below 20% to avoid the effects of higher cyclotron states and saturation as well as to

maintain the invariant frequency mean. At P = 20%, we expect the saturation-shift

of the cyclotron mean to be smaller than the uncertainty in our weighted-mean cal-

culation. Nevertheless, we check the “unsaturated lines” assumption of the weighted-

mean method by fitting the data to the saturated lineshape (we must include a model

of magnetic field noise) and comparing both the resulting g-value and the numerically

integrated means of the fitted lines. This agreement between calculated means and
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fits quantifies a lineshape model uncertainty, which is analyzed in Section 6.1.

4.2.5 The lineshape with magnetic field noise

Although the cyclotron line is in the exponential lineshape limit (γz � ∆ω) and

should have a sharp low-frequency edge, all of our data show an edge-width of 0.5–

1 ppb. We model this discrepancy as fluctuations in the magnetic field, which could

arise from any of the instabilities discussed in the previous chapter. In this section, we

show that any source of noise that is not correlated with the thermal axial fluctuations

modifies the noise-free lineshape of the previous sections by convolving it with a noise

function. Provided the noise fluctuates symmetrically, the lineshape mean frequency

remains ω0 + ∆ω.

In general, the lineshape, χ(ω), is the Fourier transform of a correlation function,

χ̃(t), which first-order perturbation theory shows is related to the statistical average

of a fluctuating magnetic field, ω(t) [86]:

χ̃(t) =

〈
exp

[
−i
∫ t

0

dt′ω(t′)

]〉
. (4.17)

For the Brownian-motion lineshape of the previous sections and Eq. 4.8, ω(t) fluctu-

ates due to the thermal axial motion in the magnetic bottle and is given as a function

of z(t)2 in Eq. 4.6. To model additional magnetic field noise, we add a noise term,

η(t), to the fluctuating field,

ω(t) = ω0

(
1 +

B2

B
z(t)2 + η(t)

)
, (4.18)

so that the lineshape is given by the Fourier transform of

χ̃(t) =

〈
exp

[
−i
∫ t

0

dt′ω0

(
1 +

B2

B
z(t′)2 + η(t′)

)]〉
. (4.19)
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For magnetic field noise that is not correlated with the axial fluctuations, the average

factors into

χ̃(t) = e−iω0t

〈
exp

[
−iω0

B2

B

∫ t

0

dt′z(t′)2

]〉〈
exp

[
−iω0

∫ t

0

dt′η(t′)

]〉
. (4.20)

The first two factors are the Brownian-motion lineshape and the third is an additional

noise broadening. Because of the Fourier transform convolution theorem, the resulting

noisy lineshape is the noise-free lineshape of Eq. 4.8 convolved with a noise function.

Provided the noise fluctuates symmetrically, i.e., the mean frequency of the noise

function is zero, the mean frequency of the lineshape is unchanged by the convolution

and our weighted-mean method remains a valid analysis technique.

Further analysis of magnetic field noise in the lineshape requires the adoption

of a specific model for η(t). If there is a timescale associated with the noise (akin

to γ−1
z for the axial fluctuations), then the average involving η(t) will take different

values depending on the timescale’s relation to the inverse-linewidth coherence time.

For rapid fluctuations, the average quickly relaxes to its mean value and no noise-

broadening occurs. For slow fluctuations, the field remains constant during a single

excitation attempt and many excitation attempts build a lineshape broadened by a

distribution of field values. These limits are analogous to the Lorentzian (γz � ∆ω)

and exponential (γz � ∆ω) limits of the Brownian-motion lineshape. By attributing

the broadening of the cyclotron edge to magnetic field noise, we assume that the noise

fluctuates slower than the inverse-linewidth time of the cyclotron line, ≈ 200 µs. In

Section 4.3.3 we discuss a technique for tracking the cyclotron edge as a function of

time; we determine its location once every few minutes, and adjacent determinations

are uncorrelated, suggesting field fluctuations on timescales faster than minutes. This
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range of allowed timescales constrains the possible fluctuation mechanisms.

4.3 A Typical Nightly Run

With a model of the expected resonance lineshapes and their properties in place,

we give an overview of the data collection techniques used to resolve them. Both the

cyclotron and anomaly lines are probed with quantum jump spectroscopy, in which

we apply a drive in discrete frequency steps, checking between applications for a

cyclotron jump or a spin flip and building a histogram of the ratio of excitations to

attempts at each frequency. A typical g-value measurement consists of alternating

scans of the cyclotron and anomaly lines and lasts 14.5 h, from 15:30 to 06:00 the

next morning, with daytime runs only possible on Sundays and holidays when the

ambient magnetic field noise is lower (see Chapter 3). Interleaved among these scans

are periods of magnetic field monitoring to track any long-term drifts in the field so we

may account for them during data analysis. In addition, we continuously monitor over

fifty environmental parameters such as refrigerator temperatures, cryogen pressures

and flows, and the ambient magnetic field in the lab so that we may screen data for

abnormal conditions and troubleshoot problems.

4.3.1 Cyclotron quantum jump spectroscopy

We drive cyclotron transitions by broadcasting microwaves into the trap cavity

(Section 2.3.5). Since the drive wavelength (≈ 2 mm) is much longer than any electron
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motion,4 we may make the dipole approximation and write the interaction Hamilto-

nian between the electron and the drive E(t) without z-dependence:

H = −d · E(t). (4.21)

For a drive polarized along x̂, E(t) = E0 cos(ωdt)x̂, this becomes

H = exE0 cos(ωdt). (4.22)

When acting on a state
( |n〉
|n−1〉

)
, the Hamiltonian in matrix notation is

H = −~Ωcσy cos(ωdt), (4.23)

where σy is a Pauli matrix and the Rabi frequency,

Ωc = eE0

√
n

2m~(ω′c − ωm)
, (4.24)

may be derived from the harmonic oscillator formalism of [84, Sec. II.B].

We probe the cyclotron line with discrete excitation attempts spaced in frequency

by approximately 10% of the expected linewidth. A quantum jump to the first ex-

cited cyclotron state indicates success, and we detect it via a quantum nondemoltion

coupling of the increased cyclotron energy to a 20 ppb axial frequency shift (see Sec-

tion 2.3.4). Prior to each excitation attempt, we apply a magnetron cooling drive

(Section 2.3.7) to reduce the magnetron radius. We turn off the amplifiers during

the excitation attempt to reduce the axial temperature and thus, through Eq. 4.7,

the linewidth. To keep the conditions identical during both cyclotron and anomaly

excitation, we apply a detuned anomaly drive during the cyclotron pulse. This extra

4We estimate the cyclotron and magnetron radii to be tens and hundreds of nanometers and the
thermal axial amplitude to be 2 µm.
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Figure 4.4: Cyclotron quantum jump spectroscopy proceeds through discrete
interrogations of the lowest cyclotron transition in the spin-up ladder (a). A
successful excitation appears as a shift in the axial frequency (b), a quantum
nondemolition measurement technique. Multiple attempts at different fre-
quencies may be binned into a histogram (c) to reveal the overall cyclotron
line.

drive ensures the axial amplitude, and therefore the magnetic field seen by the elec-

tron as it moves in the bottle, remains the same for both frequency measurements; as

discussed in the next section, the effect on the lineshape is negligible. To aid in ac-

counting for the relativistic shift, we always drive between the same pair of cyclotron

levels, |0, ↑〉 ↔ |1, ↑〉, as indicated in Fig. 4.4.

The following is the sequence for a single cyclotron excitation attempt. The times

listed are typical values, and the timing is done in hardware with a pulse generator.

The “Event Generator” is manufactured in-house at the Harvard Electronics Instru-

ments Design Lab; it has twelve channels and a 10 µs resolution with sub-nanosecond

reproducibility, which is more than adequate for the timescales in our timing sequence.

We always begin in |0, ↑〉.

1. Turn the self-excited oscillator off and the magnetron cooling drive on. Wait

0.5 s.
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2. Turn the amplifiers off. Wait 1.0 s.

3. Turn the magnetron cooling drive off. Wait 1.0 s (≈ 6γ−1
z ).

4. Apply the cyclotron drive and a detuned anomaly drive for 2.0 s.

5. Turn the amplifiers on and start the self-excited oscillator. Wait 1.0 s to build

up a steady-state axial oscillation.

6. Trigger the computer data-acquisition card (DAQ).

Once triggered, the DAQ reads data continuously and a LabVIEW software routine

Fourier transforms this data in 0.25 s chunks. Based on the central frequency of each

chunk, the computer looks for the roughly 4 Hz axial frequency shift that corresponds

to a cyclotron excitation. If it sees one, it declares a successful excitation and waits

for the cyclotron state to decay back to |0, ↑〉. Once the electron is in |0, ↑〉, the

sequence is repeated at the next frequency. The entire process is automated.

4.3.2 Anomaly quantum jump spectroscopy

We create anomaly transitions by driving the axial motion in the B ∼ zρρ̂ gradient

of the magnetic bottle. The interaction Hamiltonian is

H = −µ ·Bd, (4.25)

where the drive Bd = B2za cos(ωdt)ρρ̂ comes from a driven axial amplitude, za. Using

Eq. 1.1 for µ, the Hamiltonian acting on a state
(|n−1,↑〉
|n,↓〉

)
is [112]

H = ~Ωaσy cos(ωdt) (4.26)
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Figure 4.5: Anomaly quantum jump spectroscopy proceeds through discrete
interrogations of the |0, ↑〉 ↔ |1, ↓〉 transition (a). A successful transition
appears as a shift in the axial frequency when the |1〉 state radiatively decays
to the ground state (b). This frequency shift is a quantum nondemolition
measurement. Multiple attempts at different frequencies may be binned into
a histogram (c) to reveal the overall anomaly line.

where σy is a Pauli matrix and the Rabi frequency is

Ωa =
g

2

e~
2m

B2za

√
2n

m~(ω′c − ωm)
. (4.27)

The anomaly procedure is similar to the cyclotron procedure described above and

is done with quantum jump spectroscopy looking for single spin-flips, which appear

as 20 ppb shifts in the axial frequency (see Section 2.3.4). Although there is no rela-

tivistic shift of the anomaly frequency, we always drive the |0, ↑〉 ↔ |1, ↓〉 transition

starting in the |0, ↑〉 state because it does not require a simultaneous cyclotron exci-

tation. We do, however, apply a detuned cyclotron drive to keep identical conditions

for both the anomaly and cyclotron excitations.

By comparing the measured peak excitation fraction to the lineshape and Rabi

frequency, we estimate that our anomaly drive excites an axial amplitude za ≈

100 − 250 nm. This estimate agrees with that calculated from the drive voltage
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applied on the bottom endcap based on our calibration of losses in the anomaly

transmission line. This low amplitude has a minimal effect on the lineshape, as seen

by the ratio of lineshape parameters ∆dω/∆ω ≈ 10−2–10−3 and the ten-times-larger

thermal amplitude. We revisit frequency shifts from the anomaly drive in Chapter 6.

A single anomaly excitation attempt begins in |0, ↑〉 and follows the exact pro-

cedure listed for the cyclotron excitation sequence above with the exception that

the anomaly drive is resonant and the cyclotron drive detuned in step 4. Once the

excitation sequence finishes and the DAQ begins reading data, the LabVIEW soft-

ware routine looks for a 4 Hz downward shift indicating a transition to |1, ↓〉 followed

by a spontaneous decay to |0, ↓〉. If no decay occurs after waiting several cyclotron

lifetimes, the attempt is declared a failure and the sequence is repeated at the next

frequency. If the decay does occur, resonant cyclotron and anomaly drives pump the

electron back to the |0, ↑〉 state before continuing to the next frequency. Again, the

entire process is automated.

4.3.3 Combining the data

Magnetic field drift

Over the course of several hours, the magnetic field seen by the electron can drift

due to pressure and flow changes in the cryogen reservoirs, room temperature changes,

stresses in the solenoid, and other reasons discussed in Chapter 3. Typical drifts are

at the level of a few 10−10 h−1, though a poorly energized solenoid can drift several

ppb per hour for months (see Fig. 3.2) and the pressure and flow changes in the hours

following a liquid helium fill can cause field changes too rapid to track.
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Figure 4.6: Periodically monitoring the cyclotron edge throughout a g-value
scan allows the removal of any field drift. In this example, a linear fit to
the edge data reveals a mild -0.02 ppb/h field drift to be removed during
analysis.

We employ two techniques to deal with magnetic field drifts. First, we take

cyclotron and anomaly data as close to simultaneously as we can, interleaving scans of

the the two lines by making one attempt at each frequency in the cyclotron histogram

then one at each frequency in the anomaly histogram. Second, we use the electron

itself to monitor the magnetic field throughout the night and adjust for any drifts in

our post-run analysis.

To accomplish this field-normalization, we take advantage of the sharp left edge

of the cyclotron line. For a half-hour at the beginning and end of the run and

again every three hours throughout, we alter our cyclotron spectroscopy routine by

applying a stronger drive at a frequency below the edge. We use the same timing

as in Section 4.3.1 but with a ten-times-finer frequency step, continuing to increase

the excitation frequency until we observe a successful transition. We declare that
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frequency to be “the edge,” jump back 60 steps and begin again. In this manner, we

may quickly track the cyclotron frequency throughout the night.5 After the run, we

model the magnetic field drift by fitting a first or second-order polynomial to these

edge points. Since we time-stamp every cyclotron and anomaly excitation attempt,

we use the smooth curve to remove the field drift. Figure 4.6 shows a typical night’s

drift and our fit. A particularly large drift and its removal from some cyclotron data

are shown in [83, Fig. 4.5]. This edge-tracking adds a 20% overhead, but provides a

valuable service not only on nights that happen to have large drifts but in enabling

us to combine data from different nights.

The axial frequency

The axial frequency is the last frequency required for determining the g-value, and

we measure it throughout the night as we determine the cyclotron and spin states.

The anharmonic terms in the axial potential cause an important shift between the

frequencies of the high-amplitude, self-excited electron during detection and the low-

amplitude, thermally-excited electron during the cyclotron and anomaly pulses (see

Eq. 2.5). We cannot directly measure the axial frequency under the pulse conditions

because the amplifiers are off. We come close by measuring the frequency dip with

the amplifiers on and the axial drives off; the shift between SEO-on and off, shown

in Fig. 4.7, is typically a few hertz. It is the SEO-off axial frequency that we use

in calculating g. The amplitude difference between amplifiers on (≈ 7 µm) and off

5Because of magnetic field noise, the edge frequencies are typically distributed across 0.5–1 ppb
and offset below the cyclotron frequency. The value of the offset and the distribution of edge points
about it depend on the particular edge-tracking technique, e.g., pulse power and frequency step size,
but we consistently use the same excitation parameters so the edge frequency tracks νc.
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Figure 4.7: A dip in the amplifier noise spectrum at the axial frequency
reveals a few-hertz shift between the self-excited and thermal frequencies.

(≈ 2 µm) is minuscule compared to the ≈ 100 µm self-excited amplitude. Since

the frequency shift at low amplitudes goes as the amplitude-squared, the frequency

difference between the two thermally-excited amplitudes is negligible.

The dip can at times be difficult to resolve because of drifts in the ring voltage

while averaging. Additionally, when we tune the SEO for stability at a large ampli-

tude, the non-zero C4 coefficient can transform thermal amplitude fluctuations into

axial frequency fluctuations. As these approach the size of the dip width, the dip can

get lost in the background noise.

The rate-limiting step

The most time-consuming step of the nightly scan is discriminating between the

|1, ↓〉 and |0, ↑〉 states after applying an anomaly pulse. The signal is the |1, ↓〉 → |0, ↓〉

decay. The drive is low enough that the state after the pulse usually remains |0, ↑〉,
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which does not decay, and our confidence in that state-assignment grows as 1− e−γct

after waiting a time t with no decay. Since we want this confidence to be high, we

typically wait several cyclotron lifetimes before proceeding. For example, if we wait

five cyclotron lifetimes and make 100 attempts on a peak frequency with a 20% chance

of flipping the spin, then far fewer than one of the final states will be misdiagnosed.

If we wait only three cyclotron lifetimes, then on average one successful attempt

would be mistakenly declared unsuccessful. Since the lifetimes can stretch upwards

of five seconds, this wait time can be long indeed. Unfortunately, since inhibited

sponteneous emission and cavity-shifts are closely linked, the cyclotron frequencies

with the smallest cavity-shift uncertainty are also those with the longest lifetime and

thus the fewest scans per night. While a typical night with a 1 s lifetime has over 70

scans, one at 7 s has fewer than half that number.

Multi-night composite scan

A single night of data yields resonances with signal-to-noise comparable to that

shown in Fig. 4.4c and Fig. 4.5c. With several nights of data at the same magnetic

field, we may average the results to reduce the uncertainty in g. We have used two

methods for this averaging. In the first, used in our 2006 result [1], we analyze each

night’s data separately and average the resulting g-values. In the second, used in

the new measurement presented in this thesis, we combine all the data into a single

cyclotron and a single anomaly resonance, from which we extract g. To create a

single pair of histograms, we extend the field-drift normalization technique above to

longer timescales. After using the above edge-fitting procedure to remove the drift
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from each night’s data, we normalize all nights to a common field. At the same time,

we account for any changes in ν̄z from night to night (we hold the axial potential

constant throughout a nightly scan (see Section 2.3.1), but it may drift several ppb

between scans). The resulting composite lines have much higher signal-to-noise ratios

than the individual nightly scans, as shown in Fig. 4.8 and Fig. 6.2.

4.4 Splitting the Lines

After collecting sufficient cyclotron and anomaly data, we may use the signal-to-

noise on the resonances to “split the lines” using our knowledge of the lineshapes and

their properties to extract values for the frequencies with uncertainties smaller than

the resonance linewidths. Our primary analysis technique exploits the invariance

of the lineshape mean frequency from γz; we bin the data into a histogram and

calculate its weighted mean to determine the resonance frequencies corresponding to

the thermal rms axial amplitude: ν̄ zrms
c and ν̄ zrms

a . As a check on the assumptions

inherent in the weighted-mean method (discussed in the following section), we also

fit the theoretical lineshape to the individual attempts and determine the resonance

frequencies corresponding to zero axial amplitude: ν̄ 0
c and ν̄ 0

a .

Since these two frequency pairs correspond to the cyclotron and anomaly frequency

at different magnetic fields, they are related by the ratio νa/νc, which should be

field-independent. When used to calculate g in Eq. 4.4, they should yield nearly

identical values with the difference going as the product of ∆ω/ω0 ∼ 10−9 and νm/νc ∼

10−6, far below our current precision. The agreement of the fits and the weighted-

mean methods quantifies a “lineshape model uncertainty,” which will be discussed in
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Section 6.1.

4.4.1 Calculating the weighted mean frequencies

During the spectroscopy, we keep the transition rate low so the lines do not sat-

urate and the average frequency of the lineshape is ω0 + ∆ω, independent of γz (see

Eq. 4.11). This mean frequency corresponds to the magnetic field seen by the elec-

tron at its rms thermal axial amplitude, ν̄ zrms , and we may calculate g using the

means of the measured cyclotron and anomaly lines. In addition, the mean of the

measured data remains easily calculable even if the signal-to-noise of the measured

resonance lines is poor, a concern particularly when analyzing a single night of data

taken at a long-lifetime cyclotron frequency. The average frequency of the lineshape

is unchanged by any magnetic field noise as long as the noise spectrum is symmet-

ric about ω = 0. This invariance is important because we see such noise through

broadened cyclotron edges. Fits to noisy lines require the adoption of a full noise

model. Because the weighted mean works with the relatively mild assumption of a

symmetric noise distribution and does not require a determination of γz, we adopt it

as our primary analysis technique.

The calculation of the mean involves discretizing the integral

ν̄ zrms = 〈ν〉 =

∫
νχ(ν)dν∫
χ(ν)dν

(4.28)

into the weighted sum

ν̄ zrms = 〈ν〉 =

∑N
i=1wiνi∑N
i=1wi

, (4.29)

where the wi are the weights. (Simulations of data for lineshapes with the parame-

ters we experimentally observe show that any error introduced by this discretization
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is smaller than the uncertainty calculated in the weighted mean and/or the lineshape

model uncertainty.) Ideally, the summation index i would run over all individual ex-

citation attempts. In practice, absent large overnight field drifts, the drift-corrected

attempt frequencies tend to cluster around the original attempt frequencies and at-

tempts to integrate across the large gaps between clusters, e.g., with a linear interpo-

lation function, tend to be heavily dependent on the particular attempts that happen

to lie nearest the gaps. We have found it much more reliable to bin the attempts

into histograms, with the summation index i running over the histogram bins. While

making a histogram discards information about individual attempt frequencies, the

calculation becomes insensitive to results at a single attempt. We check to make sure

the weighted mean is independent of the number of histogram bins.

For a histogram bin centered on νi with xi excitations in ni attempts, we define

the excitation fraction

ξi ≡
xi
ni
. (4.30)

For bins that are evenly-spaced in frequency, Eq. 4.29 may be evaluated with weights

equal to these excitation fractions. With arbitrarily-spaced bins, we may integrate

a linear interpolation function between the histogram points, i.e., use the trapezoid

rule, by assigning the weights

wi =



ξ1(ν2 − ν1) for i = 1

ξi
1
2
(νi+1 − νi−1) for i 6= 1 and i 6= N

ξN(νN − νN−1) for i = N

, (4.31)

where the endpoints are treated in such a way that it produces results identical to

wi = ξi for equal bin-spacing. The shaded regions in Fig. 4.4c and Fig. 4.5c indicate
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areas corresponding to
∑
wi.

The uncertainty in the average frequencies may be calculated with

σν̄ zrms = σ〈ν〉 =

√√√√ N∑
i=1

(
〈ν〉 − νi∑N

j=1wj
σwi

)2

. (4.32)

The uncertainty in the weights is entirely due to uncertainty in the excitation fraction:

σwi
=



σξ1(ν2 − ν1) for i = 1

σξi
1

2
(νi+1 − νi−1) for i 6= 1 and i 6= N

σξN (νN − νN−1) for i = N

. (4.33)

This, in turn, is derived from the uncertainty in the number of excitations xi. As-

suming that the measured excitation fraction represents the actual probability of ex-

citation, we may use the variance of the binomial distribution to write the excitation

fraction uncertainty,

σξi =
σxi

ni
=

√
ξi(1− ξi)

ni
. (4.34)

4.4.2 Fitting the lines

As an additional analysis method to check the weighted-mean results, we fit the

data to the lineshapes themselves. This analysis requires an estimate of γz, which

at ≈2π(1 Hz) is difficult to resolve precisely. In the presence of magnetic field noise

faster than our edge-tracking method is capable of removing (minutes to hours) but

slower than the coherence times given by the inverse-linewidths (200 µs–200 ms), it

requires the adoption of a noise model. The section below is written for the noise-free

expected lineshapes of Section 4.2, but we typically fit to these lineshapes convolved

with a Gaussian noise model whose width is a fit parameter.
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When fitting to the expected, noise-free cyclotron and anomaly lines, there are five

parameters for which we lack independent determinations and thus must fit: the zero-

axial-amplitude cyclotron and anomaly frequencies, ν̄ 0
c and ν̄ 0

a ; the axial temperature,

Tz; and the Rabi frequencies, Ωa and Ωc. The axial temperature determines the width

of the cyclotron line and both the width and a shift in the central value of the anomaly

line. Since there is no feature on the anomaly lineshape to indicate the size of this

shift and since the width can also have a large component from γc, the anomaly line

is much less sensitive to Tz. Thus, we typically start by fitting the cyclotron line to

determine ν̄ 0
c , Ωc, and Tz, then use that value for Tz in fitting the anomaly line for

ν̄ 0
a and Ωa. Because Tz determines the offset between the anomaly line and ν̄ 0

a , any

uncertainty in Tz contributes to uncertainty in ν̄ 0
a . (If instead we fit the two lines

simultaneously, the Tz and ν̄ 0
a parameters have a high correlation coefficient, which

increases their uncertainties.) Below we discuss the fit routine for the cyclotron line.

The routine used for the anomaly line is identical but with one fewer parameter.

Although we apply the drives at discrete frequencies, our drift-correction tech-

nique shifts the effective application frequency and, in general, these frequencies are

no longer exactly the same. Rather than binning the attempts into a histogram,

which would discard the information stored in these slightly different application fre-

quencies, we fit to the individual attempts using the “maximum-likelihood method,”

see e.g., [114, Ch. 10] or [115, Ch. 5]. This point-by-point fitting is less critical for

the multi-night composite lines, which have histogram bin widths comparable in size

to the resulting frequency uncertainties; we include several histogram fits in the line-

shape model analysis of Section 6.1.
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For a given excitation attempt at νi and particular values for the fit parameters

ν̄ 0
c , Ωc, and Tz, the probability pi of a successful excitation is given by the lineshape

in Eq. 4.16

pi = P (νi; ν̄
0
c ,Ωc, Tz). (4.35)

For repeated attempts at the same frequency, the probability of xi successes in ni

attempts is given by the binomial distribution

PB(xi;ni, pi) =
ni!

xi!(ni − xi)!
pxi
i (1− pi)ni−xi , (4.36)

and for our point-by-point fitting, ni is always 1 and xi is either 0 or 1. For a given

set of fit parameters, the total probability that N independent attempts would have

the outcome recorded is the product of their individual probabilities. We define this

product as the “likelihood function,”

L(ν̄ 0
c ,Ωc, Tz) =

N∏
i=1

pxi
i (1− pi)1−xi , (4.37)

and fitting the line consists of maximizing it. In practice, the product of many

probabilities, each less than 1, makes L very small, and we maximize the logarithm

of the likelihood function,

M = lnL =
N∑
i=1

ln(pxi
i (1− pi)1−xi). (4.38)

With M maximized, the uncertainty in the parameters is determined by the curvature

in the vicinity of the maximum. For example, if there are no correlations among

parameters the uncertainty in ν̄ 0
c is

σν̄ 0
c

=

(
− ∂

2M

∂ν̄ 0
c

2

)−1/2

. (4.39)
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Figure 4.8: Results from maximum-likelihood fits to all of the 147.5 GHz
cyclotron (a) and anomaly (b) data. To test the goodness of the fit, the
individual attempt data have been binned into histograms (points). The gray
bands indicate 68% confidence limits for distributions of measurements about
the fit values. The dashed curves show the best-fit line with the Gaussian
width set to zero.

In general, uncertainties in correlated parameters may be handled by inverting a

curvature matrix, see e.g., [114, Ch. 7].

Figure 4.8 shows a pair of composite cyclotron and anomaly data sets binned

into histograms. The edge of the exponential cyclotron line appears blurred by 0.5–

1 ppb, indicating the presence of some magnetic field fluctuations. This blurred

edge is seen in all of the g-value data (see Fig. 6.2 for similar plots from each field).

Some possible sources of such fluctuations are discussed in Chapter 3. To produce

meaningful fits, we must include a model of these fluctuations in the lineshape. We

model the noise as normally distributed in frequency, producing a lineshape that
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is the noise-free χ(ω) convolved with a Gaussian resolution function.6 The g-value

calculated from fits to the Gaussian-noise lineshape provide a check on the weighted-

mean calculation, and comparisons between the methods at each field quantify a

lineshape model uncertainty, discussed in Section 6.1.

Also in Fig. 4.8 are comparisons of the histogrammed data to the best-fit Gaussian-

noise lines. The gray confidence bands indicate where 68% of the histogram points

should lie, given the number of excitation attempts and the fit results.7 To emphasize

the blurring of the cyclotron edge, the dashed line shows the lineshape corresponding

to the best-fit parameters with the Gaussian width set to zero.

4.5 Summary

To measure g, we must determine the free-space cyclotron and anomaly frequen-

cies. Using the cyclotron, anomaly, and axial trap eigenfrequencies, we can calculate

the free-space values by applying three corrections: a special relativistic cyclotron

frequency correction discussed in this chapter, a magnetron frequency correction aris-

ing from the electrostatic trapping potential and discussed in Chapter 2, and a cavity

6Because the noise-free cyclotron line is in the exponential lineshape limit, we actually fit the
cyclotron data to the convolution of a Gaussian and an exponential, which is much faster than
calculating the convolution with the full lineshape and yields identical results at our precision.
Although the anomaly line is near the Lorentzian limit, there is some slight asymmetry in the
noise-free line, so we do not make the Lorentzian approximation.

7The confidence intervals are calculated by extending the discrete binomial distribution to contin-
uous values of x and integrating to 68.3% probability such that the remaining 31.7% is split evenly
below and above the band. This differs from the standard method for estimating binomial confidence
intervals, see e.g., [13, p. 308] or [116], which greatly overestimates the interval for low-probability
points. For example with n = 75 attempts and the low probability p = 10−6, the upper limit of a
68.3% confidence interval using our method is p+ = 2×10−6, while the standard interval gives 0.02,
which would predict at least one excitation in over 30% of the runs. Other than the plotted bands,
these confidence intervals play no role in the data analysis.
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shift discussed in Chapter 5. We use single quantum-jump spectroscopy to probe the

cyclotron and anomaly resonances, whose expected lineshapes are primarily charac-

terized by the magnetic bottle coupling between the axial energy and the cyclotron

and anomaly frequencies. Magnetic field fluctuations add additional noise to these ex-

pected lineshapes. A weighted-mean calculation is our primary line-splitting method

and uses a property of the expected lineshape, the invariance of its mean to changes

in γz, to calculate g. Its validity relies on cyclotron and anomaly lines that are un-

saturated, taken under identical temperature and drive conditions, and have a sym-

metric spectrum for any noise. To check these assumptions, we also fit the data to

the expected lineshape convolved with a Gaussian noise model using the maximum-

likelihood method. The agreement of the two methods quantifies a lineshape model

uncertainty, analyzed in Chapter 6. First, we examine the third systematic frequency

shift arising from the interaction of the electron cyclotron motion and the electro-

magnetic modes of the electrode cavity.



Chapter 5

Cavity Control of Lifetimes and

Line-Shifts

The metal electrodes alter the density of radiation states away from its free-space

value by forming a resonant microwave cavity. Electromagnetic modes of the correct

field geometry can couple to the electron cyclotron motion, altering its damping

rate [117, 118] and shifting its frequency [79, 1]. Typical cyclotron frequency shifts

are at the parts-per-trillion level, and they affect the g-value primarily through the

anomaly frequency. With the trap cyclotron eigenfrequency shifted from its free-

space value, ω̄c = ωc

(
1 +

∆ωc
ωc

)
, one must apply a cavity correction to obtain the

free-space g-value,1

g

2
= 1 +

ωs − ωc
ωc

' 1 +
ωs − ω̄c

(
1− ∆ωc

ωc

)
ω̄c

= 1 +
ω̄a
ω̄c

+
∆ωc
ωc

. (5.1)

1Not included here are additional relativistic and magnetron-frequency corrections, discussed in
Section 4.1.

115
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(The corresponding cavity shift of the spin frequency is of order ~ωs/(2mc2) ≈ 10−9

smaller than the cyclotron shift and thus negligible [119].) Thus ppt-scale cavity

shifts threaten to be a large systematic uncertainty if not understood.

With a cyclotron frequency far from any of these coupled modes, the lack of decay

channels greatly inhibits spontaneous emission, giving us longer to detect a cyclotron

excitation and providing a probe of the cavity mode structure itself. Our cylindrical

electrode geometry [87], invented precisely for this application, allows us to compare

measurements of γc to an analytic model of electron–cavity coupling [80, 120] in order

to determine the frequencies and widths of the relevant cavity modes and to calculate

the cyclotron frequency shifts.

We use two independent methods to investigate the cavity mode structure. First,

the synchronization of a collective behavior of many electrons is sensitive to γc [121],

and we measure the degree of synchronization as a function of cyclotron frequency. By

mapping the mode locations over a large enough range, we compare their frequencies

to those of the modes of an ideal cavity and identify them, and thus their field

geometry, using standard identifiers such as TE127. Second, we directly measure

the cyclotron damping rate of a single electron as a function of cyclotron frequency,

position in the trap, and axial oscillation amplitude. We demonstrate a 165(4) µm

axial offset between the electrostatic center of the trap and the center as defined by

the modes and place a limit of ρ < 10 µm on any radial offset. Using the mode

locations determined by these two techniques, we calculate the relative cavity shifts,

∆ωc/ωc, with uncertainties as low as 0.06 ppt, over six times smaller than the 0.39 ppt

of our 2006 measurement [1].
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5.1 Electromagnetic Modes of an Ideal Cylindrical

Cavity

We begin with an examination of the electromagnetic fields in an ideal cylindrical

cavity in order to gain some insight into the mode frequencies and geometries and

to see which will couple to an electron or a cloud of many electrons. The boundary

conditions for the electromagnetic field at a perfect conductor are

E‖ = 0 = B⊥. (5.2)

A right circular cylinder of diameter 2ρ0 and height 2z0 admits two classes of elec-

tromagnetic fields, dubbed “transverse-electric,” or TE, and “transverse-magnetic,”

or TM. As the names suggest, TE and TM modes have no longitudinal component

to their respective electric and magnetic fields. Deriving expressions for the electro-

magnetic fields is straightforward, see e.g., [122, Sec. 8.7],2 and the result is

2In [122], the origin lies at the center of the bottom endcap whereas we put the origin at the
center of the cavity.
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For TEmnp:

E =E0

(E)ωmnp
c

(
ρ0

x′mn

)2

sin(pπ
2

( z
z0

+ 1)) (5.3a)[
∓ρ̂ m

ρ
Jm(x′mn

ρ
ρ0

) cos((E)ωmnpt∓mφ)

−φ̂ x′mn
ρ0

J ′m(x′mn
ρ
ρ0
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]
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E0

c

[
ẑ Jm(x′mn

ρ
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) sin(pπ
2
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+ 1)) cos((E)ωmnpt∓mφ) (5.3b)
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For TMmnp:

E =E0

[
ẑ Jm(xmn

ρ
ρ0

) cos(pπ
2

( z
z0

+ 1)) cos((M)ωmnpt∓mφ) (5.3c)

− pπ
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(
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xmn

)2
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2
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+ 1)) (5.3d)[
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ρ
Jm(xmn

ρ
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+φ̂
xmn
ρ0

J ′m(xmn
ρ
ρ0

) sin((M)ωmnpt∓mφ)

]
.

Each mode is identified by three indices: m = 0, 1, 2, . . ., is the number of nodes as

φ is swept through π radians; n = 1, 2, . . ., is the number of antinodes in Eφ along
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the radius; and p = TE: 1, 2, . . . ; TM: 0, 1, 2, . . ., is the number of antinodes along the

axis.3 They have characteristic frequencies given by

(E)ωmnp = c

√(
x′mn
ρ0

)2

+

(
pπ

2z0

)2

(5.4a)

(M)ωmnp = c

√(
xmn
ρ0

)2

+

(
pπ

2z0

)2

. (5.4b)

Both here and in Eq. 5.3, (E) and (M) refer to TE and TM modes, xmn is the nth

zero of the order-m Bessel function, i.e., Jm(xmn) = 0, and x′mn is the nth zero of

the derivative of the order-m Bessel function, i.e., J ′m(x′mn) = 0. The zeros force the

boundary conditions at the cylindrical wall. All but the m = 0 modes are doubly

degenerate, as indicated by the ± signs in Eq. 5.3. Physically, the degenerate modes

are identical except one rotates clockwise and the other counterclockwise.

Figure 5.1 represents some examples of the fields in Eq. 5.3. Of primary concern is

the magnitude of the transverse (ρ̂ and φ̂) electric fields, since only these components

couple to cyclotron motion. For both TE and TM modes, the transverse components

of E are proportional to

sin(pπ
2

( z
z0

+ 1)) =


(−1)p/2 sin(pπz

2z0
) for even p,

(−1)(p−1)/2 cos(pπz
2z0

) for odd p,

(5.5)

such that close to the trap center (z ≈ 0), only modes with odd p have any appreciable

coupling. Furthermore, the transverse components are proportional to either the

order-m Bessel function times m/ρ or the derivative of the order-m Bessel function,

3Here we use the standard notation for TE and TM modes, see e.g., [122]. Other references
more concerned about the specific modes that couple to an electron at the center of the trap,
e.g., [80, 79, 120], use the notation (n, l) that corresponds to the present notation with mnp ↔
1l(2n+ 1).
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Figure 5.1: Examples of cylindrical cavity modes. Plotted is the magnitude
of the transverse electric field, normalized to its maximum value. Both hori-
zontal and vertical cross-sections are taken through the center of the cavity,
as shown. The only modes with nonzero transverse electric field at the trap
center are TE1n(odd) and TM1n(odd). The TMmn0 modes have purely longitu-
dinal electric fields and are not shown. The frequencies shown are calculated
using Eq. 5.4 and the cavity dimensions in the caption to Table 5.1.
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which close to the trap center (ρ ≈ 0) go as

m

ρ
Jm(x(′)

mn
ρ
ρ0

) ∼


1

(m− 1)!

(
x

(′)
mn

2ρ0

)m
ρm−1 for m > 0

0 for m = 0

(5.6a)

x
(′)
mn

ρ0

J ′m(x(′)
mn

ρ
ρ0

) ∼


1

(m− 1)!

(
x

(′)
mn

2ρ0

)m
ρm−1 for m > 0

−x
(′)2
0n

2ρ2
0

ρ for m = 0.

(5.6b)

In the limit ρ → 0, all but the m = 1 modes vanish. To summarize, the only modes

that couple to an electron perfectly centered in the trap are TE1n(odd) and TM1n(odd).

Coupling the cyclotron motion to the axial motion, such as for sideband cool-

ing (Chapter 7), is facilitated by modes with either an electric field gradient that

goes as zρ̂ or ρẑ or a z, ρ-independent magnetic field (the coupling then comes from

the magnetic Lorentz force, −e v × B). From the small z, ρ-dependence above, we

can see that, at the trap center, the TE1n(even) and TM1n(even) modes have a zρ̂ de-

pendence in their electric fields and position-independent transverse magnetic fields.

The TM1n(even) modes have the electric-field ρẑ dependence as well. In addition, all

the 1n(odd) modes have the correct fields at their nodes, which can be reached by

offsetting the axial potential minimum.

The cavity formed by the trap electrodes closely matches the ideal cavity described

above though it differs in several important ways. First, the electrodes are not per-

fectly conducting and have a characteristic skin-depth in which they dissipate energy.

We will model this phenomenologically below by assigning a quality factor, Q, to the

modes. Second, any slight deformation of the cylindrical ring electrode will remove

the mode degeneracy and assign separate frequencies to pairs of modes with m 6= 0.
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In practice, we see little evidence of this splitting. Lastly, the slits between electrodes

and machining imperfections can shift the mode frequencies away from their ideal

values and modify their widths. Surface currents exist wherever the magnetic field

parallel to the surface is nonzero, and one effect of the slits is to impede currents that

would normally flow axially along the wall or radially on the endcaps. The TE0np

modes should be less susceptible to these shifts because they are the only modes with

no such currents. Previous measurements over a large range of cyclotron frequen-

cies indicate good agreement between the predicted and measured frequencies of the

TE0np modes [123, 121]. In contrast, the TM1np modes, which should be degenerate

with these TE0np modes, are nearly always several linewidths away. Another effect of

the slits is to allow microwave power to leak out of the cavity, decreasing the mode Q

by amounts that depend on the mode field geometry. To help combat this effect, we

have built λ/4 choke flanges into every trap slit to increase the effective impedance

of the slits and reflect stray fields back into the cavity.

5.2 Mode Detection with Synchronized Electrons

In order to accurately calculate the coupling between the cavity modes and a single

electron, we must know the mode structure in the real trap cavity. A straightforward

but time-consuming method is to measure the electron cyclotron damping rate, γc, as

a function of cyclotron frequency; we pursue this technique in Section 5.4. A faster

method, originally discussed in [124], uses the synchronized axial motion of many

electrons as a sensitive probe of γc and is the subject of this section.
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Figure 5.2: The damped Mathieu equation for a drive of strength h and de-
tuned ε from twice the resonant frequency has four regions (a) characterized
by threshold phenomena, phase bistability, and hysteresis. The parametric
lineshape (b) displays hysteresis in the direction of the frequency-sweep. The
dotted line in (a) indicates the sweep range of (b).

5.2.1 The parametric resonance

A parametric resonance can occur when the parameters of a system are themselves

functions of time. In this case, we modulate the trapping potential on the bottom

endcap at a frequency near twice the axial frequency. One can write this as a frequency

modulation of an ωz carrier. For an electron with axial position z, the motion is

governed by the differential equation

z̈ + γz ż + ω2
z {1 + h cos [(2ωz + ε)t]} z +

2C4

1 + C2

ω2
z

z3

d2
+

3C6

1 + C2

ω2
z

z5

d4
= 0, (5.7)

where the drive is parameterized with a dimensionless strength h (see Section 2.3.2)

and is detuned by ε from 2ωz. The anharmonic terms play an important role at

high oscillation amplitudes; the anharmonicity coefficients, Ci, and characteristic trap

dimension, d, are defined in Chapter 2. At low amplitudes (z � d), these terms

may be ignored, and Eq. 5.7 is the damped Mathieu equation with well-documented

solutions for various ranges of h and ε, see e.g., [125].
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Figure 5.2 summarizes the characteristic solutions. For low drive strength, region

O, all oscillations are damped away by the amplifier and there is no motion. Above

a threshold drive strength,

hT =
2γz
ωz

, (5.8)

the solution breaks into three characteristic regions depending on the detuning, with

the boundary between the regions determined by

ε± = ±1

2
ωz

√
h2 − h2

T (5.9)

In region II (ε− < ε < ε+), the quiescent state is unstable and the electron oscillates

at the axial frequency with an exponentially-growing amplitude. The anharmonic

components of Eq. 5.7 arrest this growth and force the motion into limit-cycle oscil-

lations. There are two such limit-cycles that are 180◦ out of phase with each other.

For C4 > 0, region I (ε < ε−), has the same properties as region O and only the

quiescent state is stable. In region III (ε > ε+), all three states, the quiescent and

both limit-cycles, are stable and the electron motion displays hysteresis, remaining

in the quiescent state if entered by changing h from region O and an excited state if

entered by sweeping the drive frequency from region II. For C4 < 0, regions I and III

interchange. Figure 5.2b displays an example of the parametric resonance and the

lineshape hysteresis as the drive is swept among regions I, II, and III.

5.2.2 Spontaneous symmetry breaking in an electron cloud

The axial equation of motion for each electron in a cloud is similar to Eq. 5.7 but

the damping is proportional to the cloud center-of-mass (CM) velocity and a Coulomb
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term couples the axial and radial degrees of freedom [123, Sec. 3.4]. With the radius

no longer explicitly zero, the anharmonic terms gain a ρ-dependence and the radial

equation of motion, including the cyclotron damping rate, comes into play. If one

sums the equations for all electrons, the result does not factor into an equation for

the CM because of the radii and the anharmonic terms, e.g.,
∑
z3
i 6= (

∑
zi)

3.

In a remarkable and not-yet fully understood effect, there exists a parameter

space where the cloud displays the threshold and hysteretic phenomena described in

the single-electron case with a CM amplitude proportional to the cyclotron damping

rate, as indicated by a Lorentzian profile of the axial signal when νc is swept across a

cavity mode [123, 124, 121]. The electrons behave as if they form a pair of clouds, one

in each limit-cycle of region II. With equal numbers of electrons in each cloud, there

would be no net CM motion and, since our amplifier detects CM velocity, no signal.

The observed CM motion means that the increased cooling from a cavity mode breaks

the symmetry, creating an excess of electrons in one phase. This synchronization of

electrons has been seen in clouds from a hundred thousand electrons down to only

two [126]. (The single electron also oscillates in one limit-cycle instead of both [127],

but this is due to decoherences in any two-limit-cycle superposition rather than a

synchronization effect.) The actual dynamics is more complicated, as 180◦ phase-

fluctuations are seen in the resulting signal, indicating that electrons switch between

limit-cycles at a rate that depends on electron number, electrostatic anharmonicity,

parametric drive strength, and cyclotron damping rate [123, Ch. 5] and [121]. The

threshold energy, however, is independent of γc.

How does increasing γc lead to symmetry-breaking in the parametric resonance,
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and what stops the synchronization before all electrons are in one of the two phases?

While one can write down the full equations of motion for N electrons [121, App.],

a detailed solution showing the observed collective behavior remains underived. Pre-

sumably, increased cyclotron damping has a cooling effect on the cloud, which is

heated by the parametric drive and the Johnson noise of the detection circuit. Since

the heating mechanisms both affect the axial motion, while γc damps the transverse

motion, the cooling relies on collisions to transfer energy between the two degrees of

freedom. The symmetry-breaking may arise from the increased collisions in one large

cloud rather than two smaller ones, with fluctuations in electron number between the

two limit-cycles coming from the axial noise sources. Additional clues may be found

in the detailed study of these fluctuations as well as the Fourier spectra of the CM

signal [123, Ch. 5].4

5.2.3 Parametric mode maps

Insofar as the axial CM signal is a probe of γc, we may use it to map out the

resonant modes of the cavity. Figure 5.3 shows three examples of such parametric

mode maps made by monitoring the axial CM signal while sweeping the cyclotron

frequency, i.e., the magnetic field. Such a sweep takes several hours. Map a is

reproduced from [83, Fig. 5.5] and is included here for comparison because it was

taken in the same trap under similar conditions as the others. We discuss the striking

4The observed electron synchronization inspired a related series of experiments at Seoul National
University in which neutral atoms in a magneto-optical trap were parametrically excited by intensity-
modulating the trapping beams. The bifurcation of the quiescent state into two equally-occupied
limit-cycle states was directly imaged [128], as was spontaneous symmetry-breaking between these
two states [129]. There, the broken symmetry arises from a “shadow effect,” where one cloud blocks
the cooling laser from the other, and the symmetry-breaking is limited before total synchronization
by a repulsive “reradiation effect,” whereby one atom absorbs a photon emitted by another.



Chapter 5: Cavity Control of Lifetimes and Line-Shifts 127

c
y
c
lo

tr
o
n
 f
re

q
u
e

n
c
y
 /
 G

H
z

1
4
6

1
4
7

1
4
8

1
4
9

1
5
0

1
5
1

1
5
2

1
5
3

1
5
4

1
5
5

1
5
6

1
3
5

1
3
6

1
3
7

1
3
8

1
3
9

1
4
0

1
4
1

1
4
2

1
4
3

1
4
4

1
4
5

T
E

1
2

7
T

E
1

3
6

T
M

0
2

7
T

E
2

4
3

T
E

0
4

3

T
M

1
4

3

T
E

2
2

7

T
E

3
3

5

T
E

0
2

7

T
M

1
2

7
T

E
1

1
8

T
E

1
4

5

{

a b c

T
E

1
4

3

T
E

1
1

7
T

E
0

2
6

T
M

1
2

6

T
E

2
4

1

T
E

0
1

7

T
E

0
4

1

T
M

1
1

7 T
M

1
4

1

T
E

2
3

5

T
E

2
4

2

T
E

0
3

5

T
M

1
3

5

T
E

1
4

4

T
E

0
4

2

{

{

{

{

Figure 5.3: Three parametric mode maps. Map a reproduces [83, Fig. 5.5]
and was taken in the same trap as the others under similar conditions; its
striking difference is discussed in the text. The calibration frequencies are
indicated with symbols above the plots, and some calibration dips are visible
in maps b and c.
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difference between map a and maps b and c below but turn first to a discussion of

the features found in all three.

Calibrating the mode maps

Map a is calibrated by moving the magnetic field to the locations indicated by

red circles and measuring the cyclotron frequency directly. Maps b and c are cali-

brated during the sweep by applying a strong cyclotron drive at discrete frequencies,

indicated by black squares and blue triangles. When the electrons come into reso-

nance with the drive, the magnetic bottle shifts their axial frequency far enough that

the parametric drive is no longer resonant and the signal disappears, producing a

sharp dip in the map. One such dip may clearly be seen on TE241, near 139.6 GHz.

The cyclotron frequencies for the remainder of each map are assigned with a linear

interpolation function between these discrete calibration points.

Comparing the mode frequencies with those of an ideal cylinder with dimensions

similar to the trap dimensions allows us to identify the modes. In the frequency range

shown, all TE modes with m = 0, 1, 2 and all TM modes with m = 1 are identified

with two exceptions: TE217 at ν ≈ 138.9 GHz, which has n much lower than the

observed TE2np modes, and TM142 at ν ≈ 145 GHz, which is weakly coupled because

of its low, even p. Table 5.1 summarizes the measured mode frequencies and Qs based

on Lorentzian fits to mode maps b and c. It includes frequencies calculated from the

cylinder dimensions that give the closest agreement to the measured frequencies of

the TE0np modes, whose frequency should be closest to that of an ideal cavity because

their purely-azimuthal electric fields produce no surface currents that are impeded by
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mode

calculated
frequency /

GHz

measured
frequency /

GHz measured Q

TE117 136.568 136.729(8) 1500(100)
TE026 137.276
TM126 137.276 137.818(10) 730(90)
TE241 139.502 139.563(8) 7500(600)
TE017 141.044 141.097(8) 5000(1000)
TE041 141.095 141.231(8) 5600(500)
TM117 141.044 141.557(8) 1760(140)
TM141 141.095 142.014(8) 1080(90)
TE235 142.347 142.307(8) 14100(1400)
TE242 143.457
TE035 143.926 143.8518(6) 2500(150)
TM135 143.926 144.458(4) 1250(60)
TE144 145.078 144.933(7) 1500(200)
TE042 145.007
TE127 146.307 146.289(7) 4600(900)
TE136 146.449 146.436(7) 2200(60)
TM027 147.075 147.5893(9) 2100(90)
TE243 149.817 149.720(6) 10000(4000)
TE043 151.301 151.1970(4) 5900(400)
TM143 151.301 151.865(4) 890(10)
TE227 152.403 152.426(5) 5100(200)
TE335 153.269
TE027 153.928 153.928(1) 8800(600)
TM127 153.928 154.432(8) 980(80)

Table 5.1: Measured mode frequencies and Qs for the modes identified in
the maps of Fig. 5.3 along with their frequencies calculated using Eq. 5.4 and
the trap dimensions from a least-squares fit to the TE0np mode locations
(ρ0 = 4548.41 µm, z0 = 3880.58 µm). The measured frequencies are based
on Lorentzian fits to maps b and c (modes only appearing in map a are left
blank) and account for normal mode splitting by averaging the frequencies
of the two peaks. The fitted Qs are influenced by strong coupling and should
be treated only as estimates of the actual mode Qs.
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the trap slits.

These three maps were taken using the same trap over the course of 18 months,

during which time the electrodes were thermally cycled to room temperature several

times, the refrigerator was inserted and removed, and the magnet was quenched with

the electrodes inside. At no point were the electrodes themselves disassembled or

adjusted. The general alignment of the features and the precise alignment of the

calibration points indicate that the trap cavity and its resonant modes are robust

against stresses and thermal cycles. Any misalignments in the location of a particular

mode may be attributed to the calibration process, specifically to nonlinear charging

rates from the power supplies, rather than to real shifts in the mode frequencies.

Thus, once we have determined the locations of the cavity modes, we need not fear

that they shift over time and may confidently apply cavity-shift corrections to g-value

data even though the cavity and g-value data may have been taken months apart.

5.2.4 Mode map features

Strong plasma–cavity coupling

Three important features aid the understanding of the maps. First, the criterion

for Lorentzian lineshapes is that the probe of the cyclotron damping rate only weakly

couples to the cavity mode, that is, any energy transfered from the cloud to the

mode is damped quickly through resistive losses in the walls. Failure to satisfy this

criterion allows the energy to transfer back into the cyclotron motion, ringing several

times between electrons and mode before damping away. This oscillation splits the

Lorentzian response into a pair of normal modes. The figure-of-merit, η, for this
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effect relates the coupling rate between N electrons and the mode, NλM (defined in

Section 5.3), to the mode width, ΓM, or quality factor, QM, [121]

η =
2N2λ2

M

Γ2
M

=
2N2λ2

MQ
2
M

ω2
M

. (5.10)

Maps a, b, and c had N = 26 000, 18 000, and 17 000, leading to η � 1 for most high-

Q modes and clear normal mode splitting. This splitting is most obvious in TE127 in

Fig. 5.3 and Fig. 5.4, but is clear in others when plotted on an enlarged scale. The

cavity QED community often refers to this effect as “strong coupling” or “vacuum

Rabi splitting,” and various papers on the effect note that the mode frequency is

midway between the two peaks and that the Q of the split peaks is higher than the

mode Q, see e.g., [130, 131, 132, 133].

Motional sidebands

A second feature arises from the axial motion of the cloud during the measurement.

Since the axial oscillation amplitude is limited only by trap anharmonicities, it can

be quite large. Large axial oscillations across the cosine or sine electric field profile

of a mode will amplitude-modulate γc, a topic fully explored in Section 5.3.3 and

Appendix A. For a cloud oscillating about the trap center, modes with nodes at

the center (even p) have a response entirely in the odd-order sidebands at ωM ± ωz,

ωM ± 3ωz, and so on, while those with central antinodes (odd p) have a primary

response at ωM with sidebands at ωM ± 2ωz and the even multiples of ωz. In both

cases, the coupling to the sidebands will depend on the oscillation amplitude and the

wavelength of the mode standing-wave pattern, with more prominent sidebands at

higher amplitudes and shorter wavelengths (larger p). These motional sidebands are
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clearly visible at TE144, near 145 GHz in Fig. 5.3.

Coupling to modes beyond the trap center

A third set of features arises from either the non-zero cloud size or a relative offset

between the electrostatic center and the mode center. For a cloud of hundreds or

thousands of electrons, the size of the plasma allows it to couple to modes beyond

just 1n(odd). As the cloud extends in radius, it couples to modes with m 6= 1. Since

the transverse electric field of a mode goes as ρm−1 (ρ for m = 0, see Eq. 5.6), we

would expect to couple more strongly to modes with m close to 1. Indeed, in Fig. 5.3,

we see coupling to modes with m = 0, 2 in addition to m = 1. Additionally, a larger

n increases the number of antinodes along the radius, pushing the nearest one closer,

which should increase the coupling to the plasma. We see this effect in the stronger

coupling to TE027 (ν ≈ 154 GHz) than to TE017 (ν ≈ 141 GHz).

Nonzero size along the axis requires a modification to the sideband discussion

of the previous section because not all electrons oscillate precisely about a node or

antinode of the mode standing wave. This offset allows coupling to all modes at all

axial sidebands, including at the central peak for modes with nodes at the trap center

(even p).

Both the coupling to modes with m 6= 1 and the presence of additional axial

sidebands could occur if the cloud were offset radially or axially from the center of

the cavity modes, and determining whether we see the effects because of finite cloud

size or an offset will be important when we turn to the single-electron cavity coupling.

In the single-electron case, only the offset effects will remain.
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Figure 5.4: Modes TE127 and TE136 with sidebands. The data (A) are from
maps a and b of Fig. 5.3. The left pair of prominent peaks near 146.3 GHz are
TE127, which is split from strong coupling between the plasma and the cavity.
The peak near 146.4 GHz is TE136. Vertical bars spaced one axial frequency
(200 MHz) apart indicate the expected sideband separation. The existence
of the ±νz sidebands of TE127 and of the central peak of TE136 suggest that
the cloud is not centered axially with respect to the modes. Plot B shows
the calculated cyclotron damping rate for a cloud offset 250 µm axially and
oscillating with a 100 µm amplitude.

Figure 5.4A gives an expanded view of the region around TE127 and TE136, reveal-

ing that both modes have central peaks and first-order sidebands (note that TE127

also shows normal-mode splitting). Second-order sidebands appear as well for TE127

on the upper mode map (map a of Fig. 5.3). In order to determine whether the central

peak of TE136 and the odd-order sidebands of TE127 arise from nonzero cloud size or

from an axial offset, we can model the coupling to the two modes using the discus-

sion of single-mode coupling with axial oscillations in Section 5.3.3. Using the mode

frequencies and Qs of Table 5.1, if the electron cloud is approximated as a sphere of

uniform density and centered in the trap, it would need a radius of nearly 600 µm to
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have the observed relative peak-heights of TE127 and TE136. By contrast, a zero-size

cloud would need an offset of approximately 250 µm; the calculated coupling at such

an offset is shown in Fig. 5.4B. Both of these estimates are heavily Q-dependent, but

different Qs will change both lengths in the same way, e.g., a higher Q for TE136

would reduce the estimates for both the 600 µm radius and the 250 µm offset. In

both estimates, we use an axial amplitude of 100 µm, which reproduces the observed

axial sideband amplitudes.

We may check the reasonableness of a 600 µm radius by calculating the expected

plasma radius, which, for a spheroidal cloud of N electrons with radius a, half-height

b, and aspect ratio α ≡ b/a, is [134]

a3 =
3N

4πε0

e2f(α)

αmω2
z

, (5.11)

where the function

f(α) =
1

α2 − 1

[
α√

1− α2
arctan

(√
1− α2

α

)
− 1

]
(5.12)

indicates the square of the ratio of the axial frequency to the plasma frequency (the

frequency at which charge density perturbations oscillate in the plasma) and equals

1/3 for a sphere (α = 1). For our electron numbers, N ≈ 20, 000, a spherical cloud

should have a 150 µm radius, suggesting that either the cloud is not spherical or that

it is offset axially from the mode center. We shall see in Section 5.4.3 that the latter

is indeed the case.

Mode map consistency

As discussed in Section 5.2.2, the mechanism responsible for translating γc into a

center-of-mass signal in a parametrically driven cloud is not yet understood. Since
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many parameters, including drive strength and frequency, anharmonicity of the trap-

ping potential, and electron number, influence the behavior of the parametric reso-

nance, one might imagine finding the regime in which the collective motion is con-

trolled by the cyclotron damping rate, as is necessary for mapping the cavity modes,

would be a difficult task. Early studies [123, 121] found just the opposite—the degree

of cloud synchronization closely followed γc for wide ranges of parameters, yielding

Lorentzian mode profiles except in cases of strong coupling or motional sidebands.

Subsequent uses of the technique, including in this thesis, have failed to reproduce

this robustness [135, 83].

Figure 5.3 shows two of the three styles of mode maps we have seen: the “good”

style of maps b and c, with Lorentzian mode profiles and no CM motion far from

modes, and the “always-synchronized” style of map a, where the CM motion never

disappears but increases and decreases with γc. The third and most common style

of map, “doesn’t-work,” is characterized by a synchronization (or lack thereof) that

does not change with magnetic field. We have investigated a range of the parameter

space without being able to reproducibly switch among the three map styles. Some

clues as to why the previously robust method is no longer so may be found in the

primary differences between our apparatus and that of [123, 121]: a forty-times lower

cavity temperature and ten-times deeper axial potential increase the inter-particle

Coulomb interaction and enhance collective motion [136, 137] and [96, App. B], while

ten-times larger electron clouds (we found that smaller clouds rapidly saturated with

all electrons in one of the two phases) and a more heavily filtered and noise-free

electrical environment should reduce the fluctuations between the bistable states.
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We emphasize, however, that although we are unable to create a clean mode map

on demand, the ones that we have made are consistent with each other in both the

location of the modes and the presence of an offset between the electrostatic and

mode centers. This consistency despite the variety of parametric results indicates

that the cavity itself is quite stable.

5.3 Coupling to a Single Electron

Having discussed a many-electron method of characterizing the frequency and Q

of the cavity modes, we turn to a detailed analysis of the coupling of these modes to

a single electron. The importance of such an analysis is twofold: first, measurements

of γc will allow an independent characterization of the cavity mode structure, and

second, it is required for the calculation of the cavity shifts, ∆ωc, themselves.5 In

this first of the single-electron-coupling sections, we present an analytic expression for

the cyclotron frequency shift and damping rate due to the interaction of the electron

with the cavity modes. This expression has been derived before for a centered electron

(z, ρ = 0) [80], and we extend it to arbitrary position in the trap in order to include any

misalignment between the trap electrostatic and mode centers. In addition, we model

the cyclotron damping rate as measured at the rather large amplitudes achieved with

our self-excited oscillator (SEO) detection. The results for any misalignment will be

important in calculating the g-value shift arising from the cyclotron frequency shift;

the high-axial-amplitude corrections will not affect the g-value, which is measured at

a much lower axial amplitude with both the SEO and the amplifiers off.

5The cavity shift, ∆ωc, is not to be confused with the linewidth parameter, ∆ω, of Eq. 4.7.
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5.3.1 Single-mode approximation

Before beginning the full calculation, it is worth modeling the interaction between

the electron and a single nearby mode, here denoted M, to give an indication of the

character of the electron–mode coupling. This approximation will eventually be the

starting point for modeling the coupling including axial motion in Section 5.3.3. The

interaction may be approximated as that of two coupled oscillators with the resulting

electron frequency shift and damping rate given by [120]

∆ωc =
γM

2

δ

1 + δ2
(5.13a)

γ = γM
1

1 + δ2
. (5.13b)

Here, γM is the cyclotron damping rate when the electron is exactly resonant with

the mode and δ is the relative detuning, defined as

δ =
ω′c − ωM

ΓM/2
. (5.14)

The mode full-width at half-maximum, ΓM, arises because of losses in the cavity

and may be written in terms of a quality factor, QM, with the usual definition:

QM = ωM/ΓM. The cyclotron frequency is maximally-shifted by ±γM/4 at δ = ±1.

Furthermore, provided the cyclotron frequency is detuned far enough from a mode

that δ � 1, i.e., (ωc − ωM)/ωM � 1/(2QM), the shift is Q-independent.

We define a coupling constant λM in terms of the mode QM and the electron

damping rate:

γM

ωM

= 2QM

(
λM

ωM

)2

. (5.15)

In the next section, we derive analytic expressions for these coupling constants for



Chapter 5: Cavity Control of Lifetimes and Line-Shifts 138

arbitrary axial and radial positions with the results

(E)λ2
mnp =

2r0c
2

z0ρ2
0

−(1 + sgn(m))

J ′′m(x′mn)Jm(x′mn)
sin2(pπ

2
( z
z0

+ 1))RJ(m;x′mn
ρ
ρ0

) (5.16a)

(M)λ2
mnp =

2r0c
2

z0ρ2
0

1 + sgn(m)

J ′m(xmn)2

(
pπ

2z0

c
(M)ωmnp

)2

sin2(pπ
2

( z
z0

+ 1))RJ(m;xmn
ρ
ρ0

), (5.16b)

where r0 =
1

4πε0

e2

mc2
is the classical electron radius, (E) and (M) refer to TE and

TM modes, x
(′)
mn are the previously mentioned zeros of the Bessel functions and their

derivatives, and the signum function,

sgn(m) =



−1 for m < 0

0 for m = 0

1 for m > 0

, (5.17)

accounts for the double degeneracy of modes with m > 0. The entire radial depen-

dence of the coupling is contained in the RJ function, defined by

RJ(m;x) =
m2

x2
Jm(x)2 − J ′m(x)2. (5.18)

For zero radius, RJ equals 1/2 if m = 1 and zero otherwise. We may now rewrite the

frequency shift and damping rate of Eq. 5.13 in terms of the mode coupling constant

as

∆ωc − i
γ

2
=

ωλ2
M

ω2 + iωΓM − ω2
M

, (5.19)

where ω is the shifted cyclotron frequency.

It is tempting to expand on the single-mode approximation above by adding the

contributions of many modes. This mode-sum approach is fundamentally flawed

because the real part is infinite [80]. A linear divergence arises from the inclusion of
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the electron self-field contribution to the cavity radiation rather than only the field

reflected from the walls. A calculation that explicitly removes the electron self-field

from the cavity standing wave, i.e., “renormalizes” the field, yields a finite result and

is the subject of the next section.

5.3.2 Renormalized calculation

In this derivation of the frequency shifts and damping rates, as a function of

arbitrary electron position, we follow closely the calculation of [80], which contains

the result for a fully-centered particle (z, ρ = 0) as well as many details omitted here.

While it is possible to tackle the full cylindrical cavity directly, removing the electron

self-field from such a calculation is difficult. Thus, we begin with a calculation for two

parallel conducting plates, i.e., the cylindrical cavity with ρ0 → ∞. Here, the result

may be written as a series of image charges. Renormalizing this sum is trivial—we

simply omit the electron and leave the image charges, a result we will call ΣP . We

then proceed to the calculation of the full cylindrical cavity and omit the contribution

from the endcaps, leaving only the correction from the cylindrical wall, a result we

will call ΣS. The final result will be the sum of the contributions from the endcaps

and the wall. At a cyclotron frequency ω, the frequency shift, ∆ωc, and damping rate,

γ, will be given in terms of these two contributions, the free space damping rate, γc,

and a quality factor, Q, for all modes:

∆ωc −
i

2
γ = − i

2
γc + ω

{
ΣS

[
ω(1 + i

2Q
), z, ρ

]
+ ΣP

[
ω(1 + i

2Q
), z
]}

. (5.20)

The effect of the cavity on the electron may be modeled as an electric field E′(r)

arising from image charges in the walls. It modifies the transverse equation of motion
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to read

v̇ − ωc × v +
e

m
∇V (r) +

1

2
γcv =

e

m
E′(r). (5.21)

The longitudinal part of E′(r) gives a negligible correction to the trapping potential

V (r) [80, Sec. II], but the transverse part generates the anticipated effects. Using the

radiation gauge, ∇ ·A = 0, the electric field may be written as the time derivative of

the vector potential. This vector potential satisfies the wave equation with a trans-

verse current source and thus may be written as the convolution of that source, the

moving electron, and a Green’s function subject to the appropriate boundary condi-

tions, see e.g., [122, Sec. 6.3-6.4]. Combining the two transverse velocity components

as v = vx − ivy = v0e
−iωt, one can then write Eq. 5.21 as6

∆ωc −
i

2
γ +

i

2
γc = −ωr0D̃

′
xx(ω; r, r), (5.22)

where r0 =
1

4πε0

e2

mc2
is again the classical electron radius (Appendix A shows some

of the details in transforming Eq. 5.21 into Eq. 5.22). D̃′kl(ω; r, r′) is the Fourier trans-

form of the part of that Green’s function that arises due to the presence of the cavity

walls. That is, it explicitly excludes the electron self-field. Note that D̃′xx(ω; r, r) is

in general complex, with the real portion corresponding to frequency shifts and the

imaginary portion to a modified damping rate.

Parallel-plate calculation

As mentioned before, we begin with the shift from two parallel plates, a straight-

forward image-charge calculation. The Fourier transform of the Green’s function at

6In [80], the frequency and damping shifts here called ∆ωc − iγ/2 are written as ω − ω′c =
R(ω)− iI(ω)/2.
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Figure 5.5: Image charges of an electron offset from the midpoint of two
parallel conducting plates. The charges alternate sign, as indicated by the
open/filled circles.

z′ for an electron at z depends only on the distance |z′ − z| and is [80, Sec. III]

D̃(0)
xx (ω; z′ − z) ≡F (z′ − z) = 4π

∫
d3k

(2π)3

(
1− k2

x

k2

)
e−ikz(z′−z)

k2 − (ω + iε)2/c2
(5.23)

=
1

|z′ − z|

(
eiω|z

′−z|/c
(

1 +
ic

ω |z′ − z|
− c2

(ω(z′ − z))2

)
+

c2

(ω(z′ − z))2

)
.

For a single conducting plane, the method of images allows us to satisfy the boundary

conditions with a single image charge. For two parallel conducting plates, an infinite

series is required, as shown in Fig. 5.5. The parallel-plate component of the cavity

effect is simply the sum of all the contributions from the image charges:

ΣP (ω, z) ≡− r0D̃
′(P )
xx (ω; z, z) = −r0

[
2
∞∑
j=1

F (4jz0) (5.24)

−
∞∑
j=1

F (2(2j − 1)z0 + 2z)−
∞∑
j=1

F (2(2j − 1)z0 − 2z)

]
.

Note that the j = 0 term has been removed from the first sum. This exclusion of the

electron self-field is the explicit renormalization required to avoid an infinite result.

Note also that setting z → 0 recovers [80, Eq. 3.7].
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The parallel-plate component depends on an axial offset but not a radial one be-

cause of the transverse symmetry of two parallel plates. Its imaginary part has a

sawtooth form with sharp teeth where the frequency corresponds to an integral num-

ber of half-wavelengths between the two endcaps (only the odd integers for z = 0 since

the even integers have a node there). The real part shows peaks at similar intervals.

The nearest such frequency corresponds to eight half-wavelengths at 154.5 GHz, far

enough away that the parallel-plate contribution is smooth in our region of interest.

Cylindrical-wall calculation

The cylindrical-wall component is considerably more complicated. The derivation

for z 6= 0 differs from that of [80, Sec. IV] in a trivial way—we do not substitute z = 0

into sin(kz) and cos(kz). The inclusion of the ρ-dependence adds a function RI as

well as a sum over the mode-index m. The result is

ΣS(ω, z, ρ) = −r0

z0

∞∑
p=1

sin2(pπ
2

( z
z0

+ 1)) (5.25)

×
∞∑
m=0

(1 + sgn(m))

[
K ′m(µpρ0)

I ′m(µpρ0)
RI(m;µpρ)

+

(
pπc

2ωz0

)2
(
Km(µpρ0)

Im(µpρ0)
RI(m;µpρ)−

Km(pπρ0
2z0

)

Im(pπρ0
2z0

)
RI(m; pπρ

2z0
)

)]

with

µp =

√(
pπ

2z0

)2

−
(ω
c

)2

, (5.26)

RI(m;x) =
m2

x2
Im(x)2 + I ′m(x)2, (5.27)
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and the signum function defined in Eq. 5.17.7 The sums include modified Bessel

functions of the first (Iν(x) = i−νJν(ix)) and second (Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(νπ)
)

kinds as well as their derivatives, see e.g., [113, Ch. 11]. The K ′m(µpρ0)/I ′m(µpρ0) term

comes from the boundary conditions of the TE modes, while the Km(µpρ0)/Im(µpρ0)

term comes from the TM modes. For ρ → 0, the RI functions all go to zero except

whenm = 1, when it goes to 1/2. For z → 0, only the odd-p terms survive. Combined,

these limits reproduce [80, Eq. 4.28].

For a given p, an increasing ω will eventually cross a threshold at which µp becomes

zero and then imaginary. At that point, we may use the definition of Im(x) to

substitute

Im(µpρ0) = i−mJm(µ̃pρ0), (5.28)

where µ̃p is the now-real quantity iµp. Since Jm(x) and J ′m(x) have a number of zeros,

after ω exceeds the pth threshold the sum has poles that may be approximated as

ΣS(ω, z, ρ) ≈
(E,M)λ2

mnp

ω2 −(E,M)ω2
mnp

. (5.29)

For TE modes, the poles occur when J ′m(µ̃pρ0) has a zero, that is, when ω = (E)ωmnp

of Eq. 5.4. For TM modes, they occur when ω = (M)ωmnp. Expanding the Bessel

functions about their zeros, yields the mode coupling strengths of Eq. 5.16. Given the

above, we can see that the summation indices p and m in Eq. 5.25 correspond directly

to those in the mode indices, mnp, and the addition of the m, pth term of the sums

adds the contributions from all modes of that m and p. The threshold above which

7Following the exact procedure in [80, Sec. IV] without taking the ρ → 0 limit will lead to a
φ-dependence in ΣS . This is an artifact of the paper’s axial-symmetry assumption in using D̃′xx

instead of D̃′kl. One solution is to redo the calculation using the general D̃′kl. Alternately, since the
modes physically rotate in time (see Eq. 5.3), it is appropriate to average over this φ, which appears
only as sin2 φ and cos2 φ (and not as mφ).
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Figure 5.6: Calculated cyclotron damping rates at various z. The black line
indicates the mode structure at the trap center. The highest point corre-
sponds to a damping rate approximately fifty times the free-space rate.

µp is imaginary corresponds to the frequency whose half-wavelength fits between the

endcaps p times.

Total renormalized calculation

The combination of ΣP and ΣS in Eq. 5.20 is the result of the renormalized calcu-

lation. There, we have included cavity dissipation in the from of a mode Q with the

replacement ω → ω(1 + i
2Q

). It is possible to include different quality factors for the

TE and TM mode classes by using (E)Q in the denominator functions I ′m(µpρ0) and

(M)Q everywhere else [80]. It is not possible to include a Q for each mode separately.

The result of a renormalized calculation of the cyclotron damping rate as a function

of cyclotron frequency and axial offset (for a radially-centered electron) is shown in

Fig. 5.6. Since it is calculated for ρ = 0, only the m = 1 modes are present. Clearly
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observable are the p antinodes between the endcaps and the coupling or lack thereof

at the trap center, indicated by a black line.

The strength of the renormalized calculation is its removal of the electron self-

energy. It has an important drawback in that the entire calculation has only four

input parameters: ρ0, z0, (M)Q, and (E)Q. It does not allow the input of arbitrary

mode frequencies and Qs. If the dominant mode-couplings are to one TE and one TM

mode, then the two mode frequencies andQs can determine the four input parameters.

The addition of a third mode, however, over-constrains the problem; unless the three

modes happen to have frequencies that correspond to those of an ideal cavity and

two happen to share Qs, the renormalized calculation will give an incorrect result.

A hybrid renormalized/mode-sum method

A method for better approximating the cavity-shift given imperfect agreement be-

tween measured and calculated mode frequencies is a hybrid renormalized/mode-sum

approach. One begins with the renormalized calculation using the two most strongly

coupled modes to set the input parameters. Using the single-mode approximation of

Eq. 5.19, one then corrects the contribution from any additional mode by subtracting

it with its ideal frequency and Q and adding it back in with its measured frequency

and Q. Since the coupling strengths of Eq. 5.16 are based on expansions around poles

in the renormalized sum, the infinities remain under control.

In this thesis, we must use such a technique because three modes couple to the

electron: TE127, TM143, and TE136. Since the electron is close to (but not precisely

in) the mode center, the two modes with antinodes at the center (odd p) dominate
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the coupling, and we set the four input parameters of the renormalized calculation

with the frequencies and Qs of TE127 and TM143. We use the mode-moving tech-

nique of the previous paragraph for TE136 with one alteration: we move the full term,

−2r0

z0

sin2(3π( z
z0

+1))
K ′1(µ6ρ0)

I ′1(µ6ρ0)
RI(1;µ6ρ), rather than just the Lorentzian approxima-

tion. Although this moves all modes with TE1n6 the next-nearest ones are far away:

(E)ω126/(2π) ≈ 129 GHz and (E)ω146/(2π) ≈ 169 GHz. Moving the full term has the

advantage of a complete cancellation in the mode subtraction rather than leaving

artifacts of uncanceled higher-order corrections.

5.3.3 Single-mode coupling with axial oscillations

We have just shown that the coupling strength to the cavity modes depends on

the axial position of the electron. In addition to any axial offset, the amplitude of the

axial motion itself will modulate the coupling at ωz. Accounting for this modulation

is a nontrivial task, which is intractable for the full renormalized calculation but

doable for the single-mode coupling provided that the axial amplitude, A, is much

lower than a quarter-wavelength of the mode’s axial standing wave (A� z0/p). Our

typical axial self-excitations fall within this low-amplitude limit with

A ≈ 50–150 µm
λ

4 TE127

≈ 550 µm (5.30)

λ

4 TE136

≈ 645 µm
λ

4 TM143

≈ 1300 µm.

All of the z-dependence in the mode-coupling parameters (E,M)λmnp of Eq. 5.16

comes in a single sine function:

(E,M)λmnp = sin(pπ
2

( z
z0

+ 1))λ̃M, (5.31)
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where we define λ̃M to be the non-z-dependent part of the coupling. For an electron

offset z from the center of the modes and oscillating at frequency ωz with amplitude

A� z0/p, we may expand the mode axial-dependence in terms of axial harmonics,

sin(pπ
2

( z+A cos(ωzt)
z0

+ 1)) =
∞∑
j=0

fj(z, A) cos(jωzt), (5.32)

where the fj(z, A) are functions of the axial offset and amplitude. The first three are

f0(z, A) = sin(pπ
2

( z
z0

+ 1))

[
1−

(
pπA

4z0

)2

+O(A4)

]
(5.33a)

f1(z, A) = cos(pπ
2

( z
z0

+ 1))

[
pπA

2z0

−O(A3)

]
(5.33b)

f2(z, A) = sin(pπ
2

( z
z0

+ 1))

[
−
(
pπA

4z0

)2

+O(A4)

]
. (5.33c)

As derived in Appendix A, including this expansion of the axial oscillation in

the transverse equation of motion (Eq. 5.21) yields an amplitude-dependence to the

single-mode coupling strength as well as a series of axial harmonics to the mode

frequency, ωM:

∆ωc − i
γ

2
=
λ̃2

Mω

2

∞∑
j=0

fj(z, A)2

[
1

ω2 − (ωM − jωz)2
+

1

ω2 − (ωM + jωz)2

]
. (5.34)

As before, we may include a damping width by substituting ω → ω(1+ i
2Q

) in the two

fractions within the brackets. Note that taking the A → 0 limit recovers the usual

single-mode coupling of Eq. 5.19.

5.4 Single-Electron Mode Detection

With a good electron–cavity coupling model now in hand, we may use the single-

electron cyclotron damping rate as a probe of the cavity mode structure. This probe
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Figure 5.7: Measurement of the cyclotron damping rate at 146.70 GHz, near
the upper sideband of TE136. The cyclotron damping rate as a function of
axial amplitude (c) extrapolates to the desired lifetime. Each point in (c)
consists of a damping rate measured from a fit to a histogram of cyclotron
jump lengths (a) as well as an axial amplitude measured from a driven cy-
clotron line (b).

will determine the mode frequencies and Qs independent of the multi-electron method

of Section 5.2. In the sections below, we use measurements of the cyclotron damping

rate as a function of cyclotron frequency and of position in the trap to determine the

position and Q of the three closest coupled modes and to characterize the alignment

of the electrostatic and mode centers.
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5.4.1 Measuring the cyclotron damping rate

Since we are able to perform a quantum-nondemolition measurement on the cy-

clotron state (see Section 2.3.4), measuring the cyclotron damping rate simply consists

of making many (typically hundreds) of jumps and fitting the distribution of jump

lengths to a decaying exponential with time-constant γ−1
c , as in Fig. 5.7a. A compli-

cation arises because, in order to detect the jumps, the electron must be self-excited

to a large axial amplitude, A. When νc is close to the frequency of a coupled cav-

ity mode, the axial oscillation modulates the coupling as discussed in Section 5.3.3,

adding an amplitude-dependence to the lifetime measurement. Therefore, in order

to find the zero-amplitude damping rate, we must measure the damping rate as a

function of amplitude and extrapolate back to A = 0. The amplitude-dependence

goes as even powers of A (see Section 5.3.3), and since the amplitude is much less

than a quarter-wavelength for the relevant modes, terms of higher-order in A get

progressively smaller, allowing extrapolation with a quadratic function,

γ(A) = γ(0) + γ2A
2. (5.35)

We measure the axial amplitude with the driven cyclotron lineshape of Eq. 4.14,

where the driven axial motion in the magnetic bottle causes the electron to see a

higher average magnetic field, resulting in a cyclotron frequency shift as in Fig. 5.7b.

Figure 5.7c shows an example of the measured damping rate as a function of amplitude

close to the upper axial sideband of TE136 ((E)ν136 +νz). It displays a large amplitude-

dependence in the cyclotron damping rate because of the proximity of νc and the

sideband, which becomes more prominent as larger axial oscillations increase the

modulation of the mode coupling.
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5.4.2 Fitting the cyclotron lifetime data

After repeating such measurements at many cyclotron frequencies, we amass two

sets of data: the zero-amplitude cyclotron decay rates, γ(0), and the quadratic

amplitude-dependence coefficients, γ2, as functions of νc. From these data, we wish to

extract the frequencies of the three nearest m = 1 modes, TE127, TE136, and TM143.

Since the lifetimes are heavily Q-dependent, we must include three Qs, bringing the

total number of fit parameters to six.

Building the fit function

The renormalized calculation provides the model for fitting the zero-amplitude

cyclotron decay rates. Since it has only four free parameters, we allow it to deter-

mine the frequencies and Qs of TE127 and TM143 and add the TE136 parameters by

hand, subtracting the TE1n6 term in the renormalized calculation for the calculated

frequency and Q and adding it back in with the frequency and Q as free parameters,

as discussed on page 145.

For the quadratic-amplitude-dependence data, we use the A2 term in the single-

mode coupling expansion of Section 5.3.3 to write

γ2 = −2
∑

M

Im

{
λ̃2

Mω

2

[
sin2(pπ

2
( z
z0

+ 1))

(
pπ

4z0

)2 −4

ω2 + iωωM

QM
− ω2

M

(5.36)

+ cos2(pπ
2

( z
z0

+ 1))

(
pπ

2z0

)2
(

1

ω2 + iω(ωM−ωz)
QM

− (ωM − ωz)2

+
1

ω2 + iω(ωM+ωz)
QM

− (ωM + ωz)2

)]}
,

where the sum is over the three modes of interest.
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TE127 TE136 TM143

νc / GHz Q νc / GHz Q νc / GHz Q

lifetime 146.322(13) 4900(300) 146.415(2) 4800(200) 151.811(16) 1270(70)
mode map 146.289 (7) 4600(900) 146.436(7) 2200 (60) 151.865 (4) 890(10)

Table 5.2: Comparison of the mode parameters from the single-electron life-
time fits and the multi-electron parametric mode maps.

We may thus form a χ2
γ(0) using the zero-amplitude data and the renormalized

calculation and a χ2
γ2

using the quadratic-amplitude-dependence data and Eq. 5.36.

Our fit will consist of minimizing the two χ2s. Although each depends on the same

six fit parameters, it is not immediately clear how to combine the two to get the best

parameter values. Since the electron is close to centered axially (we discuss the offset

fully in Section 5.4.3 and include the measured offset in the fits), the zero-amplitude

data is more sensitive to the two odd-p modes and the amplitude-dependence data to

the sidebands of the even-p mode. Thus we expect the best fit to be some combination

of the two χ2s and minimize

(1− a)χ2
γ(0) + aχ2

γ2
(5.37)

for various values of a from zero to one.

Fit results

Figure 5.8 displays one such fit with a = 0.75. The upper plot shows the zero-

amplitude cyclotron damping rates and the fit from the renormalized calculation with

TE136 moved; the lower plot shows the fit to the quadratic-amplitude-dependence

data. Table 5.2 lists the best-fit values and uncertainties for the six fit parameters.

With the exception of fits for only χ2
γ(0) or χ2

γ2
, various weightings of the two χ2s yield
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Figure 5.8: Lifetime data with fit. Each cyclotron frequency has a pair of
points, one for the zero-amplitude damping rate and one for the quadratic
amplitude-dependence, that come from a lifetime-versus-amplitude fit as in
Fig. 5.7c.

nearly identical results. Figure 5.9 plots the fitted values of the three frequencies for

various weights a. Because nearly all values produce similar results, deciding the most

appropriate value of a is unnecessary. We display the parameters and fits for a = 0.75

because it gives nearly equal weight to the two χ2s (χ2
γ(0) is roughly 2.5 times larger

than χ2
γ2

). The corresponding fit has a total χ2 per degree of freedom of 2.9.

Both Fig. 5.9 and Table 5.2 also compare the lifetime fit results to those from

the mode maps of Section 5.2. The two independent methods should agree but do

not. When calculating the cavity shifts, we will assign uncertainties large enough to

include both results for the mode frequencies. For the mode Qs, to which the cavity
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Figure 5.9: Fit results for the three relevant mode frequencies plotted for var-
ious a, the weightings between the zero-amplitude and quadratic-amplitude-
dependence χ2s. Also included are the parametric mode maps of Fig. 5.3
as well as gray bands indicating the mode frequencies fit from the maps.
The data from the lifetime fits should lie within these bands but do not for
unknown reasons.

shifts are much less sensitive, we will use the results from the lifetime fits because of

the strong-coupling ambiguity in the mode map values.

5.4.3 Axial and radial (mis)alignment of the electron posi-

tion

Knowledge of the electron position relative to the cavity modes is important for

calculating the electron–mode coupling and thus the cyclotron frequency shift. We

have already seen evidence (in Section 5.2.4) that a cloud of electrons couples to

modes with nodes at the axial and radial centers and estimated that the observed

coupling to TE136 is more likely to be caused by an axial offset than an extended

cloud. Here, we examine the alignment of the mode center and the electron position,
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Figure 5.10: Measurement of the offset between the electrostatic and mode
centers. Here, z refers to the position relative to the electrostatic center, and
the minimum in the cyclotron damping rate corresponds to the mode center.

i.e., the electrostatic center of the trap, and conclude that the electron sits 165(4) µm

below the mode center at a radius ρ < 10 µm.

Axial misalignment

We determine the axial misalignment by measuring the cyclotron damping rate as

a function of z, using antisymmetric endcap potentials to move the electron along the

trap axis. Figure 5.10 plots such a measurement with the cyclotron frequency tuned

midway between TE136 and its upper sideband—close enough to TE136 to give a large

z-dependence but far enough detuned that the cyclotron lifetime is long enough to

see single excitations. Since the mode-couplings are even functions of z, the damping

rate should go as z2 with an extremum at z = 0 for the modes. Figure 5.10 shows this

extremum, which fits to 165(4) µm. In addition, since the extremum is a minimum,
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the nearest coupled mode must have even p, demonstrating that the TE127/TE136

identification in Fig. 5.3 is correct.

Because the data for Fig. 5.10 were taken so close to two m = 1 modes (TE127

couples strongly even when the electron is offset to the node of TE136), the short

lifetime prevented the measurement of the zero-axial-amplitude cyclotron frequency

and thus the axial amplitude, rendering the extrapolation technique of Section 5.4.1

impossible. We account for this ignorance by estimating the range of cyclotron damp-

ing rates one expects from the typical axial amplitudes (50–150 µm) and enlarging

the error bars from their statistical values.

The cause of this offset is not known, but several clues are listed below. The offset

appears to be stable; the parametric mode maps have consistently shown a central

peak for TE136 and first-order sidebands for TE127. Measurement of a third trap

“center,” that of the minimum of the magnetic bottle (see Fig. 2.7), agrees with the

electrostatic center (as measured by νz versus z and Eq. 2.17). In addition, the ρ0

dimension from the fit to the TE0np modes (see Table 5.1) agrees with the designed

trap radius, after accounting for thermal contraction, to better than a micron (see

Table 2.1, which lists the designed dimensions for the cold trap), but the z0 dimension

fits to nearly 50 µm too long, indicating a 100 µm discrepancy in the total trap

height (2z0). Since the trap radius is set by one object—the ring electrode—it is

not surprising that it agrees better than the effective trap height, which depends on

the height of all five electrodes, four spacers, and both pieces of the magnetic bottle.

Nevertheless, the 100 µm length disagreement and the measured 165 µm offset are

both much larger than the net 25 µm machining tolerances, suggesting that a part
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may be bent or misaligned.

Attempts to model the observed offset do not yield a convincing explanation.

Simply shifting one endcap away, as if a quartz spacer were too large, could explain

the fit to the TE0np modes, but it would move the mode and electrostatic centers

nearly identical amounts. Adjusting the spacing among the ring and compensation

electrodes, i.e., modeling changes to the gaps between them, should leave the mode

center unchanged (it is set by the distance between the endcaps) and can move the

electrostatic center. The displacement of the electrostatic center is much less than

the displacement of the electrodes, however. For example, if the ≈ 150 µm gaps

between the electrodes were closed such that the ring and compensation electrodes

were pushed as far down as possible (creating a large gap between the top compen-

sation electrode and the top endcap), the electrostatic center would move down only

≈ 30 µm. Furthermore, because the two halves of the magnetic bottle are spaced

by a section of the ring electrode (see Fig. 2.2), any displacement of that electrode

would move the bottle as well. Since the electrostatic and magnetic bottle centers

agree, displacement of the ring electrode is unlikely. Also, the calculated electrostatic

anharmonicity coefficients in Table 2.1 agree well with those measured; for example,

the ratio of Vcomp/VR at which C4 = 0 agrees to 5%, measurements of
√

(1 + C2)/d2,

which calibrates the axial frequency in terms of the ring voltage in Eq. 2.1, agree to

0.6%, and the value of c1c3/(1 + C2)2, which is measured through axial frequency

shifts from antisymmetric endcap biases as in Eq. 2.17, agrees to 0.3%.

It is unclear what the effects are of more exotic trap deformations, such as a tilted

endcap or a compensation electrode that protrudes slightly into the cavity. The lack
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νc / GHz γc / s−1 nearby modes allowed ρ
143.8495 1.08(3) TE035, TM135 < 8 µm
147.567 0.182(9) TM027 0 µm
151.196 0.72(4) TE043 1− 9 µm

Table 5.3: Limits on the radial alignment between the electrostatic and mode
centers, as determined by tuning the cyclotron frequency near resonance with
m 6= 1 modes.

of a firm explanation for the axial misalignment is worrisome, but the data from the

mode-maps and Fig. 5.10 demonstrate that it exists, and we will use the measured

offset in calculating the cavity shifts. We build our confidence that this procedure

is correct by measuring the g-value at multiple cyclotron frequencies with different

cavity shifts and showing the agreement between the predicted and measured shifts.

Radial alignment

We estimate the radial alignment of a single electron by tuning its cyclotron

frequency into resonance with three modes that have nodes at the radial center, i.e.,

have m 6= 1, and comparing the measured cyclotron damping rate to that predicted

by the renormalized model with ρ = 0. Since the m 6= 1 modes do not couple to a

radially-centered electron, a measured cyclotron damping rate that is faster than the

calculated damping rate could indicate a radial misalignment. For the cases where we

observe such a discrepancy, we use the full, ρ-dependent renormalized calculation to

estimate the range of radial offsets that could explain the observed damping rates. In

each of the three cases, we measure damping rates close to that predicted for ρ = 0,

and we set the limit ρ < 10 µm.

The three m 6= 1 modes (all were m = 0), the measured cyclotron damping
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rates, and the radial limits are listed in Table 5.3. Two, TM027 and TE043, are

within the region in which we measure g; one, TE035, is at a lower frequency.8 For

the renormalized calculation, we include the axial offset of the previous section and

use the range of mode parameters determined from the parametric mode maps and

lifetime fits and listed in Table 5.4, including the movement of TE136 to its observed

location (see page 145). We also use the mode-movement technique to put additional

nearby modes at their observed locations, as determined by the parametric mode

maps and listed in Table 5.1; these additional modes are listed in Table 5.3.

For TE035, having all mode frequencies and Qs at their mean values predicts a

cyclotron damping rate faster than the measured rate, leaving no room for a radial

offset. By adjusting the mode parameters within their uncertainties to minimize the

ρ = 0 damping, e.g., shifting the m = 1 modes away and increasing their Q, one can

bring the calculated ρ = 0 damping below the measured one, creating the possibility

for a radial offset as large as 8 µm. For TE043, the measured γc is consistent with

a radial offset in the range 1 µm < ρ < 9 µm. For TM027, the cyclotron lifetime is

always longer than that calculated by the renormalized method, such that it is never

consistent with ρ 6= 0.

We did not measure the amplitude of the axial oscillations during these lifetime

measurements and are thus not able to extrapolate to zero-amplitude damping rates

as we did in Section 5.4.1. Any amplitude corrections are negligible, however, because

we are not near resonance with any mode or sideband other than the m = 0 modes

themselves. Because the electron is nearly centered, the coupling to the m = 0

8Two of the damping rate measurements appeared previously in [83, Table 5.2], though not in
this context.



Chapter 5: Cavity Control of Lifetimes and Line-Shifts 159

modes is a small addition on the ρ = 0 renormalized calculation, and the amplitude

corrections would be small adjustments to that small addition.

None of these three radial-offset tests show evidence of a misalignment as large as

the one seen axially, and all are consistent with ρ < 10 µm, which we adopt as our

limit.

5.5 Cavity-shift Results

With two independent measurements of the relevant mode frequencies as well

as quantified trap offsets now in hand, we turn at long last to the cyclotron fre-

quency shifts that directly affect the g-value. In the next two sections, we discuss

the methods used for calculating the cavity shift corrections applied in the 2006 g-

value publication [1] and in this thesis. The 2006 g-value measurement was the first

to use independently measured cavity modes to calculate cavity-shift corrections and

included the first measured cavity shift of g between two magnetic fields. The present

work adds the independent lifetime measurements and the electrostatic–mode center

offsets to improve the cavity-shift precision by more than a factor of six. It includes

four new measurements of g with cavity shifts spanning over 10 ppt and uncertainties

as low as 0.06 ppt.

5.5.1 2006 cavity shift analysis

For our 2006 publication [1], we assumed that the electron was perfectly centered

in the trap. This was wrong, but sensibly chosen error bars were large enough to

include the now-measured axial offset. Using the parametric mode maps, we identified
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2006 PRL [1] this thesis

TE127
νc / GHz 146.350(200) 146.309(27)

Q > 500 4900(300)

TE136
νc / GHz — 146.428(15)

Q — 4800(200)

TM143
νc / GHz 151.900(200) 151.832(37)

Q > 500 1270(70)
electrostatic

offset
z /µm 0 165(4)
ρ /µm 0 < 10

Table 5.4: Parameters used in calculating the cavity shifts

all the modes with an antinode at the center, though we remained uncertain about

our assignment for the closest TE mode (TE127) and assigned mode-frequency error

bars generously to cover any risk of misidentification. The analysis in this chapter

demonstrates that we were correct in both our identification and the need for larger

error bars because our knowledge was incomplete.

The parameters used for calculating the cavity shifts are listed in Table 5.4. As

noted in Section 5.3.1, cavity shifts are independent of mode Q for cyclotron fre-

quencies with relative detunings (ωc − ωM)/ωM � 1/(2QM). For the two cyclotron

frequencies at which we measured g, this detuning requirement is valid for Q� 250;

the mode maps verify that the Qs are at least 500, and we adopt this range. Therefore,

without any addition from our uncertainty in the mode Qs, the renormalized calcu-

lation for a centered electron takes the uncertainty bands for the mode frequencies

to a corresponding cavity-shift uncertainty band. Figure 5.11a,b plots these bands

in light gray, and Fig. 5.11c shows the half-width of the cavity-shift band, i.e., the

cavity-shift uncertainty.

We measured g at two magnetic fields: one halfway between the two nearest cou-
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2006 PRL [1] this thesis
νc / GHz ∆ωc/ωc / ppt νc / GHz ∆ωc/ωc / ppt

146.8 12.8 (5.1) 147.5 4.36 (0.13)
149.0 0.06 (0.39) 149.2 -0.16 (0.06)

150.3 -2.25 (0.07)
151.3 -6.02 (0.28)

Table 5.5: Calculated cavity shifts

pled modes such that the cavity shift uncertainty was small, 149.0 GHz, and one closer

to the modes such that the shift itself was large, 146.8 GHz. Since the uncertainty

was much larger at 146.8 GHz, the g-value result was entirely from the centered point,

with a cavity-shift uncertainty of 0.39 ppt (see Table 5.5). The 146.8 GHz point al-

lowed the first measurement of a cavity shift of g between two magnetic fields. From

Table 5.5, the predicted range of the shift (g/2(146.8 GHz) − g/2(149.0 GHz)) was

-12.7 (5.5) ppt; the measured shift was -9.7 (1.1) ppt, in agreement with the predicted

range.

5.5.2 Current cavity shift analysis

Our present analysis of the cavity shifts improves upon the 2006 results and re-

duces the cavity uncertainty by more than a factor of six. The higher precision comes

primarily from three improvements: the independent probe of the cavity modes from

single-electron lifetime measurements, including axial-amplitude effects, the discovery

and quantification of an offset between the electrostatic and mode centers, and the

identification of nearly all modes in the parametric mode maps, which was aided by

noticing the effects of strong plasma–mode coupling and of the axial offset.

As in 2006, we calculate a cavity shift uncertainty band from the mode parameters
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and their uncertainties via the renormalized calculation. Because of the axial offset,

mode TE136 affects the shifts, and we calculate with this mode at its observed fre-

quency using the mode-moving technique of page 145. Because fits to the parametric

mode maps and to the single-electron lifetime data yield slightly different frequen-

cies for the three nearest coupled modes (see Fig. 5.9), we assign uncertainties large

enough to include both. The trap-radius limit only has a significant effect near two

modes, TE243 and TE043, and we again use the mode-moving technique to place them

at their observed frequencies, listed in Table 5.1. Because it appears in the paramet-

ric mode map, we include TM027 in the calculation, although it does not change the

result noticeably.

Figure 5.11 displays the results of this analysis, and Table 5.5 shows the calculated

cavity shifts for our four new measurements of g. The shifts span over 10 ppt with

uncertainties around 100 times smaller than that range. The measurement is no

longer dominated by the results at a single field because the two highest-precision

points have comparable uncertainties and a third’s uncertainty is only two-times

higher. The lowest uncertainties are below a part in 1013, over six times smaller than

in 2006 and low enough that this systematic uncertainty is no longer a dominant error

in the g-value measurement.

5.6 Summary

The Penning trap electrodes form a microwave cavity whose electromagnetic

modes alter the electron’s cyclotron frequency and damping rate from their free-

space values. By designing trap electrodes with a cylindrical geometry, we may use



Chapter 5: Cavity Control of Lifetimes and Line-Shifts 163

an analytic model to describe the coupling of an electron to the modes of an ideal

cylindrical cavity. Two independent measurements use sensitivity to γc to determine

the frequencies and widths of the relevant cavity modes. In the first, the center-of-

mass motion of a parametrically-driven cloud of electrons increases with cyclotron

damping rate, allowing us to quickly map the modes of the cavity by sweeping the

magnetic field. In the second, we measure the damping rate of a single electron at 11

cyclotron frequencies and as a function of axial amplitude. Both methods show modes

that correspond closely with those of an ideal cavity, allowing their identification using

standard nomenclature, e.g., TM143.

By displacing a single electron along the trap axis, we measure an offset between

the electrostatic and mode centers. By tuning its cyclotron frequency into resonance

with three modes that have nodes at ρ = 0, we set a limit on any radial offset. We

calculate the cavity shifts using the measured mode frequencies and trap offsets and a

model of the electron–cavity coupling that both removes an infinity from the electron

self-field and allows the positioning of the modes at their observed frequencies. The

calculated cavity shifts for the four cyclotron frequencies at which we measure g span

over 10 ppt and have uncertainties as low as 0.06 ppt. They allow us to correct the

measured g to its free-space value in the g-value analysis of the next chapter.
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Figure 5.11: Cavity shift results. Uncertainties in the frequencies of the
coupled cavity modes (a) translate into an uncertainty band of cavity shifts,
∆ωc/ωc, (b) whose half-width, i.e., the cavity-shift uncertainty, is plotted
in (c). The light gray bands correspond to those used in the 2006 g-value
publication [1], while the narrower dark gray bands indicate the analysis
presented in this thesis. The triangles at the top indicate the cyclotron
frequencies of the two g-value measurements as of 2006; the diamonds show
the location of the four new measurements.



Chapter 6

Uncertainties and a New

Measurement of g

Combining the techniques and analyses of the previous chapters, we present a new

measurement of the electron g-value. With a relative accuracy of 0.28 ppt, it improves

the precision of our 2006 result [1] by nearly a factor of three and brings our total

improvement compared to the 1987 University of Washington (UW) measurement [2]

to a factor of 15.

The uncertainty in g comes primarily from the determination of the cyclotron and

anomaly frequencies from their resonance lines. At each field, the weighted means

of the cyclotron and anomaly resonances provide a method for splitting lines in the

possible presence of magnetic field jitter while requiring only mild assumptions about

the noise itself. With an additional assumption about the frequency distribution of

the noise, maximum-likelihood fits to the Brownian-motion lineshapes of Chapter 4

with added noise allow a check on the weighted-mean method, and their relative

165
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agreement is used as a lineshape model uncertainty.

Cavity-shifts of the cyclotron and anomaly frequencies, which provided a sub-

stantial fraction of our uncertainty in 2006 [1] and dominated the 1987 measurement

[2], now give uncertainties well below the lineshape model uncertainties and join the

relativistic and magnetron shifts as “routine” corrections. By measuring g at four

magnetic fields with cavity shifts spanning over thirty times our final uncertainty, we

demonstrate the reliability of the cavity-shift analysis of the previous chapter. The

final result comes from a weighted average of the g-value at each of the four fields.

6.1 Lineshape Model Uncertainty and Statistics

The observed cyclotron and anomaly lines are slightly inconsistent with the Brownian-

motion lineshapes introduced in Chapter 4 and summarized below. Both lines appear

broader than expected, an effect particularly noticeable with the blurring of a sharp

feature on the cyclotron line. We attribute this broadening to fluctuations in the

magnetic field arising from sources discussed in Chapter 3, such as the relaxation of

stresses in the solenoid windings or motion of the trap electrodes in an inhomogeneous

magnetic field because of vibration or temperature and pressure fluctuations. To ex-

tract resonance frequencies from these noisy lines, we use a property of the noise-free

lineshape (unchanged in the presence of noise with a symmetric distribution) and

calculate the g-value from the mean values of the cyclotron and anomaly resonances.

To check the assumptions of this weighted-mean method, we fit the data to models

of their resonance lines. The relative agreement of these two methods quantifies a

lineshape model uncertainty. This uncertainty describes how well we know the line-
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shape model itself and is different from the statistical uncertainty in determining the

weighted mean. We begin with a review of the lineshapes and line-splitting tech-

niques, then describe the analysis for our 2006 g-value measurement [1], and end with

the analysis for the present measurement.

6.1.1 Cyclotron and anomaly lineshapes with magnetic field

noise

The expected lineshape of Section 4.2 arises from the magnetic field modulation of

the electron’s axial motion through the inhomogeneous field of the magnetic bottle.

The resulting line can take a variety of shapes depending on the ratio of two competing

timescales: the timescale for thermal fluctuations of the axial amplitude, γ−1
z , and a

coherence timescale, ≈ ∆ω−1. (The linewidth parameter is given by ∆ω = ω0
B2

B

kTz
mω2

z

for ω0 = ωc or ωa.) In addition, for short cyclotron lifetimes the natural linewidth

broadens the anomaly lines, which are much narrower than the cyclotron lines in

absolute frequency.

At the cyclotron frequency, γz � ∆ω (γz ≈ (200 ms)−1 and ∆ω ≈ (2 ms)−1) and

the axial amplitude fluctuates much slower than the coherence time. The instanta-

neous lineshape is therefore a natural-linewidth Lorentzian at a cyclotron frequency

corresponding to the root-mean-square axial amplitude in the magnetic bottle. Be-

tween each excitation attempt, the electron axial motion thermalizes to a new ampli-

tude such that the overall cyclotron lineshape is the narrow Lorentzian convolved with

the Boltzmann distribution of axial states. That is, the expected cyclotron line has

a sharp edge, corresponding to zero axial amplitude, and an exponential tail whose
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width is proportional to the axial temperature.

In all of our data, the cyclotron edge has a width of 0.5 –1 ppb (see Fig. 6.2).

This width is far larger than could be explained by adjusting the parameters of the

expected lineshape and suggests that some effect remains unaccounted for. Such an

effect could be jitter of the magnetic field for any of the reasons discussed in Chapter 3.

For example, even with the magnetic field tuned to its specified homogeneity of 10−8

over a 1 cm diameter sphere, a 100 µm motion of the trap electrodes would cause a

0.1 ppb field variation. Such a motion could be caused by vibrations that drive the

dilution refrigerator like a 2.2 m-long pendulum.

Provided such magnetic field noise fluctuates independent of the axial motion,

the resulting lineshape is the convolution of the noise-free one with a noise function,

as shown in Section 4.2.5. Attributing the line broadening to field noise assumes

that the fluctuation timescale is not so fast that the noise averages away during an

excitation attempt. The relevant comparison timescale is the inverse-linewidth co-

herence time (200 µs for the cyclotron line and 200 ms for the anomaly line), and any

line-broadening noise must fluctuate near to or slower than these timescales. Noise-

broadening from slow fluctuations is analogous to the exponential limit (γz � ∆ω)

of the noise-free cyclotron line, which takes its shape from the long axial fluctuation

time and the distribution of axial energies. Fast noise fluctuations are analogous to

the narrower anomaly line, which has γz � ∆ω; the same axial fluctuations are fast

compared to ∆ω−1 and “average away” to their mean value, approaching a natural-

linewidth Lorentzian offset from the zero-axial-amplitude anomaly frequency by ∆ω.

Our edge-tracking technique, used to remove long-term magnetic field drifts and de-
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scribed in Section 4.3.3, provides an upper-timescale of minutes for the noise timescale

because we see no correlation between adjacent edge-tracking points, which come at

intervals of several minutes (see e.g. Fig. 4.6 or Fig. 3.5 for examples of edge-tracking

data). This range of allowed timescales constrains the possible fluctuation mecha-

nisms.

The noise-free lineshapes possess the useful characteristic that their mean is equal

to ω0 + ∆ω, independent of γz. We use this feature in calculating a weighted mean

of histograms of the data and thus the cyclotron and anomaly frequencies that corre-

spond to the rms thermal axial motion in the magnetic bottle. Using these frequencies

instead of the zero-amplitude frequencies when calculating g should yield identical re-

sults at our precision (see Section 4.4.1). Convolving the noise-free lineshape with a

noise function, as required when including the magnetic field fluctuations of the pre-

vious paragraph, does not change this mean frequency provided the noise fluctuations

are symmetric, i.e., the mean frequency of the noise function is zero.

6.1.2 The line-splitting procedure

We use the weighted-mean method as our primary line-splitting technique because

it is independent of γz and does not require the adoption of a specific model of

magnetic field noise. The assumptions inherent in the weighted-mean method are

unsaturated lines, identical temperature and drive conditions during cyclotron and

anomaly excitations, and a symmetric noise spectrum with fluctuations slower than

the inverse-linewidths and faster than several minutes. We assign the resulting error

bars (from Eq. 4.32, which assumes binomial uncertainties on the successes in each
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histogram bin) as our “statistical” uncertainty. Simulations of g-value data show

that the discretization inherent in the weighted-mean method (from a trapezoid-

rule integration between histogram bins) does not introduce errors larger than these

calculated statistical uncertainties.

To test the assumptions that underly the weighted-mean method, we use maximum-

likelihood fits of the data to a lineshape that includes a specific model of the field-

noise spectrum—the noise-free lineshape convolved with a Gaussian whose width is

left as a fit parameter. The agreement between the g-value calculated from fits to the

Gaussian-noise lineshape and that from the weighted mean is our primary check on

the lineshape model, and quantifying this agreement provides a systematic, lineshape

model uncertainty.

6.1.3 2006 lineshape model analysis

For our 2006 measurement [1], we analyzed each night’s data separately. Although

we measured g at two cyclotron frequencies, 146.8 GHz and 149.0 GHz, the 6.7 s

cyclotron lifetime at 149.0 GHz only allowed an average of 29 sweeps across the

resonance lines each night. The statistics after a single night were insufficient for

meaningful line fits, so we used only the weighted-mean method to calculate g. The

149.0 GHz data was not included in our lineshape analysis. The 146.8 GHz data,

with its shorter 1.4 s lifetime, had an average of 66 measurement cycles per night

and therefore much better lineshape statistics. We analyzed each night’s data in

three ways: a weighted-mean calculation, a maximum-likelihood fit to the noise-free

lineshape, and a fit to the Gaussian-noise lineshape with the Gaussian width as a free
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Figure 6.1: Summary of the lineshape model analysis from 2006 [1] based
on 13 nights of high-statistics g-value data. Each night was analyzed three
different ways, and the plots show the differences between pairs of analysis
methods. The Gaussian curves have the mean and standard deviation of the
13 differences. Each histogram shows the distribution of g-value differences.
The bin width is equal to our assigned lineshape uncertainty, 0.6 ppt. In all
cases, at least 68% of the counts fall within one bin of zero.

parameter.

Figure 6.1 shows the g-value differences between pairs of analysis methods for the

13 nights of data at 146.8 GHz. We assigned a 0.6 ppt lineshape model uncertainty

based on the standard deviation of the differences between the weighted-mean and

Gaussian-noise lineshape methods, which, given the observed broad cyclotron edge,

seem the most likely to give accurate results for g. Even with the noise-free lineshape,

however, at least 68% of the differences lie within 0.6 ppt of agreement.

6.1.4 Current lineshape model analysis

For our new measurement, we rely upon our ability to correct for magnetic field

drift over long times and analyze all data at a given cyclotron frequency in a pair of

composite lines, providing sufficient signal-to-noise to assign a lineshape uncertainty

at each field. Although the weighted-mean method is our primary analysis technique,
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Figure 6.2: Cyclotron (left) and anomaly (right) data from each field. The
data are binned into histograms (points) to compare with a maximum likeli-
hood fit to the lineshape with Gaussian-noise (solid); 68% confidence bands
(gray) indicate the expected distribution of points. The dashed curves show
the best-fit lineshape with its noise-width set to zero. Inset are the edge-
tracking data from each field both binned into a histogram and plotted as a
Gaussian with the data’s mean and standard deviation (solid). The dashed
Gaussian shows the noise-width from the best-fit lineshape. All plots share
the same relative frequency scale.
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Figure 6.3: Comparing methods for extracting g from the cyclotron and
anomaly lines. The data include all corrections (including cavity shifts) so
each is a measurement of the free-space g-value, and they should all agree.
The error bars reflect only the statistical uncertainty of each analysis method.
The lineshape model uncertainty is designed to reflect the range of g-values
spanning from the lowest to the highest error bar at each field.

fits make more interesting plots, and we begin by displaying the entire set of g-

value data, representing 37 nighttime data runs, in Fig. 6.2. The plots compare a

histogram of the data for each line to its maximum-likelihood fit and 68% confidence

intervals for the distribution of data about the fit. To indicate the Gaussian-noise

width required for the lineshape model to fit the data, they show the lines with

the same parameters as before but with this width set to zero. In addition, the

inset plots compare the best-fit noise width to the edge-tracking data at each field.

Although the precise distribution of edge data depends on the details of the edge-

tracking procedure, computer simulations of our procedure indicate that the edge

data should be distributed with a width comparable to (within a factor of two of)

the Gaussian-noise width. As shown in the figure, the two agree well.

We determine g using six different methods. Because the weighted-mean method
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requires binning the data into a histogram, we check that our result is independent

of the bin width by using two different numbers of bins per field. The remaining four

methods are maximum-likelihood fits to the data:

1. A point-by-point fit (see Section 4.4.2) done sequentially—cyclotron then anomaly,

2. A sequential fit to histogrammed data,

3. A simultaneous fit of both lines with histogrammed data,

4. A sequential fit to histogrammed data with reduced axial damping (1/3 of our

measured γz/(2π) = 1 Hz).

The last fit is motivated by our difficulty in precisely determining γz because of ring

voltage drifts while measuring the axial-dip width. Figure 6.3 summarizes the results

of these six methods at each field. All systematic corrections are included in the data

so that each point is a determination of the free-space g-value. The error bars on the

points include only the statistical uncertainty from each analysis method.

At each field, we adopt the 50-bin weighted mean for the g-value result and as-

sign its error bar as the statistical uncertainty. Given the total range of g from the

six determinations (highest error bar to lowest), we assign a lineshape uncertainty

sufficient to increase the statistical uncertainty to the total range, i.e., the sum in

quadrature of the lineshape and statistical uncertainties is the range of g from the six

determinations. To establish a baseline that corresponds to our best understanding

of the lineshape model, we further sub-divide the lineshape model uncertainty into a

“correlated” uncertainty common to all fields and an “uncorrelated” uncertainty to

account for any additional discrepancy, and set the correlated uncertainty equal to
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νc / GHz = 147.5 149.2 150.3 151.3
g-value range 0.73 0.29 0.33 0.45

statistical uncertainty 0.39 0.17 0.17 0.24
↓

correlated lineshape
model uncertainty 0.24 0.24 0.24 0.24

uncorrelated lineshape
model uncertainty 0.56 0 0.15 0.30

Table 6.1: Summary of the lineshape model analysis. All uncertainties are
in ppt. The lineshape model uncertainties indicate the agreement between
the weighted-mean and line-fit analyses such that their sum in quadrature
with the weighted-mean statistical uncertainty equals the total allowed g-
value range from all analysis techniques. The lineshape model uncertainty
is divided into a correlated part, which establishes a baseline corresponding
to our best understanding of the lineshape model, and an uncorrelated part,
which indicates any additional uncertainty at a particular frequency.

the smallest lineshape uncertainty of the four fields. For example, the methods at

150.3 GHz give a total range within the error bars of ±0.33 ppt. The 50-bin weighted

mean has a statistical uncertainty of 0.17 ppt, and we have assigned a correlated line-

shape model uncertainty of 0.24 ppt, so we assign an uncorrelated lineshape model

uncertainty of
√

0.332 − 0.172 − 0.242 ppt = 0.15 ppt. Table 6.1 summarizes the

statistical and lineshape model uncertainties at the four fields.

6.1.5 Axial temperature changes

The resonance lines at 147.5 GHz and 151.3 GHz appear much broader than those

at the other fields. This additional width appears to be stable throughout the data

runs at each field (otherwise the narrow lines would be much noisier at high frequen-

cies) but varies between fields. It is consistent with a higher axial temperature, as

indicated by the asymmetric broadening of the cyclotron line with a wider exponential
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νc / GHz 147.5 149.2 150.3 151.3
fitted Tz / K 1.09(8) 0.23(3) 0.23(3) 0.48(5)

Table 6.2: Fitted axial temperatures at each cyclotron frequency.

tail (the fitted temperatures are in Table 6.2), but we have not been able to identify

the procedural differences at these fields.

These differences motivate our assignment of separate lineshape model uncertain-

ties at each field. The agreement of the six g-value determinations is much better for

the two narrower lines than for the wider ones, which is not surprising because the

wider lines rely more on the lineshape model for line-splitting. In particular, because

the anomaly line center is offset from the anomaly frequency by ∆ω, uncertainty in

the fitted cyclotron linewidth, i.e., the axial temperature, corresponds to additional

uncertainty in the anomaly frequency. Because their g-value data are less consistent,

the wider lines will play a smaller role when averaging data from all four fields.

The weighted-mean and line-fit methods should yield g-values independent of

axial temperature. In the former, the mean frequency shifts with Tz but in a manner

proportional to the magnetic field so the g-value remains unchanged. The line-fit

method includes Tz as a fit parameter and any temperature effects are explicitly

included in the lineshape. Nevertheless, we check for any systematic trends related

to axial temperature by taking an additional set of g-value data at 149.2 GHz with

the refrigerator operating at 500 mK instead of 100 mK. The resulting data fit to

an axial temperature of 0.55(2) K, in agreement with our deliberate heating. A

weighted-mean calculation has a statistical uncertainty of 0.30 ppt, and the maximum-

likelihood-fit checks give an uncorrelated lineshape model uncertainty of 0.46 ppt,
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both larger than those of the lower-temperature data at 149.2 GHz, in agreement

with temperature–uncertainty correlation noted above. Including the statistical and

uncorrelated lineshape model uncertainties, the difference between the 149.2 GHz,

500 mK g-value and the 100 mK g-value is 0.5(6) ppt, which is consistent with zero.

This check suggests that any temperature shift would be positive, contradicting the

trend in Fig. 6.3 that the higher-temperature lines have lower g and suggesting that

no temperature shift exists.

6.2 Power Shifts

We expect neither ν̄a nor f̄c to shift with cyclotron or anomaly power, but pre-

vious measurements of the electron g-value at the University of Washington (UW)

showed unexplained systematic shifts of the cyclotron frequency with both drive pow-

ers [2, 99, 81].1 The origin of these power shifts in the UW measurements remains

unknown [81], and extrapolation to zero cyclotron power involved correcting shifts of

several ppt in g [2, 81]. We do not see similar shifts in our measurements, most likely

because our narrower lines and single-quantum cyclotron technique require much

lower drive strengths. The next two sections compare our anomaly and cyclotron

excitation techniques to those used at the UW and estimate the size of known shifts.

A third section describes our experimental searches for power shifts in both the 2006

measurement and the present one. These searches are consistent with our expecta-

tion of no power shifts; in the present measurement, we apply neither power-shift

1The UW experiment also saw an axial-power shift, which comes from driving the electron in the
magnetic bottle, giving rise to the driven lineshape of Section 4.2.3. It is eliminated (at both the
UW and Harvard) by turning off the axial drive during cyclotron and anomaly excitation.
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corrections nor any additional uncertainty.

6.2.1 Anomaly power shifts

The UW experiment showed anomaly power shifts of several ppb in the anomaly

frequency [81]. An off-resonant anomaly drive during cyclotron excitation shifted the

cyclotron line by a similar amount, and the two shifts canceled in the frequency-ratio

calculation of g [2]. The origin of these shifts is unknown, although experiments with

a variable-strength magnetic bottle showed that they increase with the magnitude of

the bottle strength, independent of its sign [81].

Direct comparisons between the anomaly power used in the UW experiment and

that used here are difficult because the experiments use different anomaly excitation

techniques. The UW excitations were primarily driven with counterflowing current

loops in split compensation electrodes, while we drive the electron axially through the

zρρ̂ gradient of the magnetic bottle. Unlike the current-loop excitation technique, our

axial-excitation technique provides a clear mechanism for an anomaly power shift by

increasing the average axial amplitude and, therefore, the average magnetic field seen

by the electron (because of the z2ẑ part of the magnetic bottle). We estimate this

shift below and expect it to be both smaller than our current precision and canceled

in the calculation of g by a similar cyclotron shift from a detuned anomaly drive

during cyclotron excitation.

For a driven axial amplitude, za, the frequency shift from the motion through the

magnetic bottle is

∆ωa
ωa

=
∆ωc
ωc

=
B2

B

z2
a

2
. (6.1)
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The axial amplitude is proportional to the rf voltage applied to the bottom endcap [84,

112], so the shift is indeed proportional to power. In order to calculate the expected

size of the power shift, we must estimate za; only amplitudes over 800 nm will produce

shifts at the 0.1 ppb level in frequency. We estimate za using two methods: the

observed anomaly transition rate and a calibration of the drive voltage. The estimates

give similar amplitudes, and neither predicts anomaly power shifts at our precision.

Recalling from Eq. 4.5 that the anomaly transition rate goes as the product of

the Rabi frequency squared, Ω2
a, times the lineshape function, χ(ω), and that the

anomaly Rabi frequency goes as za (Eq. 4.27), we can estimate za from a measured

peak excitation fraction, Ppk, using

Ppk =
π

2
TΩ2

aχ(ωpk) =
π

2
T

(
g

2

e~
2m

B2za

√
2n

m~(ω′c − ωm)

)2

χ(ωpk). (6.2)

Because the lineshape function is normalized to unity, its value on-peak in the Lorentzian

limit is inversely-proportional to the linewidth

χ(ωpk) =
2

π

(
2∆ω2

γz
+ γc

)−1

. (6.3)

For typical experimental parameters, we must drive to za ≈ 100 nm to achieve a 20%

excitation fraction.

Alternately, we can estimate the driven amplitude based on the rf voltage on the

bottom endcap. An endcap driven with amplitude, Va, excites the electron to an

amplitude given by [84, 112]

za =
c1d

2

2z0

[(
ωa
ωz

)2

− 1

]−1
Va
VR
. (6.4)

We calibrate the drive amplitude using the anomaly-power-induced axial frequency

shifts discussed in Section 6.3.3. They indicate 30 dB of attenuation between the
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anomaly frequency synthesizer and the trap electrode. This agrees with the attenu-

ation we measure in the drive line during room-temperature calibrations and seems

reasonable given the 20 dB cold attenuator installed at the 1K pot (see Section 2.3.2)

and some additional loss in the stainless steel semi-rigid coaxial cable. The highest

anomaly power used for g-value data was -16 dBV at the synthesizer, which would

attenuate to Va = 5 mV at the bottom endcap and drive the electron to za = 250 nm.

Driven axial amplitudes around 100–250 nm should only shift the anomaly and

cyclotron frequencies at the 1–10 ppt-level, which is far too small to affect the line-

shapes (the error in g would be lower by 1000 if the cyclotron and anomaly shifts were

uncorrelated, but should be even smaller because the shifts cancel in the frequency

ratio).

6.2.2 Cyclotron power shifts

Unlike the anomaly power shifts, the cyclotron power shifts seen in the UW ex-

periments did not cancel in the g-value and added a 1.3 ppt uncertainty to their

1987 result [2]. The shifts appeared as a resonant effect of unknown origin with a

resonant drive shifting the cyclotron line several ppb but a detuned cyclotron drive

with the same power not shifting the anomaly line. Investigations in a trap with a

variable-strength magnetic bottle showed that the shift scaled with B2 in magnitude

and sign. In [81], the authors hypothesize that the shift could have originated in an

excitation of the magnetron motion because a typical shift could have been explained

by a 10% increase of the magnetron radius.

Our cyclotron excitation technique, injecting microwaves into the trap cavity, is
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similar to that used in the UW measurements, so we can compare our technique to

theirs. Our lower temperature narrows the lines by a factor of ten, requiring less

power to drive transitions. The measured bottle-dependence suggests that our ten-

times-stronger magnetic bottle could cancel the advantage of our narrower lines. The

overall shifts should still be reduced because our single-quantum-jump spectroscopy

only needs to excite to the n = 1 state less than 20% of the time. At the UW,

typical excitations sustained the electron at energies corresponding to n & 4 [84, 81].

Naively, exciting to an average energy of n = 4 requires 20-times more power than an

average energy of n = 0.2, and this power reduction alone would reduce several-ppt

shifts in g below our precision. The relativistic shifts between cyclotron levels suggest

additional power in the UW drives because excitations above n = 1 involve driving

in the exponential tails of the higher states’ resonances. In addition, if the power

shift is indeed related to driving a magnetron–cyclotron sideband, our ten-times-

higher magnetron frequency and ten-times-narrower cyclotron lines put the closest

magnetron sideband, which was fewer than 10 linewidths away at the UW, 100 times

farther from the cyclotron resonance.

6.2.3 Experimental searches for power shifts

Although we do not expect any cyclotron or anomaly power shifts of ν̄a or f̄c,

their existence in the UW measurements makes us proceed with caution and look for

them anyway.
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2006 power-shift search

For our 2006 measurement [1], we looked for anomaly power systematics by mea-

suring the g-value versus anomaly power. At our 149.0 GHz point, we detected no

shift for 5 dB above and 6 dB below our normal anomaly power and assigned a

0.14 ppt uncertainty in g. A similar investigation at 146.8 GHz yielded a 0.4 ppt

uncertainty. Each anomaly power uncertainty was dwarfed by the cavity uncertainty

at its field. Further details of these investigations may be found in [83, Sec. 6.2.4].

We studied the cyclotron power systematic by measuring g for a range of cyclotron

powers. The data were consistent with no power shift, and we set an uncertainty in

g of 0.12 ppt at 149.0 GHz and 0.3 ppt at 146.8 GHz. Further details are in [83,

Sec. 6.2.5].

Current power-shift search

For the present measurement, we examine the shifts of each line individually to

ensure that no systematic effects (even ones that cancel in g) go unnoticed. We look

for a cyclotron frequency shift by running three cyclotron scans: a control, one with

double the detuned anomaly power, and one with half the cyclotron power (lower to

avoid saturation). The scans are interleaved in the same way we interleave cyclotron

and anomaly scans during g-value measurements, alternating single sweeps of each

line and including edge-tracking to remove long-term drifts (see Section 4.3.3). The

resulting cyclotron lines are shown in Fig. 6.4a. We calculate the cyclotron frequency

of each line with the weighted-mean method (the offset from f̄c cancels when subtract-

ing for a frequency shift). Frequency differences between methods are summarized in
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Figure 6.4: The lower plots show cyclotron (a) and anomaly (b) data taken
in search of cyclotron and anomaly power shifts. The upper plots compare
the weighted-means of these lines.

test “shift” / ppb
f̄c with double anomaly power -0.18 (13)
f̄c with half cyclotron power 0.13 (19)
ν̄a with double anomaly power 0.11 (35)
ν̄a with double cyclotron power 0.38 (35)

Table 6.3: Summary of power-shift searches

Table 6.3.

To look for anomaly frequency shifts, we run three anomaly scans—a control, one

with double the detuned cyclotron power, and one with double the anomaly power

(the control power is low enough that we can double the power without saturating)—

interleaved and normalized via edge-tracking as before. The resulting anomaly lines

are shown in Fig. 6.4b, which includes the frequencies calculated by the weighted-

mean method. Table 6.3 summarizes the differences.

The results in Table 6.3 are either consistent with zero or close thereto. The

largest “shift” is that of the anomaly frequency with cyclotron power—the only one
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of the four not seen at the UW. The data of Table 6.3 suggest that any power

shift will be . 0.35 ppb in frequency, which is consistent with the limits of our

prior studies (summarized in the previous section and detailed in [83, Sec. 6.2]) and

with our expectation of no shift at our current precision. The uncertainties are

limited by our ability to resolve the lines in a timely manner. (The number of nights

spent assembling the data in Fig. 6.4 exceeds twice the number used in an average

g-value measurement.) The anomaly line in particular requires the time-consuming

discrimination between |0, ↑〉 and |1, ↓〉 after each anomaly pulse (see Section 4.3.3),

and any search for a systematic shift in the anomaly frequency multiplies the number

of times this must occur.

Because the largest uncertainties of the new measurement are related to resolving

the resonances and not to systematic cavity shifts, it is unlikely that even non-existent

systematic effects could be constrained better than around 0.2 ppb in f̄c or ν̄a (0.2 ppt

in g) in a reasonable amount of time. Since all such tests would be limited by our

ability to resolve the lines, including uncertainties for n non-existent systematics in the

final result would over-count this resolution uncertainty and increase the final error

bar by
√
n. This is not to say that searches for systematic shifts are unimportant

but that we should be careful to add uncertainties only when they reflect new (lack

of) information and not when they repeat our limits at resolving the lines. For these

reasons, in the new measurement we apply neither a correction nor any additional

uncertainty from power shifts.
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6.3 Axial Frequency Shifts

The Brown–Gabrielse invariance theorem (Section 2.1.2, [90]) allows us to write

the magnetron-frequency correction to the anomaly and cyclotron frequencies in terms

of the axial frequency. Errors in ν̄z will add uncertainty to g with the relative uncer-

tainties given by

∆g

g
≈ − ν̄

2
z

f̄ 2
c

∆ν̄z
ν̄z

= −1.8× 10−6 ∆ν̄z
ν̄z

. (6.5)

To keep the relative uncertainty in g below 0.1 ppt, we must know ν̄z to better than

50 ppb, or 10 Hz. This is easily done despite the three shifts to ν̄z discussed below.

6.3.1 Anharmonicity

The axial frequency in an anharmonic potential becomes slightly amplitude-dependent,

as shown in Eq. 2.5 and reproduced here:

νz(A) ≈ νz

[
1 +

3C4

4 (1 + C2)

(
A

d

)2

+
15C6

16 (1 + C2)

(
A

d

)4
]
. (6.6)

When self-exciting the electron, we adjust the axial amplitude until the C4 and C6

terms cancel and the axial frequency is stable to small amplitude fluctuations. This

amplitude is large, typically ≈ 100 µm, giving a high signal-to-noise ratio that is one

of the technique’s advantages.

As a consequence of deliberately making the axial potential anharmonic, the

amplitude-dependence of the axial frequency increases. There is a shift, typically

a few hertz, between the axial frequency at the stable self-excitation amplitude and

ν̄z at the 2 µm thermal amplitudes during cyclotron and anomaly excitation. We

must use this SEO-off axial frequency in our g-value calculations. Although we can-
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not measure the axial frequency under the anomaly/cyclotron excitation conditions

(the amplifier must be on to detect ν̄z), we can come close by measuring it with

the amplifier on and the axial drives off (see Section 4.3.3). The residual frequency

shift between the amplifier-on (7 µm) and amplifier-off (2 µm) axial amplitudes is

negligible. By measuring the axial frequency under the proper conditions, there is no

appreciable uncertainty from anharmonicity.2

6.3.2 Interaction with the amplifier

The amplifier tuned circuit interacts with the electron axial motion in the same

way as a cavity mode interacts with the cyclotron motion: it damps it and shifts its

frequency. In particular, for a relative detuning, δ (with a definition analogous to

that in Section 5.3.1), the frequency-pulling is given by Eq. 5.13:

∆ωz =
γz
2

δ

1 + δ2
. (6.7)

The maximum axial frequency shifts occur at δ = ±1 and equal ∆ωz = ±γz/4. With

γz/(2π) ≈ 1 Hz, these shifts are negligible.

6.3.3 Anomaly-drive-induced shifts

The anomaly drive induces two shifts on the axial frequency: a frequency-pulling

from the off-resonant axial force and a Paul-trap shift from the change in the effective

trapping potential [112]. Together, they are

∆ν̄z
ν̄z

=
V 2
a

V 2
R

3c1c3

8

[(
ν̄a
ν̄z

)2

− 1

]−1

+
C2

2

16

[(
ν̄a
ν̄z

)2

− 4

]−1
 , (6.8)

2For the 146.8 GHz data in the 2006 result, we recorded only the SEO-on axial frequency and
thus had to include a shift and an uncertainty from our determination of ν̄z.
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where Va is the amplitude of the bottom endcap rf drive. We can use these shifts

to calibrate the attenuation in the anomaly line. Plugging in the anharmonicity

parameters, ring voltage, and frequencies, we calculate that the shift should be

∆ν̄z/(ν̄zV
2
a ) = −37 ppm ·V−2. By increasing the output of the anomaly signal gener-

ator far above the normal anomaly-excitation levels, we measure a shift (in terms of

the output signal generator power) of −50 ppb ·V−2, indicating a power-loss from sig-

nal generator to electrode of V 2
sig.gen./V

2
a ≈ 730, i.e., 29 dB attenuation. Based on the

measured shifts in terms of the signal generator power, at the highest anomaly power

used for g-value data the axial shift should be approximately −1 ppb or −0.2 Hz.

This shift is small enough that we cannot measure it directly, and it does not affect

the g-value at our precision.

6.4 Applied Corrections

The free-space g-value may be written in terms of free-space cyclotron and anomaly

frequencies:

g

2
= 1 +

νa
νc
. (6.9)

When measuring g, we must account for three shifts between the free-space frequencies

and those accessible to experiment. These shifts are discussed in detail in Section 4.1

and summarized below. Including these corrections, the formula used in calculating

the free-space g-value is

g

2
' 1 +

ν̄a −
ν̄2
z

2f̄c

f̄c +
3

2
δ +

ν̄2
z

2f̄c

+
∆ωc
ωc

, (6.10)



Chapter 6: Uncertainties and a New Measurement of g 188

n = 0

n = 1

n = 2

n = 0

n = 1

n = 2

νc - 5δ/2

νc - 3δ/2

νa

fc = νc - 3δ/2

νa = gνc / 2 - νc

νc - δ/2

Figure 6.5: The energy levels of an electron in a Penning trap, including ppb-
size shifts from special relativity. The red arrows indicate the transitions we
measure to determine g.

where the barred frequencies are the ones actually measured and ∆ωc/ωc is the cal-

culated relative cavity shift of the cyclotron frequency. The relevant cyclotron and

anomaly transitions are shown in Fig. 6.5.

6.4.1 Relativistic shift

Special relativity adds an energy-dependent shift to the cyclotron frequency; left

uncorrected, the measured g would depend on both the cyclotron frequency and the

particular pair of energy levels used to determine ν̄c. By choosing always to measure

the cyclotron frequency with the |0, ↑〉 ↔ |1, ↑〉 transition, which we dub f̄c, we may

account for the relativistic shift with the replacement

ν̄c = f̄c +
3

2
δ, (6.11)

where

δ

νc
=

hνc
mc2

≈ 10−9. (6.12)
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This ppb correction to f̄c corrects g at the ppt-scale. There is no corresponding shift

in ν̄a because a similar relativistic shift of νs cancels the ν̄c one. The energy in the

axial and magnetron degrees of freedom also creates relativistic shifts [84, Sec. VII.B],

but these corrections are smaller by the ratios of ν̄z and ν̄m to ν̄c (10−3–10−6) and

thus negligible.

6.4.2 Magnetron shift

The radial component of the trap’s electrostatic quadrupole reduces the free-space

cyclotron frequency by the magnetron frequency. Given the hierarchy of frequencies

in our trap,

ν̄2
c � ν̄2

z � ν̄2
m, (6.13)

the Brown–Gabrielse invariance theorem (Section 2.1.2, [90]) allows us to correct for

this shift with the replacement

νc = ν̄c +
ν̄2
z

2ν̄c
. (6.14)

Because the spin frequency is not affected by the electric field, the anomaly frequency

has a corresponding shift that we correct with the replacement

νa = νs − νc = ν̄a −
ν̄2
z

2ν̄c
. (6.15)

The ppm shift of ν̄c and part-per-thousand shift of ν̄a give large corrections to g, but

there are no other corrections from the electrostatic quadrupole until a scale given by

(ν̄z/ν̄c)
4 ≈ 10−12 times the square of any angular misalignment between the electric

and magnetic fields or any ellipticity of the quadrupole ≈ (10−2)
2

[84, Sec. II.D],
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νc / GHz ∆ωc/ωc / ppt
147.5 4.36 (0.13)
149.2 -0.16 (0.06)
150.3 -2.25 (0.07)
151.3 -6.02 (0.28)

Table 6.4: Calculated cavity shifts. ∆ωc/ωc is the relative shift of the cy-
clotron frequency as well as the correction applied to g/2.

which is both below our current precision and understood well enough that we could

account for it if necessary.

6.4.3 Cavity shift

The resonant electromagnetic modes of the microwave cavity formed by the trap

electrodes can shift the cyclotron frequency by several ppt and the anomaly frequency,

through its definition in terms of νc, by several ppb. Calculating these shifts involves

an extensive investigation of the mode structure of the trap cavity and was the subject

of the previous chapter. The resulting cyclotron-frequency-dependent corrections to g,

∆ωc/ωc in Eq. 6.10, are listed in Table 6.4 (the results from 2006 [1] are in Table 5.5).

We measure g at four magnetic fields with diverse cavity corrections to demonstrate

our control of this effect. Figure 6.6 shows the g-value data before and after applying

the cavity correction. Of the three applied corrections, this is the only one with an

uncertainty at a relevant scale. In previous measurements of g, the cavity uncertainty

was one of the dominant ones [1, 2], but the techniques presented in this thesis have

reduced it to where this is no longer the case.



Chapter 6: Uncertainties and a New Measurement of g 191

147 148 149 150 151 152

cyclotron frequency / GHz
147 148 149 150 151 152

(g
/2

 -
 1

.0
01

 1
59

 6
52

 1
80

 )
 / 

10
-1

2

-6

-4

-2

0

2

4

6

8
before applying cavity shift after applying cavity shift

Figure 6.6: g-value data before and after applying the cavity shift

6.5 Results

6.5.1 2006 measurement

Our 2006 g-value measurement [1] improved upon the 1987 UW measurement [2]

by almost a factor of six because of numerous innovations including the cylindrical

Penning trap [87], quantum cyclotron [85], and self-excited oscillator [88]. It was the

first to measure g using solely the lowest cyclotron and spin levels. Lower temper-

atures narrowed the resonance linewidths over an order of magnitude. In addition,
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ν̄c = 146.8 GHz 149.0 GHz
g/2 - 1.001 159 652 180 3.7 0.85

Uncertainties
ν̄z shift 0.3 0.02
Anomaly power 0.4 0.14
Cyclotron power 0.3 0.12
Cavity shift 5.1 0.39
Lineshape model 0.6 0.60
Statistics 0.2 0.17

Total uncertainty 5.2 0.76

Table 6.5: Corrected g and uncertainties in ppt from the 2006 measurement.

the measurement premiered the use of measured cavity modes for predicting and

correcting systematic cavity shifts and included the detection of such a shift.

We measured g at two magnetic fields: one far from any modes so the cavity shift

and its uncertainty were both small and one near a mode allowing detection of a large

cavity shift but having a correspondingly higher cavity shift uncertainty. Table 6.5

summarizes the g-values and uncertainties at each field. Our result,

g

2 (2006)
= 1.001 159 652 180 85 (76) [0.76 ppt], (6.16)

came solely from the 149.0 GHz data because the uncertainty at 146.8 GHz was so

much larger. Averaging in the 146.8 GHz data would have shifted it up 0.06 ppt and

decreased the uncertainty to 0.75 ppt.

The primary limitations of the 2006 result, both reflected in the uncertainty table,

were an incomplete understanding of both the cavity mode structure and the noisy

lineshape. Discussed fully in Section 5.5, the cavity shift analysis included error bars

stemming from uncertainty in our mode identification. The large lineshape model

uncertainty comes from our use of the 146.8 GHz data in assigning the error for both

fields. As observed in Section 6.1.4, the disagreement among analysis methods tends
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ν̄c = 147.5 GHz 149.2 GHz 150.3 GHz 151.3 GHz
g/2 - 1.001 159 652 180 -0.15 0.88 0.65 0.41

Uncertainties
Statistics 0.39 0.17 0.17 0.24
Cavity shift 0.13 0.06 0.07 0.28
Uncorrelated lineshape model 0.56 0.00 0.15 0.30
Correlated lineshape model 0.24 0.24 0.24 0.24

Total uncertainty 0.73 0.30 0.34 0.53

Table 6.6: Corrected g and uncertainties in ppt.

to be larger for wider lines, and the 146.8 GHz data had a linewidth several times that

of the 149.0 GHz data (the axial temperature at 146.8 GHz was 0.57(5) K, between

that of the new data’s two widest lines, while that at 149.0 GHz was 0.16(3) K,

below the new data’s two narrowest lines). Both limitations are addressed in our new

measurement.

6.5.2 New measurement

A new measurement of the electron g-value, presented for the first time in this

thesis, improves upon the 2006 result [1] by nearly a factor of three3 and brings our to-

tal improvement compared to the 1987 UW measurement [2] to 15. Several advances

lead to the increased accuracy. Two independent probes of the cavity mode struc-

ture allow identification of nearly all modes and quantification of an offset between

the mode and electrostatic centers. Together with the extension of a renormalized

calculation of electron–cavity coupling to arbitrary trap location and a model for

the cyclotron lifetime in the presence of axial oscillation through cavity-mode fields,

these improvements reduce the cavity shift uncertainty to near-negligible levels at two

3It is remarkably close to a factor of e.
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Figure 6.7: Comparison of the new g-value data and their average, indicated
in gray as a 68% confidence band. The larger error bars indicate the total
uncertainty at each point, while the smaller ones show only the uncorrelated
uncertainty.

points (see Chapter 5 for details). By measuring the g-value at four magnetic fields

with cavity shifts spanning over thirty times our final error-bar, we precisely test this

once-dominant uncertainty.

Analyzing the lineshape model uncertainty at each field allows us to take advan-

tage of the reduced uncertainty for narrower lines. Unlike in 2006, two fields con-

tribute similar amounts to the final g-value, and the remaining two fields contribute

more meaningfully than the 146.8 GHz measurement did.

When averaging the four fields, part of the lineshape model uncertainty is treated

as correlated in a least-squares analysis (see e.g. [23, App. E] or [115, Ch. 6]); the

result is equivalent to leaving it out of a simple weighted average then adding it in

quadrature to the resulting uncertainty.
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Our result is

g

2
= 1.001 159 652 180 73 (28) [0.28 ppt]. (6.17)

The average has a χ2 per degree of freedom of 0.97. (Using the two-digit, rounded

values of Table 6.6 gives the same g-value result with a χ2 per degree of freedom of

0.95.) Figure 6.7 compares the four data points to their average value. Using this

result in Eq. 1.6 yields a new value for the fine structure constant,

α−1 = 137.035 999 084 (33)(39) (6.18)

= 137.035 999 084 (51) [0.37 ppb], (6.19)

where Eq. 6.18 separates the uncertainties from experiment and theory to show that

the QED uncertainty now exceeds that from the measured g.

Despite more than an order-of-magnitude improvement in the 20 years since 1987,

further progress is possible. The largest uncertainty remains that from the lineshape

model, and improved understanding (or outright elimination) of magnetic field noise

is of primary importance. Chapter 3 discusses a new high-stability apparatus and

other improvements that could reduce the noise, and the next chapter includes several

promising techniques to enhance the frequency resolution.



Chapter 7

Future Improvements

With cavity-shift uncertainties no longer limiting the g-value measurement, the

largest room for improvement lies in the determination of the cyclotron and anomaly

frequencies from their lineshapes. The primary source of trouble is the magnetic field

noise that blurs the cyclotron edge. For our narrowest lines, the broadening from

this noise is comparable to that from the axial temperature. Although our Gaussian

noise model agrees well with the weighted mean calculation in our lineshape model

uncertainty (Section 6.1), it would be much better to make the noise go away, and a

new, high-stability apparatus (Section 3.5) is currently in production with that goal

in mind.

Beyond this noise-reduction, there are two main ways to improve the frequency

measurements: decrease the linewidth and increase the signal-to-noise ratio. The

cyclotron and anomaly lines are broader than their natural linewidth, γc, because

the magnetic bottle couples their frequency to the axial energy (see Section 4.2),

so one narrows the lines by reducing the coupling strength or by lowering the axial

196
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energy. To increase the signal-to-noise, one would shorten the measurement’s rate-

limiting step, the discrimination between |0, ↑〉 and |1, ↓〉 after applying an anomaly

pulse. We discuss some promising techniques below. In addition, we gather from

previous chapters four unanswered questions whose solutions could lead to improved

measurements.

7.1 Narrower Lines

7.1.1 Smaller magnetic bottle

The linewidth parameter, ∆ω, is proportional to the magnetic bottle strength, B2

(see Eq. 4.6). The cyclotron linewidth is ∆ω, so reducing B2 will narrow the line. In

the Lorentzian limit, the anomaly width is γc + 2∆ω2/γz, so a smaller B2 will greatly

reduce its width until it reaches the natural limit.

The axial frequency shifts used to determine the cyclotron and spin states are also

proportional to B2, so any bottle reduction will involve a trade-off between narrower

resonance lines and detection efficiency. When contemplating reducing B2, the three

relevant timescales to compare are the signal-averaging time, the cyclotron lifetime,

and the axial frequency drift rate. With our current 20 ppb shift, we typically average

the axial signal for 1/4 s. (A sample of the signal-to-noise with 1/2 s of averaging

may be seen in Fig. 2.8.) Our current averaging time is useful for measuring short

cyclotron lifetimes, but could easily be extended by at least a factor of four for

measurements at g-value fields, which have cyclotron lifetimes ranging from nearly to

greatly exceeding one second. The large axial amplitudes from self-excitation provide
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a substantial signal, and we should be able to resolve axial shifts close to the ppb-level

with only 1 s of averaging [88]. The longer averaging time would not affect the overall

measurement time because our rate-limiting step is governed by the cyclotron lifetime

(Section 4.3.3 and Section 7.2) not the axial frequency averaging time. Typical axial

frequency drifts are below the ppb-per-second scale, so reducing B2 by a factor of

four seems straightforward; even smaller bottles could be possible after closer study

of our axial averaging techniques and stability.

The other use for the magnetic bottle is to drive anomaly transitions with axial

motion through its zρρ̂ gradient. Although decreasing B2 reduces this gradient and

therefore the transition rate, it also narrows the anomaly line, which increases the rate.

Until the anomaly linewidth reaches the natural limit, these two effects cancel, and

the transition rate is bottle-independent. We encountered this before in the anomaly

power systematic discussion of Section 6.2.1, where we showed that the transition

probability on the peak of the anomaly line is

Ppk =
π

2
TΩ2

aχ(ωpk) =
π

2
T

(
g

2

e~
2m

B2za

√
2n

m~(ω′c − ωm)

)2

2

π

(
2∆ω2

γz
+ γc

)−1

. (7.1)

For small γc, the B2 dependence of ∆ω cancels the B2 in the Rabi frequency (the

squared term in parentheses), and we need not drive harder for having reduced B2. As

the anomaly linewidth approaches γc, however, reductions in B2 must be matched by

increases in the driven amplitude, za, which could increase anomaly-power systematic

effects. At present, the anomaly lines at long-cyclotron-lifetime fields are far from this

limit, but the short-lifetime lines have γc equal to nearly 25% of the linewidth. If the

magnetic bottle were reduced even more, it may require a transition from the axial-

excitation technique to the current-loop technique used in previous measurements [2,
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81, 99].

7.1.2 Cooling directly or with feedback

Instead of (or in addition to) reducing the magnetic-bottle coupling, lowering the

axial energy narrows the lines. The most direct way to reduce the axial energy is

with a colder apparatus because the axial motion thermalizes with the amplifier. The

transition from 4.2 K liquid-helium cooling in earlier g-value measurements, e.g., [2],

to a 0.1 K dilution refrigerator [96, 85] narrowed the lines by over a factor of ten.

Although powerful dilution refrigerators are capable of reaching the few-millikelvins

range [138], reducing our current 100 mK apparatus temperature by more than a

factor of two is impractical because the cooling power of the 3He–4He dilution process

decreases as T 2 [138] and we necessarily heat the refrigerator with the detection

amplifier and rf and microwave drives. At low enough temperatures, even eddy-

current heating from vibration of the refrigerator in the large magnetic field can limit

cooling [139].

Using a feedback technique similar to that used for self-excitation, we can cool

the electron without further cooling of the apparatus [101]. The self-excited oscillator

setup with a gain of less than unity can reduce the axial damping rate (see Eq. 2.31

and Eq. 2.32), which, through the fluctuation-dissipation theorem [100], reduces the

axial temperature. Unit gain corresponds to no axial damping and, for a noise-free

feedback loop, zero temperature. Noise in the feedback loop limits the minimum

temperature by driving a lightly-damped electron to large amplitudes (this is how

the self-excited oscillator works) [89, Ch. 5]. In this apparatus, feedback cooling has
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been used to reduce the axial temperature from 5.2 K to 850 mK [101]. Additional

improvements depend on increasing the signal-to-noise of the feedback loop, which

means more power dissipated in the amplifier [89, Ch. 5]. Further pursuit of this

technique would require balancing the feedback signal quality with the cooling power

available in the dilution refrigerator.

7.1.3 Cavity-enhanced sideband cooling

Sideband cooling the axial motion via the cyclotron degree of freedom is a promis-

ing technique because the theoretical cooling limit is equal axial and cyclotron quan-

tum numbers, i.e., the axial ground state. In principle, it proceeds analogously to

the magnetron–axial sideband cooling of Section 2.3.7, a routine procedure, but in

practice it is difficult to produce sufficient microwave power to achieve appreciable

cooling rates. The microwave source described in Section 2.3.5 was designed to out-

put 25 dB more power than the prior source [98] in order to increase these rates. An

additional increase in cooling power can be gained by tuning the cooling sideband

into resonance with a cavity mode of the correct geometry for cooling, thus admitting

more power into the cavity.

Cooling theory

The theory of motional sideband heating and cooling [140] is reviewed in [84,

Sec. IV]. It is a classical effect that requires a drive at ω′c ± ωz with the correct

geometry to produce a force that goes as xẑ, ẋẑ, zx̂, or the equivalent with y. (A

force that goes as żx̂ will work but is weaker by the ratio ωz/ω
′
c.) The electron motion
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through the gradient modulates the sideband drive, producing a resonant force that

heats the cyclotron motion and cools (ω′c − ωz) or heats (ω′c + ωz) the axial motion.

The cyclotron motion is naturally damped via synchrotron radiation. Any cooling of

the axial motion reheats at the axial damping rate, γz, so sideband-cooling is most

effective when the electron is decoupled from the amplifier, either by detuning the

axial potential or by physically decoupling the amplifier from the electrode.

For ions, the sideband frequencies are in the rf range, and applying the sideband

drive is straightforward [141]. The required field gradient is achieved by applying

the drive to a segment of a compensation electrode, exactly as we do for magnetron–

axial sideband cooling. For the electron, the frequencies are microwaves, so we must

inject them into the trap electrode cavity. As discussed in Chapter 5, the cavity is a

microwave circuit, and the majority of the incident power not resonant with a cavity

mode is reflected. This is not a concern for general cyclotron spectroscopy, where we

only need sufficient power to excite single transitions; here, however, more power will

produce faster cooling rates, so tuning the sideband into resonance with a mode that

produces the required force gradients is desirable.

The analysis of the next sections is entirely classical. Achieving the ground states

in both cyclotron and axial degrees of freedom is a quantum-mechanical concept and

will require a modification to this discussion. In particular, special relativity shifts

the cyclotron frequency, and thus the sidebands, depending on the cyclotron state

(see Section 4.1); any cooling procedure will need either to move the drive with the

frequency-shifts, to power-broaden the drive to span across the shifts, or to account for

the decreased cooling rate as the cyclotron frequency shifts into and out of resonance
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with the drive.

Traveling wave cooling lines

Although our goal is a description of the cooling rates in the electromagnetic

cavity-mode fields, we begin with a simple traveling wave. The results for the cavity

modes will be identical up to a geometric factor.

For a drive frequency near the heating (upper sign) or cooling (lower sign) side-

band,

ωd = ω′c ± ωz + ε, (7.2)

an electromagnetic wave traveling along ẑ and polarized along x̂ has fields

E = x̂E0 sin(ωd(t− z
c
)) ≈ x̂E0

[
sin(ωdt)−

ωdz

c
cos(ωdt)

]
(7.3)

B = ŷ
E0

c
sin(ωd(t− z

c
)) ≈ ŷ

E0

c

[
sin(ωdt)−

ωdz

c
cos(ωdt)

]
, (7.4)

where we have expanded for small ωdz/c ≈ 10−2 because the thermal axial motion

is much smaller than the sideband wavelength. These fields produce a force on the

electron, and the resonant terms of sizable strength are

F = −e(E + v ×B) =
eE0

c
(ωd cos(ωdt)zx̂− sin(ωdt)ẋẑ) . (7.5)

Including this force in the axial and transverse equations of motion gives heat-

ing and cooling rates, γ
(±)
z , that depend on the detuning, ε, from the sideband [84,

Sec. IV.C]:

γ(±)
z (ε) = Im

[
(ε+ iγc/2)

(
1−

√
1∓ γ0γc

(ε+ iγc/2)2

)]
, (7.6)

where the coefficient

γ0 =
e2E2

0ωdω
′
c

4γcm2c2ωz(ω′c − ωm)
(7.7)
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Figure 7.1: Sideband cooling (a) and heating (b) lines, plotted for various
γ0/γc.

corresponds to the heating and cooling rates for weak drives on resonance. The

heating and cooling lineshapes, plotted for various values of γ0/γc in Fig. 7.1, are

nearly Lorentzian for weak drives. For strong drives, the heating rate greatly increases

and the line broadens, while the cooling rate saturates at γc/2.

Cavity mode cooling lines

The transverse-electric (TE) and transverse-magnetic (TM) modes of Chapter 5

are the eigenmodes of the electrode cavity, and power is efficiently coupled into the

cavity only when resonant with one of these modes. To derive the cooling rates when

resonant with one of these modes, we follow the same procedure as with the traveling

wave above [84, Sec. IV.C] and expand the electromagnetic fields of Eq. 5.3 for small

z and ρ. For both the TE and TM modes, only the modes with mnp = 1n(even)

have the appropriate force gradients at z, ρ = 0, while the 1n(odd) modes have it at

ρ = 0 and offset a quarter-wavelength along the axis. The resonant forces of sizable
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(E)γ0/γ0 for TE1np

n\p 1 2 3 4 5 6 7 8
1 1.00 4.00 9.00 16.00 25.00 36.00 49.00 64.00
2 0.12 0.48 1.07 1.91 2.98 4.29 5.84 7.63
3 0.05 0.19 0.42 0.74 1.16 1.67 2.28 2.98
4 0.02 0.10 0.22 0.40 0.62 0.89 1.21 1.58
5 0.02 0.06 0.14 0.25 0.38 0.55 0.75 0.98

(M)γ0/γ0 for TM1np

n\p 1 2 3 4 5 6 7 8
1 0.42 1.40 2.75 4.48 6.62 9.20 12.23 15.71
2 0.13 0.49 1.00 1.63 2.35 3.19 4.15 5.22
3 0.06 0.25 0.52 0.87 1.27 1.72 2.22 2.77
4 0.04 0.15 0.32 0.54 0.80 1.09 1.42 1.77
5 0.02 0.10 0.21 0.37 0.55 0.76 0.99 1.24

Table 7.1: Mode geometric factors for cavity-assisted sideband cooling. For
odd-p modes, this factor applies when the electron is offset axially by a
quarter-wavelength to an electric-field node.

strength are

(E)F1np =
eE0

c

(
pπρ0

2z0x′1n

)
(−1)p/2

(
(E)ω1np sin((E)ω1npt)zŷ + cos((E)ω1npt)ẏẑ

)
(7.8)

(M)F1np = eE0
ρ0

x1n

(−1)p/2

{(
pπ

2z0

)2

cos((M)ω1npt)zx̂ (7.9)

+

[(
x1n

ρ0

)2

cos((M)ω1npt)x−
(M)ω1np

c2
sin((M)ω1npt)ẋ

]
ẑ

}
.

The extra xẑ force in the TM modes comes from the z-component of the electric field.

For ωd near resonance with either (E)ω1np or (M)ω1np, including one of these forces

in the equations of motion gives the same cooling and heating lineshapes of Eq. 7.6,

with the coefficients

(E)γ0 = γ0

(
pπρ0

2z0x′1n

)2

(7.10)

(M)γ0 = γ0

(
pπρ0

2z0x1n

)2
[

1 +

(
x1n

ρ0

)2
c2

ω′cωd

]
, (7.11)
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which are identical to the traveling-wave case times a geometric factor. Table 7.1

lists the geometric factors for the trap dimensions fit from cavity modes and listed

in Table 5.1. Although some factors are significantly greater than one, the primary

benefit in having the sideband resonant with a cavity mode is getting the power

into the cavity, and even a mode with a geometric factor less than one provides a

substantial enhancement over cooling off a mode.

Cavity-enhanced cooling

The primary advantage to cooling near a mode is the ease with which microwaves

are coupled into the cavity. To analyze the resonant cavity as an element in the mi-

crowave system, it is useful to model it as an equivalent circuit [142, Ch. 7]. Although

a complete description would include the precise method for coupling the power into

the cavity, a simple circuit model contains the essential result. In this case, we model

a cavity mode as an RLC-parallel circuit, where coupling energy into the cavity is

equivalent to dissipation in a large resistance. In terms of the circuit/mode resonant

frequency, ωM, quality factor, Q, and equivalent resistance, R, the impedance is

Z(ωd) =

iωdωMR

Q

ω2
M − ω2

d +
iωdωM

Q

. (7.12)

The magnitude of the electric field in the cavity, E0 above, goes as this impedance

times the electric field incident on the cavity. Since the γ0 coefficient goes as E2
0 , the

squared impedance indicates the cooling power,

Z(ωd)
2 = Z(ωd)

∗Z(ωd) =
R2

1 +Q2
(ω2

d − ω2
M)2

ω2
dω

2
M

∝ Q2

1 + 4Q2
(ωd − ωM)2

ω2
M

, (7.13)
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Figure 7.2: Coupling microwave power into the cavity is enhanced near res-
onance with a mode. The sideband cooling and heating rates are both pro-
portional to the energy in the sideband fields, i.e., ∝ E2

0 .

where the last statement expands for ωd close to ωM and uses the proportionality

of the equivalent resistance and the cavity Q (the proportionality constant is the

equivalent reactance: R=QX).

The enhanced coupling of the microwave drive to the cavity when near resonance

with a cavity mode can be seen in the ratio of the square-magnitude of the electric

field at the drive frequency relative to at the mode frequency,

E0(ωd)
2

E0(ωM)2
=

1

1 +
(

2Q( ωd

ωM
− 1)

)2 =
1

1 +

(
ωd − ωM

ΓM/2

)2 , (7.14)

where ΓM/2 is the mode half-width at half-maximum. The Lorentzian dependence

is plotted in Fig. 7.2 and is the primary advantage of tuning the sideband cooling

frequency near a mode frequency.
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Figure 7.3: Measured axial–cyclotron sideband heating resonance. The zero
is an arbitrary offset.

Results and outlook

With the cyclotron frequency at 147.5 GHz, we see cyclotron excitation at both the

cooling and heating sidebands despite being detuned 30 linewidths from the nearest

cooling mode (TE136). The heating resonance shown in Fig. 7.3 uses the normal

cyclotron excitation technique of Section 4.3.1 but with 36 dB more power. Because

the axial frequency was left resonant with the amplifier, the heating lineshape of

Eq. 7.6 does not apply, and we show the resonance to demonstrate that our microwave

system is powerful enough to excite on the sidebands.

Our attempts at cooling the axial degree of freedom are more systematic. With

the goal of seeing a lower axial temperature via a narrower cyclotron resonance, we

modify the cyclotron excitation scheme used for the g-value data to include detuning

the axial frequency from the amplifiers, applying the cooling drive, and retuning the

axial frequency after the usual cyclotron pulse. The full sequence follows, beginning

with the electron in the |0, ↑〉 state.
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1. Turn the self-excited oscillator off and the magnetron cooling drive on. Wait

0.5 s.

2. Turn the amplifiers off. Wait 1.0 s.

3. Turn the magnetron cooling drive off. Wait 1.0 s (≈ 6γ−1
z ).

4. Detune the axial potential −0.1VR and wait 0.5 s for the endcaps to charge.

(There is a 0.1 s RC filter on the endcaps.)

5. Apply the axial cooling drive for 5.0 s then wait 0.1 s.

6. Apply the cyclotron drive and a detuned anomaly drive for 2.0 s.

7. Shift the axial potential to its “pre-retune” value and wait 1.0 s (see Section 2.3.1

for a description of our νz detuning technique).

8. Retune the axial potential and wait 0.5 s for the endcaps to charge.

9. Turn the amplifiers on and start the self-excited oscillator. Wait 1.0 s to build

up a steady-state axial oscillation.

10. Trigger the computer data-acquisition card (DAQ).

Rather than seeing a narrower cyclotron line after the cooling sequence, we saw

a much noisier one because the cooling drive excited the cyclotron motion (as it

should), but the cooling rate was so slow that the average cyclotron energy remained

above n = 1 even when adjusting the length of the cooling pulse up to 15 minutes

and cooling at the microwave system’s full power (≈ 70 dB above our typical g-value

cyclotron excitation power).
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Future attempts at sideband cooling should tune the sideband closer to a cool-

ing mode frequency. In the current trap, one could tune to νc ≈ 146.6 GHz or

≈ 145.1 GHz, each an axial frequency above a cooling mode (TE136 at 146.4 GHz

and TE144 at 144.9 GHz) and both within reach of our current microwave system.

The proximity to either of these modes would increase the cooling rate parameter,

γ0 ∝ E2
0 , by a factor of 3600 over its value at νc = 147.5 GHz. Neither frequency would

be good a location for a g-value measurement, however, because of their proximity

to 1n(odd) modes that create large cavity shift uncertainties. A judicious choice of

dimensions in a future trap would have a large range of cyclotron frequencies devoid

of any 1n(odd) modes, which shift νc, but peppered with the 1n(even) modes good

for cooling.

Eliminating axial damping is another technical challenge because any axial detun-

ing must be precise enough to calculate the sideband frequency at which we drive;

in the future, using this technique in a g-value measurement will require accurate

knowledge of the axial frequency for use in calculating the magnetron shift. For both

these reasons, decoupling the amplifier from the electrode may be a superior option

to detuning the axial potential.

Axial–cyclotron sideband cooling remains—as it has been for some time—a promis-

ing technique for the future [84, Sec. IV.C], [123, p. 90–91], [124], [98, p. 120–122], [96,

p. 124–125], [89, Sec. 7.1], [83, p. 149]. With our existing, powerful microwave source

and a carefully designed new trap, we may finally see the axial motion in its ground-

state.
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7.2 Better Statistics

Assuming we understand the anomaly and cyclotron lineshapes, increasing the

signal-to-noise ratio will reduce the frequency uncertainty when splitting the lines [103].

Although simply running for more nights would work, speeding up the measurement

cycle is more efficient. The rate-limiting step of a single sweep of the cyclotron and

anomaly lines is the discrimination between |0, ↑〉 and |1, ↓〉 after applying an anomaly

pulse. The coupling of these two states to the magnetic bottle produces an axial fre-

quency shift of only 20 ppt (4 mHz), which is too small to detect directly, so we

wait several cyclotron lifetimes for the |1, ↓〉 → |0, ↓〉 transition, building confidence

that the state is actually |0, ↑〉 as 1 − e−γct. Since typical cyclotron lifetimes during

g-value measurements are 1–10 s, this wait can be quite long and must occur after

each anomaly attempt.

We consider two methods to decrease the wait-time: apply a cyclotron π-pulse on

the |1, ↓〉 ↔ |0, ↓〉 transition to drive the electron down or sweep the electron down

using an adiabatic-fast-passage technique. Both rely on the different relativistic shift

between the two lowest cyclotron transitions.

7.2.1 π–pulse

Special relativity shifts the cyclotron frequency in a state dependent manner, as

shown in Fig. 7.4 and given by

∆νc = −δ(n+ 1 +ms), (7.15)
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Figure 7.4: The energy levels of an electron in a Penning trap, including
ppb-size shifts from special relativity. These shifts make it possible to drive
|0, ↓〉 ↔ |1, ↓〉 without exciting any other transition.

where δ/νc = hνc/(mc
2) ≈ 10−9 and ms = ±1

2
. A π-pulse at ν̄c − δ/2 can drive the

|1, ↓〉 → |0, ↓〉 transition without exciting |1, ↓〉 → |2, ↓〉 or |0, ↑〉 → |1, ↑〉. Applying

such a pulse could quickly discriminate between |0, ↑〉 and |1, ↓〉; the former would

remain in |0, ↑〉, while the latter would drop to |0, ↓〉.

Two complications create conflicting timescales in our current experiment. First,

the time required for a π-pulse depends on the strength of the drive, and the Rabi

frequency must be much less than the ppb relativistic shift or the resulting power-

broadening can drive the adjacent transition (one level up the cyclotron ladder).

Second, the magnetic bottle causes ν̄c to fluctuate with the axial energy, decohering

the pulse, so the pulse must be much shorter than γ−1
z .

Even on timescales shorter than γ−1
z , during which the axial motion stays in the

same state, we have no way of knowing which state that is. Because the linewidth

is broader than the relativistic shift, the low-frequency edge of the ν̄c − δ/2 line

is in the exponential tail of the ν̄c − 3δ/2 line, and we could potentially drive the

wrong transition. Decoupling from the amplifier would increase γ−1
z and extend the
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maximum pulse length, but the ignorance of the axial state would remain. These

conflicting timescales thwarted our efforts at seeing Rabi oscillations. Narrower lines

are required for this technique.

7.2.2 Adiabatic fast passage

On timescales faster than γ−1
z , the axial motion remains in one state; although we

do not know which state that is, we do know that νc(|0, ↓〉 ↔ |1, ↓〉) > νc(|1, ↓〉 ↔

|2, ↓〉). This knowledge allows us to sweep an electron in the |1, ↓〉 state to the |0, ↓〉

state via adiabatic fast passage. A cyclotron drive swept down in frequency will reach

ν̄c− δ/2 before ν̄c− 3δ/2 and drive the electron into the spin-down ground state. By

the time the drive is resonant with the |1, ↓〉 ↔ |2, ↓〉 transition, the electron will no

longer be in the |1, ↓〉 state.

A potential flaw in the technique is the drive’s effect on an electron that starts

in the |0, ↑〉 state—it sweeps the electron up the cyclotron ladder. An electron in

the |0, ↓〉 state, which would occur if the |1, ↓〉 state decays before the drive is swept,

would also excite high up the cyclotron ladder. Since the whole point of this technique

is to avoid waiting for the cyclotron state to decay, deliberately exciting it seems to

be exactly the wrong thing to do. It is possible, however, that a second sweep—up

in frequency—could de-excite the electron to the ground state.

One complication is the rapid decay of highly excited cyclotron states, which

may be lifetime-broadened beyond the relativistic shift. They may decay so fast

(γ(n) = nγc) that this is not a concern, however, and one could hold the drive

at a frequency where the levels are well-separated by the relativistic shift, “catch”
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the falling electron, and rapidly sweep it the rest of the way down. The concern,

expressed above with the π-pulse, that the Rabi frequency not power-broaden the

drive beyond the relativistic shift applies to adiabatic fast passage as well. Since the

technique requires the Rabi frequency to greatly exceed the sweep rate, which must

be faster than any decoherence time, decoupling from the amplifier will be required.

While developing techniques for such decoupling by detuning the axial potential, we

were able to sweep the electron up and down the cyclotron ladder via adiabatic fast

passage. Our pursuit of a more robust technique was short-lived as we turned our

attention to attempts at sideband cooling (presented in Section 7.1.3); further efforts

towards adiabatic fast passage are warranted.

This would not be the first use of an adiabatic fast passage technique on a trapped

electron. It has been used to demonstrate the relativistic mass increase of the electron

through the anharmonic cyclotron resonance [143] as well as to differentiate between

the two spin states in a trap with very small magnetic bottle coupling [144, 127]. In

the latter cases (both at Harvard and the University of Washington), a drive swept

down in frequency starting between ν̄c−δ/2 and ν̄c−3δ/2 excites a spin-up electron to

high cyclotron states but not a spin-down electron. Adiabatic fast passage has been

studied theoretically for the damped anharmonic oscillator (such as the relativistic

electron cyclotron motion), including in the case of stochastic fluctuations of the

oscillator frequency (corresponding here to axial energy fluctuations in the magnetic

bottle) [145, 146].
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7.3 Remaining questions

Throughout the thesis, there are four unanswered questions, which we collect here.

Answering any of these questions could lead to either an improved g-value measure-

ment or an interesting result with emergent phenomena in many-body systems.

What causes the magnetic field fluctuations? The field noise that broadens the cy-

clotron edge is the primary source of the lineshape model uncertainty. Characterizing

the noise would allow the creation of a more realistic lineshape model. Eliminating

it would narrow the lines and remove the lineshape model concern.

Why do the resonance lines have different widths at each field (Section 6.1.4)? The

lineshape parameters appear stable throughout the measurements at a particular

field but change between fields. The differences are consistent with different axial

temperatures, but we have not identified what changed among the procedures. This

leads to an increased lineshape model uncertainty for the wider lines.

Why is there an offset between the electrostatic and mode centers (Section 5.4.3)?

We observe such an offset in the multi-electron mode maps and with the single-

electron damping rate. Estimates of simple shifts among the electrodes are unable

to account for the discrepancy, suggesting a more exotic trap deformation. Although

the agreement of the cavity-shift-corrected g-values at four magnetic fields reassures

us that we account for the offset correctly, understanding its cause could allow for

more sturdy trap designs in the future.

How does increasing γc lead to symmetry-breaking in the parametric resonance

of an electron cloud, and what limits it (Section 5.2)? The electron-cloud mode

detection technique relies on synchronization of the axial motion in a parametrically
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driven cloud in a manner that is sensitive to γc. Although one can write down the

full equations of motion, a solution showing the observed collective behavior remains

underived. In addition to providing an interesting result in many-body physics, such

a solution could suggest a set of parameters that enhance the sensitivity to γc, making

the faster of our two mode-detection techniques more robust.

7.4 Summary

Future electron g-value experiments should focus on improving the measurement

precision of the cyclotron and anomaly frequencies. Foremost, magnetic field noise

should be reduced until the resonance lines conform to the Brownian-motion shapes

of Section 4.2, [86], and [89, Ch. 3]. The new high-stability apparatus of Section 3.5

should aid in this respect. Additional advantages will come from narrowing the

resonance lines and increasing their signal-to-noise ratio. Narrower lines will re-

sult from reducing the magnetic-bottle coupling between the axial energy and res-

onance frequencies as well as from lowering the axial energy itself via cavity-assisted

axial–cyclotron sideband cooling. An increased signal-to-noise ratio will result from

speeding-up the detection of a spin-flip after an anomaly excitation by driving the

|1, ↓〉 → |0, ↓〉 transition via a π-pulse, which will require cyclotron linewidths nar-

rower than the ppb relativistic shift, or via adiabatic fast passage. Answering out-

standing questions regarding axial temperature changes, the offset between electro-

static and mode centers, and parametric mode-mapping will increase the procedural

robustness. Finding the source of any magnetic field noise and eliminating it can

remove the lineshape model uncertainty, which dominates both the 2006 and present
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g-value measurements. Except for this noise, there is no obvious limitation to future

measurements, and substantial improvements from our quantum cyclotron are likely.



Chapter 8

Limits on Lorentz Violation

8.1 The Electron with Lorentz Violation

The high accuracy of our g-value measurement provides several tests of the Stan-

dard Model. In Chapter 1, we reviewed tests that rely on a comparison of the mea-

sured g-value to that predicted by QED and an independent measurement of the fine

structure constant, including searches for electron substructure, for light dark matter,

and for modifications to the photon propagator from Lorentz symmetry violation. In

this chapter, we focus on temporal variations in g, specifically those showing modu-

lation related to the Earth’s rotational frequency; such modulation could arise from

a violation of Lorentz symmetry that defines a preferred direction in space.

These modulations would appear as daily variations in the cyclotron and anomaly

frequency, and we search for both simultaneously using the cyclotron frequency to nor-

malize the anomaly frequency to a drifting magnetic field and searching for variations

in this drift-normalized νa with the rotation of the Earth. We limit the amplitude

217
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of these modulations to |δνa| < 0.05 Hz, which improves upon the prior measure-

ment at the University of Washington (UW) by a factor of two [56].1 Through the

parameterization of a Standard Model extension that allows for violations of Lorentz

invariance, we compare this result to those from other experiments and astrophysi-

cal observations, finding that the others set much tighter limits. The simplicity of

the single-electron system provides a reassuring confirmation of these other limits,

and the substitution of a positron will allow further tests of CPT-violation that are

inaccessible through other means.

8.1.1 Energy levels and frequency shifts

The Kostelecký Standard Model extension (SME) [51], introduced in Section 1.1.5,

provides a framework for extending the Standard Model to include spontaneous break-

ing of Lorentz symmetry, resulting in CPT violation in some cases. It allows the com-

parison of tests from diverse experiments and suggests which measurements should be

most sensitive to effects beyond the Standard Model. We are most concerned with the

extension of the QED Lagrange density; the SME terms are typically parameterized

as aµ, bµ, cµν , dµν , Hµν , (kAF)κ, and (kF)κλµν in

LSME = −aµψ̄γµψ − bµψ̄γ5γ
µψ + cµνψ̄γ

µ (i~c∂ν − qcAν)ψ

+ dµνψ̄γ5γ
µ (i~c∂ν − qcAν)ψ − 1

2
Hµνψ̄σ

µνψ

+
1

2~
(kAF)κ εκλµν

√
ε0
µ0

AλF µν − 1

4µ0

(kF)κλµν F
κλF µν .

(8.1)

1We do not get the same order-of-magnitude improvement here that we had for the g-value
because the UW result came from a dedicated Lorentz-violation experiment, optimized for detecting
νa at the expense of poor precision of νc.



Chapter 8: Limits on Lorentz Violation 219

The aµ, bµ, Hµν , and (kAF)κ terms have units of energy, while cµν , dµν , and (kF)κλµν

are dimensionless. The parameter values may differ from particle to particle, and we

concern ourselves only with those related to the electron.

No Lorentz violation has been found to date, and the current limits on the SME

parameters are much less than one, so they may be used perturbatively in calculations.

The leading term in a perturbative expansion about the cyclotron energies of an

electron or positron in a Penning trap shows shifts equal to [54]

δE±n,ms
≈∓ a0 − c00mc

2 − 2ms(b3 ± d30mc
2 ±H12)

− (c00 + c11 + c22)(n+ 1
2
∓ms)~ωc (8.2)

− (1
2
c00 + c33 ± 2ms(d03 + d30))

p2
z

m
,

for cyclotron level n and spin state ms = ±1
2
. The ± in δE±n,ms

refers to positrons

and electrons, and pz is the axial momentum. The indices refer to a local coordinate

system with ẑ (3) parallel to the experiment quantization axis (the magnetic field),

x̂ and ŷ (1,2) lying in the transverse plane, and 0 indicating time. The cyclotron and

anomaly frequencies are defined by energy differences,

~ω±c = E1,± 1
2
− E0,± 1

2
(8.3)

~ω±a = E0,∓ 1
2
− E1,± 1

2
, (8.4)

and show shifts from any CPT or Lorentz violation, given to leading-order by

δω±c ≈ −ωc(c00 + c11 + c22) (8.5)

δω±a ≈ 2(±b3 + d30mc
2 +H12)/~. (8.6)

Again, the ± refers to positrons and electrons.
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8.1.2 Experimental signatures

The frequency shifts of Eq. 8.5 and Eq. 8.6 are written in terms of a laboratory-

based coordinate system that rotates with the Earth. The spatial terms, therefore,

are modulated at multiples of the Earth’s rotational frequency, Ω, depending on the

multipolarity of the term; we explore the precise Ω-dependence in the next section.

In principle, we can look for modulations of the anomaly and cyclotron frequencies

separately. In practice, we use the cyclotron edge-tracking technique of Section 4.3.3

to remove magnetic field drifts and look for modulations of a drift-normalized νa.

By using the cyclotron frequency to correct drifts in the anomaly frequency, any

modulation of νc is transferred onto νa.

To see this transfer explicitly, we examine the equation used to correct the drifts,

νa(t) = νa,0(t)− g − 2

2
(νc,0(t)− νc) , (8.7)

where the “0” subscript here indicates the co-drifting frequencies, νc the normal-

ization cyclotron frequency, and νa the drift-normalized anomaly frequency that is

our probe of Lorentz violation. The “(t)” indicates potential time-dependence from

Lorentz violation. Combining the leading terms for Lorentz-violation in Eq. 8.5 and

Eq. 8.6 with this normalization procedure adds an overall SME-dependence to the

drift-normalized anomaly frequency of

δνa = −2b̃3

h
+ νa(c00 + c11 + c22). (8.8)

Here, we have combined several terms using a conventional shorthand (see e.g. [55]),

b̃j ≡ bj − dj0mc2 − 1

2
εjklHkl. (8.9)
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Our figure-of-merit is δνa, which includes modulation of the drift-normalized anomaly

frequency as well as offsets between the measured anomaly frequency and that pre-

dicted by QED and an independent α.

8.1.3 The celestial equatorial coordinate system

In order to compare our results to those of other experiments, we must rewrite our

figure-of-merit, Eq. 8.8, in terms of a rotation-free coordinate system. The customary

choice is celestial-equatorial coordinates [147], which defines a position on the celestial

sphere in terms of two angles: declination, the angle above the celestial equator, and

right ascension, the angle east of the vernal equinox point. This defines a coordinate

system where Ẑ points along the rotation axis of the earth (declination 90◦), X̂ points

towards the vernal equinox point (right ascension and declination 0◦), and Ŷ = Ẑ×X̂

(declination 0◦, right ascension 90◦).

The rotation matrix to take the (X̂, Ŷ, Ẑ) non-rotating coordinates to the (x̂, ŷ, ẑ)

laboratory coordinates is [147]

M(φ, t) =


sinφ cos Ωt sinφ sin Ωt − cosφ

− sin Ωt cos Ωt 0

cosφ cos Ωt cosφ sin Ωt sinφ

 , (8.10)

where Ω is the Earth’s rotation frequency and φ is the latitude of the laboratory,

42.377◦, and equal to 90◦ minus the angle between Ẑ and ẑ.2 Recalling that vectors

2Because the system is cylindrically symmetric, x̂ and ŷ enter on equal footing, e.g., c11 + c22.
In the conversion to (X̂, Ŷ, Ẑ), we adopt the convention of [147], with x̂ lying in the z–Z plane and
equal to ẑ tanφ− Ẑ secφ and ŷ in the plane of the Earth’s equator and equal to ẑ× x̂.
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and tensors transform as

V (x,y,z) = MV (X,Y,Z) (8.11)

T (x,y,z) = MT (X,Y,Z)M−1, (8.12)

we may express the coefficients in Eq. 8.8 as

b̃3 =b̃Z sinφ+ cosφ
(
b̃X cos Ωt+ b̃Y sin Ωt

)
(8.13)

c11 + c22 =
1

2
(cXX + cY Y )

(
1 + sin2 φ

)
+ cZZ cos2 φ (8.14)

− cosφ sinφ [(cXZ + cZX) cos Ωt+ (cY Z + cZY ) sin Ωt]

− 1

2
cos2 φ [(cXX − cY Y ) cos 2Ωt+ (cXY + cY X) sin 2Ωt] .

The c00 term in Eq. 8.8 and several of the terms when written in the (X̂, Ŷ, Ẑ)

coordinate system have no modulation. They serve as offsets between the measured

and predicted anomaly frequencies and would be candidates for physics beyond the

Standard Model if our data disagrees with that predicted by QED and an independent

α. Our limits of Eq. 1.18 suggest that these terms have |δνa|offset ≈ νc |δg/2| .

10−14 eV/h. The remainder of this chapter investigates the modulation terms.

8.2 Data Analysis

To search for Lorentz variations, we take the data from the four magnetic fields

used to measure the g-value in Chapter 6, separate it into several groups based on

the Earth’s rotation angle, analyze each group separately, and look for variations at

one and two times the sidereal frequency.



Chapter 8: Limits on Lorentz Violation 223

8.2.1 Local Mean Sidereal Time

We keep track of the Earth’s rotation using local mean sidereal time (LMST),

which divides a full rotation into 24 hours;3 0 h LMST corresponds to the meridian

of the vernal equinox overhead, i.e., ẑ lies in the positive-X half of the X–Z plane.

The Earth’s revolution around the sun creates a discrepancy between the mean solar

day and LMST such that one rotation of the Earth (24 h LMST) occurs in approx-

imately 23.93 solar hours, and the two timescales are generally out of phase with

each other, rephasing once a year. By running over the course of several months, this

relative phase allows us to take data at all 24 sidereal hours despite our limitation to

“nighttime” runs (Chapter 3 describes the daytime noise).

Since we time-stamp every excitation attempt, we can bin them by LMST. We

calculate LMST as an offset to Greenwich mean sidereal time (GMST), which is given

in hours by

GMST = 18.697 374 827 + 24.065 709 824 279 D (mod 24), (8.15)

where D is the number of solar days (including fractions) from 1 January 2000, noon

UT (see e.g. [148]). Eq. 8.15 includes a small correction for the Earth’s ≈ 26 000-year

precession but not for its nutation, which never adds more than 1.2 s. The LMST is

the GMST offset by the laboratory longitude, λ = −71.118◦,

LMST = GMST +
λ

15◦h−1 (mod 24). (8.16)

Figure 8.1 shows the anomaly excitations at each field binned by LMST. Although

the data were mostly obtained during the night, the several-month delay among scans

3LMST is the conventional choice, but we could just as easily track the rotation angle in radians.
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Figure 8.1: Anomaly excitation attempts and successes binned by sidereal
time. The attempts greatly outnumber the successes because most tries are
off-resonance.
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provides broad coverage of LMST.4

8.2.2 Fitting the data

After calculating the LMST for each anomaly excitation attempt, we separate

the data by time into several bins (we repeat the procedure for 6–24 bins to ensure

the binning does not affect the result) and analyze each bin separately. Because

the data at each of the four fields was taken under slightly different conditions, e.g.,

different axial temperatures (see Section 6.1.5), we analyze each field separately as

well and combine them in a weighted average for each bin. Using Eq. 8.7, the anomaly

excitation attempts are normalized to a common magnetic field. The non-relativistic,

free-space, co-drifting frequencies used for normalization, νa,0 and νc,0, are calculated

from the actual anomaly excitation frequencies, ν̄a, and the edge-tracking frequencies,

ν̄edge, using the relativistic, magnetron, and cavity corrections (Section 4.1):

νa,0 = ν̄a −
ν̄2
z

2f̄c
+ f̄c

∆ωc
ωc

(8.17)

νc,0 = ν̄edge + ∆edge +
3

2
δ +

ν̄2
z

2f̄c
. (8.18)

Here, ∆edge is a procedure-dependent offset between the edge-tracking and cyclotron

frequencies. We measure this offset during the fits that quantify the lineshape model

uncertainty and use the measured offset (40–95 Hz depending on the field) and its

uncertainty (around 15 Hz) in this analysis.

A weighted-mean calculation using the normalized anomaly attempts provides

a measurement of the anomaly frequency offset by ∆ω, which is subtracted using

4The 147.5 GHz, 149.2 GHz, 150.3 GHz, and 151.3 GHz data were taken in February, September,
May, and June, 2007.
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Figure 8.2: Results of analyzing the anomaly frequency versus LMST. Part
(a) shows the data separated into 12 2-hour bins and fit to modulations with
periods 24 h, 12 h, or both. Parts (b) and (c) show the best-fit amplitudes
for four different bin widths. Parts (d) and (e) show the best-fit phases.
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the axial temperature at each field (again, from the lineshape model analysis fits) to

obtain the anomaly frequency itself. The anomaly frequency in a given time-bin comes

from the weighted average of the anomaly frequencies at all fields. In the average, we

include uncertainties from the weighted-mean calculation, the axial temperature, the

cavity shift (Table 6.4), the edge offset, and the uncorrelated part of the lineshape

model (Table 6.1). The correlated lineshape model uncertainty affects neither the

weighted average nor the uncertainty in the δνa figure of merit, which is essentially a

differential measurement.

With the data analyzed into frequency-versus-time, we fit a five-parameter model,

νa = ν0 + A cos(2πt/24 h + α) +B cos(2πt/12 h + β), (8.19)

where A is the amplitude of the sidereal variation and B is the amplitude of the

semi-sidereal variation. We also fit the model with A and B alternately set to zero

to analyze the case where only one modulation exists.

The result of such fits for 12 bins (2 h wide) appears in Fig. 8.2a. Figure 8.2b and

Fig. 8.2c compare the modulation amplitudes for several different time bin widths.

While not all are consistent with zero, they lie within

|δνa| < 0.05 Hz = 2× 10−16 eV/h, (8.20)

which we adopt as our result.

8.2.3 Comparisons with other experiments

The limit of Eq. 8.20 is two times better than the 0.10 Hz limit of the previous

single-electron result [56]. It provides confirmation of other results but does not set
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the limit for any SME coefficients. If the sidereally variant coefficients of cij are all

zero, then the figure of merit, δνa, sets the limit

∣∣∣b̃⊥∣∣∣ =

∣∣∣∣√b̃ 2
X + b̃ 2

Y

∣∣∣∣ =
h |δνa|
2 cosφ

< 1.4× 10−16 eV, (8.21)

which is stated as the magnitude of b̃j perpendicular to the Earth’s axis because the

cosine fits give little phase information. The best current constraint is b̃⊥ less than

2.5 × 10−22 eV by a spin torsion-pendulum experiment also at the UW [61], which

has a stronger coupling to the b̃j-field because of 1023 more spins.

If instead b̃X and b̃Y are zero, then δνa limits the values of several combinations

of cij coefficients. For rotation purely at the Earth’s sidereal frequency, we may limit∣∣∣∣√(cXZ + cZX)2 + (cY Z + cZY )2

∣∣∣∣ =
|δνa|
νa

1

cosφ sinφ
< 6× 10−10, (8.22)

where again the fits reveal little phase information. For rotation purely at twice the

sidereal frequency, we may limit∣∣∣∣√(cXX − cY Y )2 + (cXY + cY X)2

∣∣∣∣ =
|δνa|
νa

2

cos2 φ
< 1× 10−9. (8.23)

More stringent limits on these coefficients have been set at the 10−15 level using either

cryogenic optical resonators [57] or astrophysical observations of electron-emitted ra-

diation [58, 59]. The resonators, which are normally used to place bounds on SME

coefficients in the photon sector, look for Lorentz-violating changes in the electronic

structure of a crystal resonator. Searching for such violations in the electron sector

requires assumptions about negligible violations in the nuclear sector. The astro-

physical limit looks at inverse Compton and synchrotron radiation from fast-moving

electrons with astrophysical sources, e.g., the Crab nebula, and searches for direction-
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dependence in the electron dispersion relations because nonzero cµν alters the maxi-

mum energy or velocity an electron can have.

8.3 Summary and outlook

Searches for modulation of the anomaly frequency with the rotation of the Earth

allow us to set a new experimental limit on the modulation amplitude of |δνa| <

0.05 Hz, a factor of two smaller than the previous single-electron limit [56]. Com-

parisons using the parameterization of the SME show that experiments with spin

torsion-pendulums [61] and optical resonators [57] as well as astrophysical observa-

tions [58] yield tighter bounds on Lorentz violation, though with more complicated

systems involving estimates of the number of spins in macroscopic material, assump-

tions about Lorentz violation in the nuclear sector, and astrophysical models. The

simplicity of the single-electron system makes the analysis of this chapter worthwhile

despite the several orders-of-magnitude difference in the limits.

Additional sensitivity in the single-electron system could be achieved using the

same conditions for the entire search, as uncertainties from the axial temperature,

the cavity shift, the edge offset, and the lineshape model would then cancel in the

analysis.

Other SME coefficients create Lorentz violations from boosts as the Earth re-

volves around the Sun [149]. Such effects would appear as annual modulations in the

anomaly and cyclotron frequencies but would be suppressed by the relativistic factor

βEarth = vEarth/c ≈ 10−4. The rival experiments mentioned above, however, could

also set tighter limits on these boost effects.
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The replacement of the single electron with a positron allows the most sensitive

test of the CPT-breaking part of b̃j, i.e., bj, which creates a difference between the

anomaly frequencies of the particle and antiparticle [62]. Unless bj happened to be

parallel to the Earth’s axis, this difference would oscillate with the Earth’s rotation,

so measurements should be taken at all hours of sidereal time. This was not done

in the 1987 positron–electron comparison [2, 63], so any new limit comparing the

electron and positron frequencies could improve the bound on bj by more than our

order-of-magnitude improvement in g.



Chapter 9

Conclusion

9.1 A New Measurement of g

Using a single electron in a quantum cyclotron, we present a measurement of the

electron magnetic moment,

g

2
= 1.001 159 652 180 73 (28) [0.28 ppt], (9.1)

an improvement of nearly a factor of three over our result of last year [1]. Together,

they represent a factor of 15 improvement on the 1987 University of Washington

measurement [2]. Among the methods contributing to this enhancement are the use

of a cylindrical trap geometry [87] to control the location of cavity modes and allow

analytic calculations of their coupling to cyclotron motion [79, 80], lower temperatures

to narrow the resonance lines and prepare the cyclotron motion in the quantum-

mechanical ground state [85], and a self-excited oscillator [88] to boost the signal-to-

noise for quantum nondemolition measurements of single cyclotron jumps and spin

flips.

231
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Figure 9.1: Electron g-value comparisons [1, 2].

Using a quantum electrodynamics calculation with small corrections from hadronic

and weak loops, we determine an improved value for the fine structure constant,

α−1 = 137.035 999 084 (33)(39) (9.2)

= 137.035 999 084 (51) [0.37 ppb], (9.3)

where Eq. 9.2 separates the experimental and theoretical uncertainties to show that

the estimate of the tenth-order coefficient in the QED expansion now contributes more

uncertainty than the measured g. Independently measured values of α from atom-

recoil measurements are over a factor of ten lower in precision; comparisons between

the measured g and that calculated from the atom-recoil fine structure constants and

QED provide limits on electron substructure, the existence of light dark matter, and

a potential Lorentz-violation by the photon. Searching for modulation of the anomaly

frequency as the Earth rotates limits other methods of Lorentz-violation.
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9.2 Outlook

The techniques presented in this thesis, especially when augmented with the new

high-stability apparatus described in Section 3.5, clear the way for a series of new

measurements, several of which have already begun. Among them are the following.

9.2.1 The e+ g-value and testing CPT

Comparisons of the electron and positron g-values provide high-precision tests

of the CPT theorem and constrain possible violations of Lorentz invariance [62].

Except for the loading mechanism and an inverted ring voltage, a positron g-value

measurement would proceed identically to the electron measurement presented here.

Many methods exist for loading positrons in a cryogenic environment, see e.g., [150,

151], and some are amenable to scaling down to the low loading rates required for

trapping only one. Work is underway on a new positron g-value measurement with

the goal of exceeding the precision of both the current 4.3 ppt positron g-value limit [2]

and the 0.28 ppt electron limit set here [152].

9.2.2 The proton-to-electron mass ratio

The proton-to-electron mass ratio plays an important role in, among other things,

atomic hyperfine structure and molecular energy levels. The current 0.5 ppb pre-

cision [25] is calculated from the ratio of the proton and electron masses in amu:

Ar(p)/Ar(e). The former comes from a direct proton–carbon cyclotron frequency

comparison in a Penning trap, while the latter is calculated from bound-electron g-

value measurements. When combined with existing techniques for 90 ppt resolution
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of the proton cyclotron frequency [153], the sub-ppb electron cyclotron frequency

resolution presented in this thesis suggests that a direct comparison of the cyclotron

frequencies of a proton and a positron should be competitive with the current deter-

mination. Since mp/me is currently limited by Ar(e), any improvement in the ratio

would correspond to an improved measurement of the relative electron mass.

9.2.3 The proton and antiproton magnetic moments

The success of the electron magnetic moment measurement has inspired a pair of

competing experiments with the goal of direct measurement of the proton and antipro-

ton magnetic moments at the ppb-scale [88, 154]. This precision would represent an

order-of-magnitude improvement in the precision of the proton magnetic moment [25]

and a million-fold improvement in that of the antiproton, which currently stands at

0.3% [13, p. 955]. Taken individually, these magnetic moment measurements do not

serve the same check on theory that the electron moment does because the QCD

model for the proton spin is still under investigation [3]. Together, though, they

would provide an important test of CPT invariance [54].

Since the antiproton cyclotron frequency can already be measured to the precision

required [153], the challenge to applying the techniques of this thesis (especially QND

detection with a magnetic bottle) to the antiproton lies in the detection of a spin

flip. The absolute axial frequency shift from such a flip is proportional to µ/
√
m

(see Eq. 2.1 and Eq. 2.26). Both parts increase the measurement difficulty, as the

antiproton moment is 658 times smaller than that of the electron, and
√
m is 43 times

larger, making the relative frequency shift 3× 104 smaller than that of an electron in
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the same trap. The proposed solution is to increase the magnetic bottle strength and

decrease the trapping potential. Both groups have maximized B2 by reducing the trap

dimensions and by making the ring electrode itself out of ferromagnetic material. In

order to reduce the bottle-induced line-broadening (Section 4.2), they employ a dual-

trap design, commonly used in bound-electron g-value measurements [31], in which

the spin and cyclotron transitions are made in a magnetic-gradient-free trap before

the particle is transferred to the large-bottle trap. Decay of excited cyclotron states

during the transfer is not a problem because the cyclotron damping rate is greatly

reduced for the heavier antiproton (see Eq. 2.11). One of the remaining challenges

is keeping the trapping potential stable enough to average the axial frequency and

resolve the tiny shift.

9.2.4 A single electron as a qubit

Access to the lowest quantum states of a trapped electron have led to several

proposals for using electrons in Penning traps as qubits. When compared to the

existing quantum information experiments with ions in linear Paul traps [155], the

electron system has three advantages [156]: faster gate times from the higher trap

frequencies of the lighter electron, weaker decoherence because only the cyclotron

motion has intrinsic damping and the trapping fields are static, and dense coding

because each electron can encode information in its spin, cyclotron, and axial degrees

of freedom. However, the electron lacks internal degrees of freedom that allow laser-

cooling in ions and some electron quantum information proposals rely on challenging

techniques such as axial–cyclotron sideband cooling.
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Proposals exist for using the cyclotron, spin, and/or axial degrees of freedom as

qubits, which could be initialized via natural damping (cyclotron), anomaly transi-

tions (spin) [157], or sideband cooling (axial) [158]. Several gates have been pro-

posed between pairs of degrees of freedom, each forming a single qubit (axial and

spin [158, 156] and cyclotron and spin [159]). Scaling the number of qubits could

be implemented with a linear array of Penning traps [156] or a 2D array of open-

geometry Penning traps [157] with their electrodes in a plane [160]; electrons could

be individually addressed by differentiating the trap frequencies, e.g., by introducing

a magnetic field gradient or adjusting the electrode potentials. Interaction between

electrons via the Coulomb interaction can be controlled by bringing their axial fre-

quencies into resonance. One proposal involves using a magnetic field gradient and

the Coulomb interaction to create a pseudo-spin-spin interaction [157]. Others sug-

gest using anharmonicity, either from special relativity or the trap potential, to create

state-dependent frequencies useful in conditional gates and to remove the degeneracy

of higher cyclotron and axial states, reducing these degrees of freedom to two-level

systems. All proposals rely on quantum nondemolition detection of the cyclotron and

spin states using the magnetic bottle, and information encoded in the axial state must

be transfered to another degree of freedom with a sideband pulse before readout [158].

Steps have been taken toward the demonstration of axial–cyclotron sideband cool-

ing (including the analysis in Chapter 7), electrons have been briefly confined in a

planar Penning trap at room temperature [161], and work has begun on a cryogenic

planar trap [162]. Nevertheless, a trapped-electron-based quantum computer remains

a challenging goal.
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9.3 Summary

Precise control of the location of and the coupling to the electromagnetic modes of

the electrode cavity has reduced the once-dominant cavity shift uncertainty and led to

an improved measurement of the electron magnetic moment. With the measurement

limited by the resolution and model of the cyclotron and anomaly lines, future work

should focus on enhancing magnetic field stability, narrowing the lines, and building

signal-to-noise.



Appendix A

Derivation of Single-Mode

Coupling with Axial Oscillations

In Section 5.3.2, we showed that coupling between a cavity mode and an electron

depends on the electron position in the trap. Since the electron is oscillating axially,

we wish to derive the mode coupling as a function of the axial amplitude. This

is trickier than adding a time-dependence to the z-dependent parts of the mode

coupling and averaging over an oscillation cycle; one must be careful to keep time and

frequency separate by Fourier transforming and time-averaging at the proper points.

In principle, one could do a proper calculation for the full renormalized model, though

in practice it is difficult. Here, we treat the coupling to a single mode.

We start with the transverse equation of motion (Eq. 5.21),

v̇ − ω′c × v =
e

m
E′(r), (A.1)

where we have folded the electrostatic quadrupole into the cyclotron frequency by

changing ωc → ω′c and have removed the free-space damping so the electron is

238
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damped only by the mode. We may combine the two transverse components by

writing

v = vx − ivy = v0e
−iωt (A.2)

so the equation of motion becomes

(ω − ω′c)v = i
e

m
E ′(r), (A.3)

where the components of E′(r) are combined in the manner of Eq. A.2. The quantity

ω − ω′c is the same one we have typically referred to as ∆ωc − i
γ

2
.

In the radiation gauge, we may write the electric field as the time-derivative of

a vector potential, which we write as the convolution of a Green’s function, D, with

the current source (the electron),

i
e

m
E ′(r) = −i e

m

∂

∂t

∫
dt′
µ0

4π
Dxx(t− t′; r, r′)ev0e

−iωt′ . (A.4)

From the expansion of the renormalized calculation about a mode frequency (Eq. 5.29),

we know the Fourier transform of the single-mode Green’s function is

D̃xx(ω; r, r′) = − 1

r0

λM(r)λM(r′)

ω2 − ω2
M

, (A.5)

with λM(r) =(E,M) λmnp at position r. After a bit of work, we may inverse Fourier

transform to get the time-dependent Green’s function

Dxx(t− t′; r, r′) =

∫
dω

2π
e−iω(t−t′)−1

r0

λM(r)λM(r′)

ω2 − ω2
M

(A.6)

=
λM(r)λM(r′)

r0ωM

sin(ωM |t− t′|),

which we substitute into Eq. A.4 to obtain

i
e

m
E ′(r) = −i ∂

∂t

∫
dt′v0e

−iωt′ λM(r)λM(r′)

ωM

sin(ωM |t− t′|). (A.7)
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We explicitly remove the z-dependence from the coupling parameters as in Eq. 5.31

λM(r) = sin(pπ
2

( z
z0

+ 1))λ̃M, (A.8)

add the axial time dependence with z → z+A cos(ωzt), and expand for A� z0/p in

terms of axial harmonics as in Eq. 5.32

sin(pπ
2

( z+A cos(ωzt)
z0

+ 1)) =
∞∑
j=0

fj(z, A) cos(jωzt) (A.9)

to write

i
e

m
E ′(r) = −i ∂

∂t

∫
dt′v0e

−iωt′ λ̃
2
M

ωM

∞∑
j=0

∞∑
k=0

fj(z, A)fk(z, A) (A.10)

× cos(jωzt) cos(kωzt
′) sin(ωM |t− t′|).

We may eliminate the absolute value of t − t′ in the sine function with a factor of 1

for t > t′ and -1 for t < t′. Doing this and taking the t-derivative gives

i
e

m
E ′(r) =− iv0λ̃

2
M

2

∫
dt′e−iωt

′
∞∑
j=0

∞∑
k=0

fj(z, A)fk(z, A) cos(kωzt
′) (A.11)

× [cos((ωM + jωz)t− ωMt
′) + cos((ωM − jωz)t− ωMt

′)]×


1 , t > t′

−1 , t < t′
,

where a term of order ωz/ωM has been dropped. The time integral must be broken
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into two at t but is then straightforward with the result

i
e

m
E ′(r) =− iv0λ̃

2
M

2
e−iωt

∞∑
j=0

∞∑
k=0

fj(z, A)fk(z, A) (A.12)

×
[
iω cos((j − k)ωzt)− (ωM − kωz) sin((j − k)ωzt)

ω2 − (ωM − kωz)2

+
iω cos((k + j)ωzt)− (ωM + kωz) sin((k + j)ωzt)

ω2 − (ωM + kωz)2

+
iω cos((k + j)ωzt)− (ωM − kωz) sin((k + j)ωzt)

ω2 − (ωM − kωz)2

+
iω cos((k − j)ωzt)− (ωM + kωz) sin((k − j)ωzt)

ω2 − (ωM + kωz)2

]
.

Now, at long last, we may take the time average and notice that all the terms in the

brackets are zero unless j = k. We thus recover Eq. 5.34,

∆ωc − i
γ

2
=
λ̃2

Mω

2

∞∑
j=0

fj(z, A)2

[
1

ω2 − (ωM − jωz)2
+

1

ω2 − (ωM + jωz)2

]
, (A.13)

giving the axial-frequency sidebands and amplitude-dependent coupling strengths.
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