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Abstract

This thesis reports a preliminary result for the first fully quantum measurement of the

electron magnetic moment. This 0.6 parts per trillion result is the most accurate to

date and is combined with existing Quantum Electrodynamics theory to yield a new

value for the fine structure constant. The measurement uses quantum spectroscopy of

transitions between the ground and first-excited cyclotron and spin states of a single

electron, eliminating errors associated with relativistic mass corrections of excited

states. A dilution refrigerator provides the 0.1 K temperature needed to cool the

cyclotron motion, ensuring that only the ground state is occupied, and to cool the

axial motion, reducing thermal broadening of the cyclotron and spin-flip resonances.

The measurement is performed in a cylindrical trap cavity with well characterized

electromagnetic standing-wave modes, making possible the first cavity-shift correction

to the measured magnetic moment.



Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 The g Value and Fundamental Physics . . . . . . . . . . . . . . . . . 2

1.1.1 Theoretical Prediction for the g Value . . . . . . . . . . . . . 3
1.1.2 The Fine Structure Constant . . . . . . . . . . . . . . . . . . 5
1.1.3 Testing Quantum Electrodynamics . . . . . . . . . . . . . . . 6
1.1.4 Testing CPT Symmetry and Lorentz Invariance . . . . . . . . 8
1.1.5 Time Dependence of α . . . . . . . . . . . . . . . . . . . . . . 9
1.1.6 The Muon g Value . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 The Harvard g Value Measurement . . . . . . . . . . . . . . . . . . . 10
1.2.1 g Value Measurement Basics . . . . . . . . . . . . . . . . . . . 12
1.2.2 Single Quantum Spectroscopy and Sub-Kelvin Cyclotron Tem-

perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Sub-Kelvin Axial Temperature . . . . . . . . . . . . . . . . . . 14
1.2.4 Cylindrical Penning Trap . . . . . . . . . . . . . . . . . . . . . 15

1.3 Recent Electron g value Measurements . . . . . . . . . . . . . . . . . 17

2 A Single Electron in a Sub-Kelvin Penning Trap 20
2.1 Refrigerator and Trap . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Penning Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Dilution Refrigerator and Magnet . . . . . . . . . . . . . . . . 22
2.1.3 Vacuum Enclosure . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Electron Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Resonance Frequencies . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



Contents v

2.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Synthesizers and Clocks . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Cryogenic Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Externally-Driven Axial Detection . . . . . . . . . . . . . . . . 33
2.3.4 Self-Excited Axial Detection . . . . . . . . . . . . . . . . . . . 34
2.3.5 Parametric Axial Detection . . . . . . . . . . . . . . . . . . . 36
2.3.6 Magnetron Excitation Detection . . . . . . . . . . . . . . . . . 37
2.3.7 Cyclotron and Spin Transition Detection . . . . . . . . . . . . 39

3 Magnetic Field Stability 43
3.1 Monitoring the Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Achieving Stability in the External Field . . . . . . . . . . . . . . . . 44

3.2.1 Pressure regulation . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Temperature Regulation . . . . . . . . . . . . . . . . . . . . . 45
3.2.3 Adjustable Spacer . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Realized Field Stability . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Achieving a Stable Trap Magnetism . . . . . . . . . . . . . . . . . . . 47
3.3.1 Copper Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Silver Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Measurement of Cyclotron and Anomaly Frequencies 57
4.1 Cyclotron and Anomaly Transitions in a Penning Trap . . . . . . . . 58
4.2 Theoretical Cyclotron and Anomaly Line Shapes . . . . . . . . . . . . 59

4.2.1 Magnetic Bottle Broadening . . . . . . . . . . . . . . . . . . . 59
4.2.2 Line Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Frequency-Time Broadening . . . . . . . . . . . . . . . . . . . 62

4.3 Axial Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Measurement of the Axial Temperature . . . . . . . . . . . . . 63
4.3.2 Achieving a Cold Axial Temperature . . . . . . . . . . . . . . 64

4.4 Choice of Axial Frequency . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Axial Frequency and Anomaly Drive Strength . . . . . . . . . 66
4.4.2 Axial Frequency and Thermal Broadening . . . . . . . . . . . 67
4.4.3 Axial Frequency and Quantum Jump Resolution . . . . . . . . 68

4.5 Single Quantum Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 70
4.5.1 Cyclotron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Anomaly Spectroscopy . . . . . . . . . . . . . . . . . . . . . . 71
4.5.3 Choice of Quantum States for Spectroscopy . . . . . . . . . . 72
4.5.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Extracting Frequencies from Resonance Histograms . . . . . . . . . . 76
4.6.1 Line-Fit Method . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.2 Line-Center Method . . . . . . . . . . . . . . . . . . . . . . . 80



Contents vi

5 Cavity Shifts 86
5.1 Calculation of Cavity Effects . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Cavity Shifts of a g value Measurement . . . . . . . . . . . . . 88
5.1.2 Coupled Cavity Modes . . . . . . . . . . . . . . . . . . . . . . 88
5.1.3 Cavity Effects in a Hyperbolic Trap . . . . . . . . . . . . . . . 89
5.1.4 Cavity Effects in a Cylindrical Trap: Mode Sum Calculation . 90
5.1.5 Cavity Effects in a Cylindrical Trap: Renormalized Calculation 94
5.1.6 Dependence of Cavity Effects on Mode Q-Factor . . . . . . . . 96

5.2 Measured Mode Spectrum of the Actual Trap . . . . . . . . . . . . . 98
5.2.1 Mapping the Cavity Modes . . . . . . . . . . . . . . . . . . . 98
5.2.2 Calibration of Cavity Mode Maps . . . . . . . . . . . . . . . . 100
5.2.3 Identification of Coupled Cavity Modes . . . . . . . . . . . . . 104
5.2.4 In situ Determination of Cavity Dimensions . . . . . . . . . . 106
5.2.5 Problems with Q Determination from Parametric Maps . . . . 109

5.3 Cyclotron Lifetime Map and Trap Parameters . . . . . . . . . . . . . 110
5.3.1 Lifetime Measurement of a Quantum Cyclotron . . . . . . . . 111
5.3.2 Measured Damping Rates and Trap Parameters . . . . . . . . 113

5.4 Cavity-Shift Uncertainty in the g Value . . . . . . . . . . . . . . . . . 117
5.4.1 Mode-Frequency Error Contribution to Cavity Shifts . . . . . 117
5.4.2 A Conservative Mode-Frequency Error Estimate . . . . . . . . 120
5.4.3 Q-Error Contribution to Cavity Shifts . . . . . . . . . . . . . 120

5.5 Implications of Q Uncertainties . . . . . . . . . . . . . . . . . . . . . 121

6 Determination of the g value 124
6.1 Measurement of the g value . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.1 g Value Measurement in a Pure B-Field . . . . . . . . . . . . 125
6.1.2 g Value Measurement in an Ideal Penning Trap . . . . . . . . 126
6.1.3 g Value Measurement in an Imperfect Penning Trap . . . . . . 127

6.2 Corrections and Systematic Uncertainties . . . . . . . . . . . . . . . . 128
6.2.1 Relativistic Shift . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.2 Axial Shift from Anharmonicity . . . . . . . . . . . . . . . . . 131
6.2.3 Axial Frequency Shift from the Anomaly Drive . . . . . . . . 133
6.2.4 Anomaly Power Shifts . . . . . . . . . . . . . . . . . . . . . . 134
6.2.5 Cyclotron Power Shifts . . . . . . . . . . . . . . . . . . . . . . 137
6.2.6 Cavity Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2.7 Shifts from Trap Misalignment . . . . . . . . . . . . . . . . . . 141

6.3 g Value Measurement Results . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusion 145
7.1 Harvard g value Measurement . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Strengths of the Harvard g value Measurement . . . . . . . . . . . . . 147
7.3 Future g value Experiments . . . . . . . . . . . . . . . . . . . . . . . 148



Contents vii

7.4 Implications for Other Precision Measurements . . . . . . . . . . . . 149

Bibliography 150



List of Figures

1.1 Relative contribution of various terms to the g value . . . . . . . . . . 4
1.2 Comparison of α determined from several experiments . . . . . . . . 7
1.3 Comparison of recent Penning trap g value measurements . . . . . . . 11
1.4 Magnetic transition level diagram . . . . . . . . . . . . . . . . . . . . 12
1.5 Theoretical cyclotron and anomaly line shapes at different temperatures 15
1.6 Calculated cyclotron damping and cavity shifts for cylindrical trap . . 17

2.1 Trap electrode diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Schematic of drives, biasing, and detection . . . . . . . . . . . . . . . 23
2.3 Dilution refrigerator apparatus with expanded view of copper trap. . 24
2.4 Diagram of grease-sealed and indium-sealed traps . . . . . . . . . . . 26
2.5 Motions of a single electron in a Penning trap. . . . . . . . . . . . . . 27
2.6 Quantization of four degrees of freedom of a trapped electron . . . . . 29
2.7 Schematic diagram of 200 MHz first-stage amplifier . . . . . . . . . . 32
2.8 Schematic diagram of 200 MHz second-stage amplifier . . . . . . . . . 32
2.9 Driven axial resonances of a single electron . . . . . . . . . . . . . . . 33
2.10 Schematic diagram for externally-driven axial detection. . . . . . . . 34
2.11 FFT of self-excited oscillator signal . . . . . . . . . . . . . . . . . . . 35
2.12 Parametric resonance of an electron cloud . . . . . . . . . . . . . . . 37
2.13 Side-band heating response of a single electron . . . . . . . . . . . . . 38
2.14 Axial frequency shift caused by quantum cyclotron transitions of a

single electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.15 Axial frequency shift caused by a spin flip of a single electron . . . . . 41

3.1 Temperature-dependence of poorly shimmed system . . . . . . . . . . 45
3.2 Field map using adjustable-height spacer . . . . . . . . . . . . . . . . 46
3.3 Magnetic stability achieved . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Copper and silver traps and vacuum enclosures . . . . . . . . . . . . 51
3.5 Temperature dependence of copper and silver trap magnetism . . . . 53

4.1 Non-relativistic level diagram for spin and cyclotron motions . . . . . 58

viii



List of Figures ix

4.2 Cyclotron or anomaly lineshapes at various values of the lineshape
parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Theoretical cyclotron and anomaly line shapes for experimental para-
meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Measured cyclotron line shapes at various axial temperatures . . . . . 65
4.5 Correcting line shapes for magnetic field drift . . . . . . . . . . . . . 75
4.6 Measured anomaly and cyclotron line shapes. . . . . . . . . . . . . . 78
4.7 Comparison of line fitting and line center methods for determining g . 79
4.8 g value measurements using line-center method . . . . . . . . . . . . 84
4.9 Histogram of residuals from line-center method . . . . . . . . . . . . 85

5.1 Field geometry of TM1n1 and TE1n1 . . . . . . . . . . . . . . . . . . . 89
5.2 Predicted g value shift and damping for TE127 . . . . . . . . . . . . . 93
5.3 Comparison of predicted g value shift from renormalized and mode

sum calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Dependence of g value shift and damping on Q-factor . . . . . . . . . 97
5.5 Cavity mode map over the nine observed coupled modes . . . . . . . 99
5.6 Schematic diagram of magnet charging circuit. . . . . . . . . . . . . . 101
5.7 Return current through the shunt resistor while charging magnet . . . 102
5.8 Shunt current at calibration peaks . . . . . . . . . . . . . . . . . . . . 103
5.9 Scatter in determination of frequencies of coupled cavity modes . . . 104
5.10 Saturation of parametric response at coupled cavity modes . . . . . . 105
5.11 Cavity mode identification and in situ determination of trap dimensions107
5.12 Comparison of predicted and measured cavity mode frequencies . . . 108
5.13 Histogram of observed cyclotron lifetimes . . . . . . . . . . . . . . . . 112
5.14 Best fit to lifetime data, varying QE and QM , for two assignments of

TE127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.15 Variation of the frequency assignment of TE127. . . . . . . . . . . . . 115
5.16 Effects of mode frequency variation on cyclotron damping and cavity

shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.17 Effects of Q variation on cyclotron damping and cavity shift . . . . . 122

6.1 Quantized spin and cyclotron energies . . . . . . . . . . . . . . . . . . 125
6.2 Relativistic level diagram for spin and cyclotron motions . . . . . . . 130
6.3 Axial frequency shift with anomaly drive power. . . . . . . . . . . . . 133
6.4 Anomaly power shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.5 Cyclotron power shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6 Cavity shift of g value measurements . . . . . . . . . . . . . . . . . . 140
6.7 g value Measurement Results . . . . . . . . . . . . . . . . . . . . . . 144

7.1 Comparison of recent Penning trap g value measurements . . . . . . . 146



List of Tables

2.1 Typical eigenfrequencies of a trapped electron . . . . . . . . . . . . . 28

3.1 Nuclear curie constants for various materials . . . . . . . . . . . . . . 50
3.2 Nuclear paramagnetism of elements of the copper trap apparatus . . 53
3.3 Nuclear paramagnetism of elements of the silver trap apparatus . . . 55

5.1 Cavity mode frequencies and coupling constants . . . . . . . . . . . . 92
5.2 Observed cyclotron lifetimes at different B-fields . . . . . . . . . . . . 113
5.3 Trap dimension and Qs for various fits to lifetime data . . . . . . . . 116
5.4 Summary of cavity shift uncertainties in g . . . . . . . . . . . . . . . 119

6.1 Cavity shifts of measured g values . . . . . . . . . . . . . . . . . . . . 140
6.2 Systematic corrections and uncertainties . . . . . . . . . . . . . . . . 143
6.3 g value results at two different fields . . . . . . . . . . . . . . . . . . . 144

x



Acknowledgments

It has been my pleasure to work with Jerry Gabrielse for more than a few years

on this rewarding project. Under his guidance and vision, a measurement which has

been many graduate students’ theses in the making is coming together in a wonderful

way. And under his tutelage, reliable availability, and constant support, I learned to

do science.

I am privileged to present results of a measurement which has been under devel-

opment for almost two decades, benefitting from the dedication of many students.

However, most obvious to me are the contributions of the students with whom I

have worked. Steve Peil laid an excellent foundation by developing a sub-Kelvin

trap for single electrons, and his demonstration of single quantum jumps with Geron-

imo form the basis of the current experiment. Brian D’Urso made a plethora of

clever improvements to the detection system, such as the self-excited oscillator and

200 MHz amplifier, which have developed into crucial parts of the experiment and

contribute significantly to the quality of data we are now collecting. I particularly

appreciate Brian’s friendship and collaboration during the few years when it seemed

that the experiment could do nothing but fail in new and creative ways. Ramon

van Handel’s adjustable-height spacer provided an important improvement B-field

stability. Finally, Dave Hanneke has played a central role in the final stages of this

first-generation result. Dave’s temperature regulation system is essential, and he has

taken much of the data presented in this thesis. His willingness to run the experi-

ment while I hypothetically wrote my thesis often translated into his filling cryogens

and fixing equipment while I analyzed results and contemplated physics. For his

generosity under that division of labor I am very grateful.



Acknowledgments xii

If I listed all the graduate students and postdocs whose companionship I have

thoroughly enjoyed, it would be akin to someone who generally lies about their age

sharing his taste in music. But, for any of you who might read this thesis, it has been

a delight.

I have enjoyed many helpful conversations with my committee members Ike Silvera

and Bob Wesetervelt, whose genuine concern for my wellbeing was very encouraging

and who helped me through problems ranging from superleaks to overly hot electrons.

The excellent work and rush jobs of Louis DeFeo, Rich Anderson, and Al Chandler in

the machine shop deserve substantial recognition. Without their often having slipped

my projects forward in the queue, the data which have come together literally over the

last two weeks would have been delayed, and this thesis would have been significantly

less exciting to present. Also, kindnesses of Jan Ragusa, Vickie Greene, Stan Coutreau

and others in the Harvard Physics Department have been significant.

My father’s contributions to my personal and scientific development are substan-

tial – science fair projects and his off-hand statement that I might particularly enjoy

learning physics when I got to 11th grade – come to mind. My mother’s dedication

to provide only the best in nurture and education have had an impact which I will

probably continue to discover for the rest of my life. And my wife Teri was a living

reminder that I too could live – and even live well – if the magnet did indeed quench

again.

Finally, I thank God, through whose active participation in my life I have been

rescued from what I might have become, with failures and successes becoming both

bigger and smaller, and much more meaningful.



Chapter 1

Introduction

This thesis reports a preliminary result for the first fully quantum measurement

of the electron magnetic moment. We measure cyclotron and spin-flip transition

frequencies exclusively between the ground and first-excited cyclotron and spin states

of a single electron–a quantum cyclotron [1]. The preliminary error assignment of

0.6 part per trillion (ppt) achieved in this work represents a factor of 7 improvement

over the best previous measurements [2, 3]. When combined with existing theory [4,

5, 6], this measurement of the electron magnetic moment provides the most accurate

determination of the fine structure constant, α. Quantum Electrodynamics (QED),

generally considered to already be the most stringently tested physical theory [7],

can be further tested by comparing this determination of α with values obtained by

different types of experiments, if ever a measurement by another method approaches

the accuracy we attain. The work reported here also opens the way for improved

tests of CPT (Charge, Parity, Time Reversal) symmetry and Lorentz Invariance for

leptons.

1
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Improvements of this measurement over previous experiments are discussed in

Sec. 1.2. The quantum cyclotron is realized with a single electron in a sub-Kelvin

cylindrical Penning trap. The details of the apparatus and dynamics of the trapped

electron are discussed in Chapter 2. Precise measurement of the magnetic moment

of the electron requires a highly stable magnetic field, discussed in Chapter 3. This

stability allows accurate measurement of the cyclotron and anomaly resonance fre-

quencies, as discussed in Chapter 4. Effects of the microwave cavity, formed by the

conducting walls of the Penning trap, are discussed in Chapter 5. Finally, analysis of

the results and of systematic uncertainties is presented in Ch. 6.

1.1 The g Value and Fundamental Physics

The g value of a particle is proportional to the ratio of its magnetic moment ~µ to

its angular momentum ~S :

~µ = g
q~
2m

~S

~
, (1.1)

where ~ is Planck’s constant, q is the charge, m is the mass, and the quantity | q| ~/2m

is recognized as the Bohr magneton for the case of the electron.

For a non-relativistic rotating charged body with equal charge and mass distribu-

tions, classical electricity and magnetism predicts g = 1. The Dirac equation, if used

as a single-particle wave equation, predicts g = 2. And, Quantum Electrodynamics

predicts that g differs from 2 by about 1 parts in 103. Because modern experiments

take advantage of the smallness of this offset and actually measure the quantity g - 2,

as discussed in Sec. 1.2.1, they are often called “g - 2” experiments. Often, results of
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g value experiments are presented in terms of the “electron anomaly” ae, defined by

g

2
= 1 + ae. (1.2)

1.1.1 Theoretical Prediction for the g Value

Quantum electrodynamics predicts that the magnetic moment of the electron is

given by a series expansion in the fine structure constant α. The full standard model

prediction for g also includes small, but now observable, non-QED contributions. The

expansion for the g value is given by

g

2
= 1 + C1

(α

π

)
+ C2

(α

π

)2

+ C3

(α

π

)3

+ C4

(α

π

)4

+ . . . + aµ, τ + ahad + aweak , (1.3)

where the coefficients C1, C2, C3, . . . and the muon and tau contribution aµ, τ are

predicted by QED theory, and ahad and aweak are the non-QED hadronic vacuum

polarization and weak contributions. C1 was first shown by Schwinger [9] to be exactly

0.5. C2 requires the evaluation of 7 Feynman diagrams and is known analytically to be

−0.328 . . . [10, 11]. The 72 Feynman diagrams for C3 are now known analytically to

yield 1.181 . . . [6]. The C4 calculation, involving 891 four-loop Feynman diagrams, has

been calculated numerically [4, 12] to be ∼ −1.71, which includes a recent correction

[5] that resulted in a shift of the predicted g value by - 6 ppt. Work on the 10th-order

Feynman diagrams for C5 has begun, but currently only 784 of the 12,672 diagrams

have been evaluated [12]. A rough estimate [13] of the contributions of the C5 term

yields an uncertainty (shown in Fig. 1.1) which is currently larger than the uncertainty
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µ, τa
had
a

weak
aC
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α

π

2
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π

4

( (C
3
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π
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π

5

( (

UW 1990
Harvard 2004

Figure 1.1: Relative contribution of the terms from Eq. (1.1) to the electron g value
(dark bars) and magnitude of their uncertainties (light bars). The solid line repre-
sents the accuracy of the 2004 Harvard g value measurement presented in this thesis.
The dashed line represents the accuracy of the 1990 University of Washington mea-
surement [8].

in the C4 contribution. The non-electron terms are [14]

aµ, τ = 2.721× 10−12 (1.4)

ahad = 1.642(27)× 10−12 (1.5)

aweak = 0.030× 10−12. (1.6)

Relative contributions of all terms to the g value along with their uncertainties are

displayed in Fig. 1.1. As can be seen from the figure, the g value measurement pre-

sented in this thesis for the first time probes the contributions of muonic and hadronic

vacuum polarization.
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1.1.2 The Fine Structure Constant

The fine structure constant α is the coupling constant which quantifies the inter-

action of the radiation field with electric charge. In SI units,

α =
e2/~c
4πε0

, (1.7)

where ~ = h/2π is Planck’s constant, c is the speed of light, and ε0 is the permittivity

of free space.

The quantitative prediction of Quantum Electrodynamics for the electron mag-

netic moment is the most stringently tested prediction of any physical theory [7].

The tremendous success of QED is also of practical importance for its role in the

determination of fundamental constants common to many measurements [15]. For

example, the most accurate resistance calibration standards, based on the integer

quantum Hall effect, produce the standard resistance RK = h/e2 = µ0c/2α. Since µ0

and c are defined quantities, the only uncertainty in the value of RK is in the accuracy

of α, which is best known from electron magnetic moment experiments. Thus the

thoroughly non-quantum, non-relativistic concept of resistance is calibrated based on

calculation of high-order Feynman diagrams and the electron g value measurement.

Similarly, if a proposed redefinition of the kilogram is adopted, ~ would become an

exact constant, and current knowledge of α would be the limiting factor in calibration

of ac Josephson effect voltage standards [16].

The electron magnetic moment measurement presented in this work can be com-

bined with the most recent QED calculations [6, 12, 13] to calculate a new value for
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the fine structure constant. We obtain the preliminary result

α−1 = 137.035 999 777 (27) (67), (1.8)

where the first uncertainty is from theory and the second is from experiment. (See

Sec. 5.4.2 for comments on the experimental uncertainty.)

1.1.3 Testing Quantum Electrodynamics

Although the interaction between light and electric charge is described by a run-

ning coupling constant, α is defined as the low-energy limit of this constant. Re-

gardless of any possible breakdown of QED at high energies, all experiments which

measure the fine structure constant must yield the same result [17]. Thus, com-

parisons between values of α obtained from various experiments, shown in Fig. 1.2,

constitutes a test of QED.

The quantum Hall result [18] is the only experiment shown in Fig. 1.2, besides

the electron g value, which yields α directly. Many of the results given in Fig. 1.2

rely on measurements of the Rydberg constant R∞ = α2mec/2h, which is often

useful because it has been measured very accurately [13] and because it connects a

fundamental mass to the fine structure constant. The h/mCs measurement based

on cesium recoil experiments [19, 20], along with a measured cesium-to-proton mass

ratio [21] and a measured proton-to-electron mass ratio [13], gives the second most

accurate value for α. Ongoing analysis of systematic uncertainties in the completed

h/mCs experiment, as well as improvements to the atom interferometer for a new

measurement, have the goal of improving this result [22].
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Figure 1.2: Comparison of the fine structure constant α as determined by several
experiments. The 1998 CODATA value [13], corresponding to zero on the right-hand
axis, is based primarily upon the 1987 University of Washington g value measurement
[2] and a flawed QED calculation which was since discovered [5] to produce a +6
ppb error in the inferred value for α−1. The uncertainty for the Harvard g value
measurement is less than the width of the point.
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Similarly to the cesium recoil result, the neutron h/mn measurement [23] com-

bined with measurements of the electron [24] and neutron [25] masses determines

α. Measurement of the muonium hyperfine splitting and of the magnetic moment of

the muon also yield a value for α [26]. If the h/m ratio from the neutron or cesium

is used along with the muonium hyperfine splitting, the precision of the muonium

results can be improved [27] at the cost of independence of the two results. The ac

Josephson experiment measures e/h [13] and then is combined with measurements of

the shielded helion gyromagnetic ratio [28, 29] and the shielded proton gyromagnetic

ratio [30] to obtain α. Not shown in Fig. 1.2, because of the larger theoretical un-

certainties [31, 32], are results from helium fine structure spectroscopy [33, 34]. The

disagreement claimed by some of these measurements shown in Fig. 1.2, not generally

regarded as pointing to a failure of QED, is larger than one might hope.

1.1.4 Testing CPT Symmetry and Lorentz Invariance

The CPT theorem states that any physical theory must be invariant under the

combined operations of charge conjugation, parity inversion, and time reversal. The

CPT theorem can be proven for local relativistic field theories of point particles in flat

spacetime [35]. It is interesting to note that string theories, which describe extended

objects, do not meet these criteria.

One testable consequence of the CPT theorem is that a particle and its antiparticle

must have opposite charge, the same mass, the same lifetime, and opposite magnetic

moment. Thus, comparison of the electron and positron magnetic moments and

charge-to-mass ratios constitute a test of CPT . Also, searches for diurnal variations
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of resonance frequencies of an electron (without comparison to a positron) probe

terms in a Standard Model extension [36, 37, 38] which violate Lorentz invariance,

some of which also violate CPT .

Previous work with electrons and positrons in Penning traps [39, 40] sets stringent

limits on CPT and Lorentz violation in the lepton sector. The figure of merit [41]

for Lorentz and CPT violation achieved by these experiments is comparable to that

achieved in experiments on neutral kaons [42], which is generally considered to set the

most stringent bounds on CPT violation in any system. The techniques reported in

this thesis for better measurements of the electron g value, in particular the narrowing

of anomaly and cyclotron resonance widths discussed in Sec. 1.2.3, also opens the way

for improved tests of CPT and Lorentz invariance.

1.1.5 Time Dependence of α

The possibility that physical constants might vary in time or space, originally

proposed by Dirac [43], is now a common feature of models which attempt to use

string theories to unify gravity and quantum mechanics [44]. Recent astrophysical

observations [45, 46] report that the fine structure constant has changed for a redshift

range 0.2 < z < 3.7, on the level of ∆α/α = (−0.54± 0.12). It is interesting, then, to

consider what sensitivity to α̇/α might be achieved in laboratory experiments. Recent

comparison of atomic clocks have established α̇/α < ± 2.9× 10−15/ yr−1 [47]. Thus,

g value measurements such as the one presented in this thesis, while far better for

measuring the value of α, are unlikely to be made competitive with clock experiments

in searches for non-vanishing α̇.
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1.1.6 The Muon g Value

Muon and electron g value measurements are complementary experiments which

fill very different roles [14]. Assuming electron-muon universality, the same Feynman

diagrams can be used to predict the muon and the electron anomalous magnetic mo-

ments. However, because of the mass difference, even the purely QED calculations

yield different predictions for the electron and muon anomalies at the 0.5% level.

More importantly, coupling of the lepton to some other massive particle scales like

(mµ/me)
2 ≈ 4× 104. Thus, the higher sensitivity to massive particles with accompa-

nying challenges in QED calculations, along with three orders of magnitude poorer

measurement accuracy, prevents the muon g value experiments from competing with

the electron measurements as a test of QED.

On the other hand, the muon g value, with the current precision ∆g/g = 6×10−10

[48], is already well into the regime of sensitivity to the weak interactions and serves

as a sensitive probe for new massive particles. Toward this end, electron g value

measurements can be seen as providing important verification of the dominant QED

contributions to the muon g value. At present, muon g value measurements [48]

disagree with the Standard Model theory by 2.7 σ [49].

1.2 The Harvard g Value Measurement

Tremendous precision is available in frequency measurements of periodic phenom-

ena. As a result, the highest precision experiments tend to be performed in systems

where the measured quantity is a frequency. Electron g value experiments, represent-
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ing the most precise tests of QED, also follow this pattern.

The experiment presented here combines the accuracy of a frequency measurement

with the discrete nature of quantum mechanics for the first fully quantum g value

measurement. In this work, cyclotron and spin-flip frequency measurements are made

exclusively on transitions between the ground and first-excited cyclotron and spin

states, shown in Fig. 1.4. This exquisite quantum control prevents subtle effects of

special relativity (see Sec. 6.2.1) from contributing any uncertainty to the g value

measurement.
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Figure 1.3: Comparison of recent g value measurements. The zero of vertical axes is
set to the Harvard 2004 result presented in this thesis. “UW” denotes experiments
[50, 2, 3] performed at the University of Washington.

In this thesis, we present a preliminary measurement of g with an accuracy of 0.6
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ppt, which represents a factor of 7 improvement over previous measurements [2, 8],

as shown in Fig. 1.3. Besides the fully-quantum spectroscopy already mentioned,

other innovations which allow for the substantial improvement include cooling of

the electron to below 1 Kelvin and the use of a cylindrical trap cavity with a well

characterized radiation-field spectrum.

1.2.1 g Value Measurement Basics

The level diagram of Fig. 1.4 shows the quantized motions of a single electron in a

Penning trap. Since g 6= 2, the cyclotron frequency ωc and spin frequency ωs are not

quite equal, resulting in a non-zero anomaly interval ~ωa. The anomaly transition is

a two-photon transition involving both a spin flip and a cyclotron jump.

hωc

nc = 0

nc = 1

nc = 2

hωs

hωa
nc = 0

nc = 1

nc = 2

Figure 1.4: Diagram of spin and cyclotron quantum energies of an electron in a
magnetic field. The effects of special relativity and of the electrostatic trapping
potential are not included here.

As discussed in Ch. 6, g could be determined by measurement of cyclotron and

spin frequencies: g/2 = ωs/ωc ≈ 1. However, g - 2 can be obtained directly from
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the cyclotron and anomaly frequencies: g/2 − 1 = ωa/ωc ≈ 1 × 10−3. Thus, given

comparable precision in measurement of any of the frequencies, an experiment which

measures g - 2 gains three orders of magnitude in precision over one that measures g

directly.

1.2.2 Single Quantum Spectroscopy and Sub-Kelvin Cyclotron

Temperature

Penning trap g value experiments typically operate at a magnetic field of about

5-6 Tesla, where the cyclotron level spacing corresponds to 7-8 Kelvin. A cyclotron

oscillator in a Penning trap at liquid helium temperature (4.2 K) will spend about

20% of its time excited out of the ground state by blackbody radiation. Cooling

the trap cavity to sub-Kelvin temperatures with a dilution refrigerator ensures that

the cyclotron oscillator is essentially always in the ground state unless excited by an

applied microwave drive [1].

As discussed in Sec. 6.2.1, the relativistic mass increase associated with a single

cyclotron energy quantum creates a fractional cyclotron frequency shift ∆ωc/ωc ≈

−1× 10−9, corresponding to ∆g/g ≈ 1× 10−12. This is quite a large effect compared

with the precision ∆g/g ≈ 2 × 10−13 presented in this thesis. When performing

classical cyclotron spectroscopy at 4.2 K, as in previous g value experiments [8], errors

caused by a combination of the relativistic anharmonicity and blackbody excitations

can be as large as ∆g/g ≈ 10−12 [51, 52].

Thus, it is advantageous to perform spectroscopy between the two lowest quantum

states, where there is a precisely known relativistic frequency shift. Of course, per-



Chapter 1: Introduction 14

forming single-quantum spectroscopy is not trivial. This feat requires excellent axial

frequency resolution (see Sec. 2.3.7), a temperature lower than 4 Kelvin, and a trap

cavity which provides a strongly enhanced cyclotron lifetime (see Sec. 5.3). Quantized

cyclotron transitions have only recently been observed [53], and this thesis presents

the first g value measurement using single-quantum cyclotron spectroscopy.

1.2.3 Sub-Kelvin Axial Temperature

The anomaly and cyclotron resonances acquire an inhomogeneous broadening pro-

portional to the temperature Tz of the electron’s axial motion (see Ch. 2). As discussed

in Ch. 4, this broadening occurs because a magnetic inhomogeneity, the so-called

“magnetic bottle”, is introduced to allow detection of spin and cyclotron transitions.

Finite temperature causes the electron to sample some range of this inhomogeneous

B-field, resulting in an inhomogeneous broadening of the cyclotron and anomaly line

shapes.

Cooling the axial temperature below the 5 Kelvin of previous g value measure-

ments [54] narrows the cyclotron and anomaly line widths and yields improved pre-

cision of the Harvard g value measurement, in which Tz ≈ 300 mK. When combined

with our measurements of the electron’s cyclotron temperature, this result demon-

strates the coldest trapped elementary particle. The narrowing of resonance line

shapes resulting from a colder axial temperature is shown in Fig. 1.5.

Axial cooling has also been achieved by the use of negative feedback, where a

signal derived from the axial motion is sent back to the electron with the proper

phase. This technique has been used to cool an electron in a 1.6 K environment to
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Figure 1.5: Theoretical anomaly (left) and cyclotron (right) line shapes for the 1987
University of Washington experiment [2] with Tz = 5 K (dashed) and for the 2004
Harvard experiment with Tz = 300 mK (solid). The frequency ω0 corresponds to
the resonance center in the limiting case of a 0 Kelvin electron, where the electron is
motionless at the center of the trap.

Tz = 700 mK [55]. However, the 300 mK achieved by the brute force of a dilution

refrigerator is colder, so feedback cooling was not used in the g value measurement

presented in this thesis.

1.2.4 Cylindrical Penning Trap

The trap electrodes form a microwave cavity, and the standing-wave electromag-

netic modes of this cavity interact with the cyclotron oscillator. Besides reducing

the difficulty of machining the electrodes, there are two advantages of using cylin-

drical Penning traps rather than the hyperbolic Penning traps of previous g value

experiments.

The first advantage is that the cavity modes of cylindrical traps are expected to

have higher Q values and a lower spectral density than those of hyperbolic traps [56],
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allowing better detuning of the cyclotron oscillator from the nearest coupled mode.

This detuning causes an inhibition of the cyclotron spontaneous emission [57] so that

the lifetime is longer than the free-space value of ∼ 0.1 s. The longest cyclotron

lifetime reported in a hyperbolic trap is 1.2 s [58] whereas a lifetime of 13 s has been

reported in a cylindrical trap [1]. The substantial enhancement of cyclotron lifetime

in a high-Q cylindrical Penning trap makes possible the single-quantum spectroscopy

used in this experiment.

The other advantage of using a cylindrical rather than a hyperbolic trap is that

frequency-shift systematics can be better controlled. The same interaction between

the cyclotron oscillator and the cavity modes which leads to inhibited or enhanced

spontaneous emission also produces shifts in the cyclotron frequency. These shifts

were the leading source of uncertainty in the 1987 University of Washington g value

measurement [2].

As discussed in Ch. 5, in a cylindrical trap the cavity modes are the familiar and

well characterized electromagnetic TE and TM modes. Calculated cavity shifts and

cyclotron damping rates for the frequency region used for g value measurements in

this thesis, based on the independently measured and identified mode spectrum of our

trap, are shown in Fig. 1.6. An ideal g value measurement is performed approximately

half-way between the well-separated cavity modes.

In this work, we demonstrate the first mapping of cyclotron lifetime versus de-

tuning of the oscillator frequency from independently measured cavity modes (see

Sec. 5.3). We observe the expected result that the cyclotron lifetime increases with

detuning. Also, although g value shifts which vary with detuning from cavity modes
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Figure 1.6: Calculated cyclotron damping rate and cavity shift for the cylindrical
trap, based on the independently measured and identified cavity mode spectrum.

have long been expected [59], we present the first observation of this important ef-

fect. As shown in Ch. 6, our measurement of the g value shift agrees well with the

prediction for the measured mode spectrum of the trap cavity, and this measurement

is the first for which the appropriate cavity-shift correction is applied.

1.3 Recent Electron g value Measurements

The first g value measurements using free electrons [60], beginning in 1953, con-

stituted a famous series of University of Michigan experiments. It was in these exper-

iments that the idea of gaining three orders of magnitude in accuracy by measuring

g - 2 rather than g was developed. The final version of the experiment [61] used
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bunches of a few thousand electrons in a magnetic mirror trap, where the relative dif-

ference in orientation between the precessing spin vector and the orbital momentum

vector was directly observed. (Incidentally, observation of the difference between spin

and orbital vectors is still the method used for muon g - 2 experiments [62].) These

measurements culminated [63] in the reported value g/2 = 1.001 159 656 700 (3500).

The advent of single-electron detection in Penning traps [64] opened the way

for precision study of single electrons, allowing huge improvements over the previous

experiments in plasmas. Several generations of g value measurements were performed

at the University of Washington, from 1977 [65] to 1999 [40], on single electrons in

hyperbolic Penning traps. Experiments through 1987 at the University of Washington

used traps with molybdenum electrodes. The first single-electron g value experiment,

reported in 1977, measured the value g/2 = 1.001 15 652 410 (200); this result was

limited by statistics and by the ability to correctly split the relatively broad line widths

[65]. A subsequent g value measurement of the positron, reported in 1981, obtained

g/2 = 1.001 159 652 222 (50); this result was limited by drive-shift systematics [50].

The most accurate result for the molybdenum traps obtained an accuracy of 4.3 ppt

[2]. This 1987 result, g/2 = 1.001 159 652 188.4 (4.3), was limited by cavity-shift

systematics (see Sec. 1.2.4 and Ch. 5). Beginning in 1990, a trap made from lossy

phosphor bronze electrodes was used in order to reduce cavity shifts [54, 8]. The 1990

result, never published in a scientific journal, was g/2 = 1.001 159 652 185.5 (4.0)

and was limited by non-gaussian scatter of g value results.

The preliminary Harvard 2004 measurement presented in this work is

g

2
= 1.001 159 652 180 86 (57), (1.9)
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currently limited to an accuracy of 0.6 ppt by knowledge of the cavity mode frequen-

cies. As discussed in Sec. 5.4.2, the final choice of error assignment for this measure-

ment is still under discussion and might be revised before publication. Comparison of

the Harvard 2004 result with other recent g value measurements is shown in Fig. 1.3.

Agreement with the 1990 University of Washington result is considered reasonable.

The disagreement with the 1987 University of Washington result is nearly 2 σ. As

discussed in Sec. 5.5, this rather large disagreement is likely due to an underestimate

of cavity-shift effects in the 1987 University of Washington experiment.
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A Single Electron in a Sub-Kelvin

Penning Trap

In this work, we report a preliminary result for a new measurement of the electron

g value. With a preliminary assigned uncertainty of 0.6 parts per trillion (ppt), this

result is the most accurate g value measurement to date. As with the best previous

result [54], which achieved 4.0 ppt, we measure the cyclotron and anomaly frequencies

of a single electron in a Penning trap. In this chapter we discuss the refrigerator, trap,

and detection apparatus along with the dynamics of a single electron in the sub-Kelvin

Penning trap. The low temperature achieved in the dilution refrigerator environment

and the ability to resolve single-quantum cyclotron jumps, both discussed in this

chapter, are crucial factors contributing to the accuracy of this result.

20
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2.1 Refrigerator and Trap

In order to measure the properties of a sub-Kelvin electron, a cylindrical Penning

trap is attached to the mixing chamber of a dilution refrigerator [53], shown in Fig. 2.3.

The dilution refrigerator and trap fit inside the bore of a 5.5 Tesla superconducting

solenoid.

A slightly earlier version of this apparatus was used [1] to make the first obser-

vation of the quantum limit of an electron in a magnetic field–a quantum cyclotron.

Cooling the cyclotron oscillator to its ground state and observing single quantum

jumps is a technique which plays a crucial role in the current experiment. Also, more

recent versions of the apparatus were used to demonstrate electronic feedback cooling

of a single electron [55] and the first single-particle self-excited oscillator (SEO) [66].

The SEO, useful because of its excellent frequency resolution, is used to monitor the

electron’s quantum cyclotron and spin states, as discussed in Sec. 2.3.4.

2.1.1 Penning Trap

In a Penning trap, charged particles are confined radially by a magnetic field and

axially by an electrostatic potential applied to the electrodes. In this work, a closed

endcap cylindrical trap geometry is used [67], as shown in Fig. 2.1. A basic biasing

and detection schematic diagram is shown in Fig. 2.2.

The cylindrical geometry (as opposed to the hyperbolic geometry used in previous

g value experiments) was chosen for its well-understood electromagnetic cavity mode

structure, as discussed in Ch. 5. Gold-plated copper electrodes were used initially in

this work, but they were replaced by gold-plated silver electrodes for reduced nuclear
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Figure 2.1: Three-dimensional (left) and two-dimensional (right) representations of
trap.

paramagnetism, as discussed in Ch. 3.

2.1.2 Dilution Refrigerator and Magnet

One challenge is that the dilution refrigerator must fit inside a Nalorac 5.5 Tesla

superconducting solenoid with exceptional spatial homogeneity (< 10−8 over a 1 cm3

sample), discussed in Ch. 3. The high field requirement and high homogeneity re-

quirement along with cost constraints resulted in a 4 inch, 77 Kelvin magnet bore.

The requirements discussed above, along with the need to cool the dilution refrig-

erator to 4 K with cryogens separate from those for the magnet, result in a design

with an impressive aspect ratio, shown in Fig. 2.3. The product used is an Oxford

Kelvinox 300 dilution refrigerator, with a cooling power of 100 µW at 100 mK, spe-

cially designed for the Harvard precision experiments. To achieve a good magnetic

environment for precision measurements, the refrigerator is composed of only copper,

brass, and titanium (no stainless steel) below the refrigerator still.
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2.1.3 Vacuum Enclosure

The Penning trap itself is enclosed within a dedicated indium-sealed vacuum “trap

chamber” inside another vacuum enclosure–the inner vacuum chamber (IVC) of the

dilution refrigerator. The Penning trap apparatus used originally in this work [53]

was enclosed in a grease-sealed trap chamber. The advantage of the grease-sealed trap

chamber was that it required a very small additional diameter in the premium real-

estate market of our 3.0” inner-diameter IVC. This compact design allowed space for

the so-called cold shield, which provides necessary radiation shielding for the mixing

chamber if operating below 50 mK.

Anomaly Drive

Sideband Drive

νz

V  ~ 100 VR

V  ~ 74 VCFeedback Transform

ν  - 5 kHzz

5 MHz clock

5 kHz

Cyclotron Drive

DC Biasing:

Figure 2.2: Basic schematic of drives, biasing and axial detection using the self-excited
oscillator.

While this apparatus did prove capable of obtaining a vacuum good enough to

trap and detect a single electron at 4 K, it required special attention if it was to
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Figure 2.3: Dilution refrigerator apparatus with expanded view of copper trap.
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operate properly. In addition, in its later years performance was intermittent and

seemed to degrade, typically requiring operation below 2 K in order to achieve a good

enough vacuum for single-electron work. The difficulties involving the grease-sealed

trap chamber were largely due to the lack of a pressure differential holding the seal

in place when the IVC was evacuated in order to run the refrigerator.

Over the course of this work, an indium-sealed copper trap chamber replaced the

grease-sealed trap chamber. Eventually, for reasons discussed in Ch. 3, the copper

chamber was replaced by an indium-sealed titanium trap chamber. Diagrams of the

two types of trap chambers are shown in Fig. 2.4. The extra space required for the

indium-seal designs required removal of the cold shield, limiting operation of the

mixing chamber to temperatures above 50 mK.

Similar indium-sealed enclosures at 4 Kelvin have measured vacuums better than

5 × 10−17 Torr [68], which eliminates collisions between the trapped electron and

background gas atoms seen in some experiments [64].

2.2 Electron Motions

An electron in a Penning trap has four resonance frequencies, corresponding to its

three spatial degrees of motion (Fig. 2.5) plus spin. The Harvard g value experiment

operates exclusively in the ground and first excited states of the spin and cyclotron

degrees of freedom.



Chapter 2: A Single Electron in a Sub-Kelvin Penning Trap 26

grease seal

indium seals

2.40 " 2.74 "

1 "

Figure 2.4: Grease-sealed copper trap chamber with copper electrodes (left) and
indium-sealed titanium trap chamber with silver electrodes (right).
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Figure 2.5: Motions of a single electron in a Penning trap.

2.2.1 Resonance Frequencies

The dynamics of a single electron in a Penning trap are well understood [69]. For

a trapping potential VR applied to the ring electrode (see Fig. 2.2), the axial frequency

ωz = 2πνz is given by

ω2
z =

−qVR

md2
(1 + C2) , (2.1)

where q = −e is the electron charge and m is the electron mass. The characteristic

trap dimension d is given by

d2 =
1

2

(
z2
0 + ρ2

0/2
)
, (2.2)

where the trap dimensions ρ0 and z0 are shown in Fig. 2.1. The magnetron frequency

ωm = 2πνm, corresponding to the slow ~E × ~B drift, is given by

ωm =
ω2

z

2ωc

. (2.3)

Neglecting small corrections due to the electrostatic trapping potential of order

ωm/ωc ≈ 10−6, the cyclotron frequency ω c = 2πν c is given by

ωc =
|eB|
m

, (2.4)



Chapter 2: A Single Electron in a Sub-Kelvin Penning Trap 28

where B is the magnetic field, and c is the speed of light. The spin frequency ωs = 2πνs

is given by

ωs =
g

2
ωc , (2.5)

where g is the electron g value.

The frequencies of the spatial motions of a single trapped electron are well sepa-

rated. Sample oscillation frequencies and damping rates are shown in Table 2.1 for a

transition: frequency: hν/kb: damping:

magnetron νm = 134.1 kHz hνm

kb
= 6.4 µK γm

2π
≈ 10−17 Hz

axial νz = 199.9 MHz hνz

kb
= 9.6 mK γz

2π
≈ 1 Hz

cyclotron νc = 149.0 GHz hνc

kb
= 7.2 K γc

2π
≈ 0.02 Hz

spin νs = 149.2 GHz hνc

kb
= 7.2 K γs

2π
≈ 10−12 Hz

Table 2.1: Trapped electron frequencies and damping rates for VR = 101.3 V, VC =
74.0 V, and a representative magnetic field value.

trapping potential VR near 100 V. Only the cyclotron motion has significant natural

damping, and this damping is suppressed by a factor of up to 100 by the microwave

cavity formed by the trap electrodes [1]. The axial motion is damped by the tuned

circuit used for its detection.

2.2.2 Quantization

Perhaps the most important innovation of this experiment is that the spin and

cyclotron motions are entirely quantum mechanical. The level diagram for all four

motions is shown in Fig. 2.6.



Chapter 2: A Single Electron in a Sub-Kelvin Penning Trap 29

hυz

hυc

hυs

hυm

n = 0

n = 1

n = 2

n = 3

hυa

Figure 2.6: Energy levels of the four oscillation frequencies of a single electron in
a Penning trap: cyclotron (νc), spin (νs), axial (νz), and magnetron (νm). The so-
called anomaly transition, at frequency νa, involves simultaneous spin and cyclotron
transitions.

Because of the low temperature achieved with the dilution refrigerator, the cy-

clotron oscillator decays by synchrotron radiation to its ground state and remains

there until excited by a photon sent from outside the refrigerator. The spin state has

a very long life time, so it does not change states unless excited by a drive. This

exquisite quantum control allows the g value experiment presented here to be per-

formed in only the three lowest energy levels of spin and cyclotron motions. This

degree of quantum control allows serious complications involving relativistic correc-

tions of classical cyclotron spectroscopy to be completely avoided.
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2.3 Detection

Unlike the cyclotron and spin frequencies, the axial frequency is low enough that

it is practical to build cryogenic radio-frequency (rf) amplifiers (see Sec. 2.3.2) for

detection of axial oscillations. Coupling to the axial motion, discussed in Sec. 2.3.7,

allows magnetron, cyclotron, and spin energy changes to be detected as shifts in the

axial frequency.

2.3.1 Synthesizers and Clocks

A PTS (Programmed Test Source) synthesizer is used to generate the anomaly

drive at ∼ 170 MHz, by which spin-flip transitions are driven (see Ch. 6). The thir-

teenth harmonic output of a GaAs Schottky-barrier diode, driven by an 11 GHz signal

from an Agilent E8251A synthesizer, is used to excite cyclotron transitions at ∼ 150

GHz. Both PTS and Stanford Research Systems synthesizers are used to generate

the reference drive (at νz - 5 kHz) used for mixing down the axial oscillation output

signal.

As shown in Fig. 2.2, synthesizers which generate the anomaly and cyclotron drives

and the νz - 5 kHz reference were all tied to the same 10 MHz rubidium clock for the

data taken with a cyclotron frequency νc = 149.0 GHz. For some of the data taken

at νc = 146.8 GHz, the 11 GHz synthesizer was on a separate ground, and the clocks

were not tied together to avoid problems with ground loops. For this data, relative

drift of the two clocks was regularly monitored, and corrections were applied upon

analysis.

As discussed in Sec. 6.1, a g value measurement in a Penning trap entails taking a
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ratio of frequencies. Thus, the absolute accuracy of the 10 MHz clock is not important,

as long as all synthesizers use the same clock and the clock is stable over the course

of the measurement.

However, the absolute accuracy of the reference clock is important in the calibra-

tion of cavity mode spectra discussed in Ch. 5. An absolute measurement of cyclotron

frequency at different magnet currents is used as a measurement of magnetic field.

This calibration determines the best estimate of trap dimensions and is used in cal-

culating cavity shift systematic error. The absolute accuracy of the 10 MHz clock

used for the mode spectrum measurements was found to be better than 100 parts per

billion (ppb), which is well below the error in mode map calibration introduced by

other issues.

2.3.2 Cryogenic Amplifiers

Monitoring the current of a driven electron in a Penning trap, although an im-

pressive feat, is routinely accomplished using cryogenic field effect transistors (FETs).

Recent improvements in the amplifier design [70, 71] include the use of high electron-

mobility transistors (HEMTs) and the addition of a second-stage amplifier, and op-

eration at νz = 200 MHz (as compared with the earlier νz = 60 MHz).

The first-stage amplifier, depicted in Fig. 2.7, is located near the trap chamber.

Its coaxial input extends into the trap can and forms a resonant circuit at 200 MHz.

The resonator consists of a length of coaxial cable (shorter than λ/4 so that it behaves

like an inductor) with the trap capacitance added on one end and with the opposite

end shorted.
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Figure 2.7: First stage 200 MHz amplifier schematic. Values without units are resis-
tances in ohms.
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Figure 2.8: Second stage 200 MHz amplifier schematic. Values without units are
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The second-stage amplifier improves the detection signal-to-noise-ratio (SNR) by

boosting the 200 MHz signal before it arrives at the room-temperature amplifier,

which has an input noise temperature of about 70 K. The second-stage amplifier is

placed at a 600 mK stage of the refrigerator, where it can dissipate more power than

an amplifier at the mixing chamber, but where the signal from the first-stage amplifier

has been attenuated by only about 10 dB by the thermally insulating stainless coax

running the length of the cryogenic experiment. Fig. 2.8 shows the schematic diagram

of the circuit.

2.3.3 Externally-Driven Axial Detection

If one of the trap electrodes is driven with an rf voltage resonant with the electron

axial motion, the electron signal at the first-stage amplifier input can exceed the
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Figure 2.9: In-phase (left) and quadrature (right) driven axial response of a single
electron with νz ≈ 60 MHz.

amplifier input noise after less than a second of averaging. The driven axial response

of a single electron is shown in Fig. 2.10. For νz ≈ 200 MHz, the trapping potential is
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not currently stable enough to make a clean map of the resonance, since drift of the

trapping potential shifts the resonance frequency on the order of a line width over a

time scale comparable to that required for signal averaging [70].

ν  - 5 MHz Drive

5 MHz Drive

Lock-In Amplifier

ν  - 5 MHz

5 MHz

5 MHz

Lock Box

Ring Voltage

νz

z

z

Figure 2.10: Schematic diagram for externally-driven axial detection.

Fig. 2.10 shows a schematic diagram for driven detection using an external rf

source. In order to avoid direct feedthrough of the drive into the amplifier, rather

than driving the electrode at νz, it is driven at both νz- 5 MHz and at 5 MHz. The

result of the 5 MHz drive can be thought of as modulating the trapping potential,

creating a sideband with which the νz- 5 MHz drive is resonant.

2.3.4 Self-Excited Axial Detection

Instead of driving the axial motion with an external source, positive feedback may

be used to create a self-excited oscillator (SEO) [66, 70]. A schematic diagram for
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SEO detection is shown in Fig. 2.2. The amplitude of oscillation is limited by a Digital

Signal Processor (DSP), which is programmed to control a voltage-variable attenu-

ator such that the signal amplitude (proportional to the amplitude of the electron

oscillation) is kept constant.

In SEO detection, the problem of drive feedthrough to the amplifier is suppressed

by splitting the feedback signal. One feedback drive is applied to the bottom endcap

electrode, and the other feedback drive is applied to a compensation electrode. The

relative amplitude and phase of the two feedback signals is adjusted such that the

feedthrough signals at the amplifier cancel. The overall feedback signal seen by the
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Figure 2.11: FFT of the detected self-excited oscillator axial signal at νz ≈ 60 MHz,
with an 8 second square window.

electron, however, does not cancel and causes self-excitation if its phase is properly

adjusted. A typical SEO response of a single electron is shown in Fig. 2.11.

The principle advantage of the SEO is that it allows axial detection to be per-

formed under conditions where the electron is driven to very large axial excitations
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[66]. Real Penning traps are anharmonic, despite careful efforts to reduce the anhar-

monic terms of the potential. Typically, a Penning trap is tuned so that the trap is

locally harmonic about a vanishing excitation amplitude. Under these conditions, if

the electron is driven to large amplitudes, it will eventually experience large frequency

shifts as the anharmonic terms become significant.

On the other hand, the SEO is able to maintain an oscillation even in an anhar-

monic potential. The trap is tuned such that there is a locally harmonic potential

at a large excitation amplitude. An external drive would not be able to follow the

electron’s oscillation frequency in order to excite it to this harmonic region. However,

the SEO does so automatically if the DSP is programmed to lock the amplitude in

the desired region.

Operating in this mode, large signals of the axial oscillator are available. This

allows quantum jump detection (see Sec. 2.3.7) under conditions more favorable for g

value measurements. One potential disadvantage of the SEO is that the electrostatic

potential is locally anharmonic in the zero-temperature limit, near where g value

measurements are performed. This issue, not currently a limitation, is discussed in

Sec. 6.2.2.

2.3.5 Parametric Axial Detection

The axial oscillation at νz of trapped electrons is phase bistable to parametric

excitation, i.e. excitations at twice νz [72]. However, above a sharp threshold in drive

strength, a cloud of electrons spontaneously breaks this symmetry and synchronizes

its axial oscillation. As discussed in Ch. 5, the degree of synchronization depends
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sensitively on the overall damping rate, making this technique a useful probe of the

electromagnetic cavity mode structure [73].

When driving above threshold sufficiently near a cavity mode [74], the response

at νz exhibits hysteresis in the sweep direction of the parametric drive [73]. If the

anharmonicity term [69] C4 is positive, a parametric drive swept down in frequency

creates a large excitation at a well-defined frequency [73], as shown in Fig. 2.12. When
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Figure 2.12: Parametric resonance of a cloud of 3 ×104 electrons. Drive is above
threshold and swept down in frequency.

this technique is used to map the electromagnetic cavity modes of the trap, the

parametric drive is set above threshold at near 2νz.

2.3.6 Magnetron Excitation Detection

For precision measurements, the magnetron motion is reduced by so-called “side-

band cooling” [69], where the unstable magnetron motion is pushed to the top of

its potential hill by being coaxed to take energy from the axial frequency. In the
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unusual case of the magnetron motion, the shape of the potential is such that the

maximum energy corresponds to the smallest radius, which is desirable for precision

experiments.

To experimentally find the magnetron frequency, a sideband heating drive (which

will cause the magnetron orbit to expand if it is resonant) at ν = νz − νm is applied

to an electrode with the proper geometry [56]. The axial frequency shift caused by

an increase in magnetron orbit can be observed, as shown in Fig. 2.13. In this figure,

νz continues to shift as long as the drive is resonant with the heating sideband.
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Figure 2.13: Response of a single electron (with νz ≈ 200 MHz) to a drive near the
sideband heating frequency νz − νm. The drive is swept up in frequency.

When the magnetic field value is changed, a search for the cyclotron frequency

can be time-consuming, especially if proton NMR (see Ch. 3) was not performed at

the new field. In these cases, it saves time to find the magnetron frequency ωm and

then use Eq. (2.3) to estimate the experimental cyclotron frequency ω̄c.

In this work, we found that the observed frequency ωc was typically larger than the
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value predicted from the observed magnetron frequency ωm by 50 to 150 ppm. The

magnitude and sign of this disagreement contains information about the imperfections

of the Penning trap [56], discussed in Sec. 6.2.7.

2.3.7 Cyclotron and Spin Transition Detection

A one-quantum change in cyclotron or spin energy can be clearly resolved [1] as

a shift in νz, if a sufficiently large “magnetic bottle” is incorporated into the trap

[75, 76]. Examples of quantized spin and cyclotron transitions are shown in Fig. 2.14

and Fig. 2.15, respectively.
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Figure 2.14: Axial frequency shift (with νz ≈ 200 MHz) caused by quantum cyclotron
transitions of a single electron between the ground and first excited state (left) and
between the ground and first two excited states (right).

The magnetic bottle is created by placing nickel rings (see Fig. 2.1) above and

below the center of the trap. These ferromagnetic rings acquire a saturated magne-

tization described by a multipole expansion [69], given by

~Bb (~r ) =
∞∑

l=0

Blr
l
[
Pl(cos θ)ẑ − (l + 1)−1P 1

l (cos θ)ρ̂
]
, (2.6)
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where Pl and P 1
l are Legendre and associated Legendre polynomials. If the rings are

symmetric under z → −z, only the Bl with even l are non-vanishing. The expansion

of Eq. (2.6) then becomes

~Bb (~r ) = B0ẑ + B2

[(
z2 − ρ2

2

)
ẑ − (zρ)ρ̂

]
+ B4

[O(r4)
]
+ . . . (2.7)

Henceforth, we shall refer to the “magnetic bottle” ∆B as the ẑ component of the

leading-order non-homogeneous term

∆B = B2

(
z2 − ρ2

2

)
. (2.8)

The potential energy U of an electron with total magnetic moment µz = ~µ · ẑ at

ρ = 0 in the combined electrostatic and magnetic potential well is then given by

U =
mω2

z0z
2

2
− µzB2z

2, (2.9)

where ωz0 is the axial frequency for B2 → 0. The overall spring constant k is then

given by

k = mω2
z0 − 2µzB2 (2.10)

It is clear from Eq. (2.10) that the axial oscillation frequency ωz depends on the

magnetic moment of the electron.

In terms of the cyclotron and spin quantum numbers nc = 0, 1, 2, . . . and ns = 0, 1,

the total magnetic moment (see Sec. 2.2.2) can be expressed as

µz = −2µB(nc +
1

2
)− gµB(ns − 1

2
). (2.11)

Using g ≈ 2 and µzB2 ¿ mω2
z , Eqs. (2.10) and (2.11) give

ωz ≈ ωz0

[
1 +

2B2µB

mω2
z0

(nc + ns)

]
. (2.12)
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The magnetic-bottle coupling to the axial detection circuit performs a quantum

non-demolition (QND) measurement on the cyclotron and spin states, so a continuous

series of measurements yield the same quantum state. As shown in Figs. 2.14 and 2.15,

single-quantum cyclotron and spin transitions result in shifts in νz of about 4 Hz, in

good agreement with Eq. (2.12) for the independently measured bottle B2 = 1540

T/m2.

5

4

3

2

1

0

ν
z
−

 ν
z
0
 (

H
z
)

302520151050

time (s)

s =

s =

Figure 2.15: Axial frequency shift (with νz ≈ 200 MHz) caused by a spin flip transition
of a single electron. The gap in data is for the drive pulse and SEO recovery time.

If the magnetic field is chosen such that ωc is well-detuned from coupled cavity

modes (see Ch. 5), the cyclotron lifetime τc can be much greater than the free-space cy-

clotron lifetime of ∼ 0.1 s. This allows a magnetic bottle of a moderate size to be used

for detection of single-quantum cyclotron transitions, and novel quantum-jump spec-

troscopy can be used to map the cyclotron line shape. Advantages of single-quantum

cyclotron spectroscopy are discussed in Ch. 4. Unfortunately, coupling between the

axial motion and the cyclotron and spin motions also has deleterious effects on a g

value measurement; the cyclotron and anomaly lineshapes are thermally broadened
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in proportion to the strength of the coupling (see Sec. 4.2). For this reason, it is

desirable to use a small magnetic bottle or a higher axial frequency (see Sec. 4.4) to

make the cyclotron jump size as small as possible.
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Magnetic Field Stability

To lowest order, the g value measurement described in Chapter 6 does not depend

on the details of the confining magnetic field. Measurement of the cyclotron frequency

serves as a magnetometer, and measurement of the anomaly frequency in the known

field determines g. In practice, measuring the cyclotron and anomaly frequencies

takes several hours, so the temporal stability of the magnetic field is very important.

To achieve a high stability, the trap center must not move significantly relative to the

homogeneous region of the trapping field. Also, the magnetism of the trap materials

themselves must be stable.

3.1 Monitoring the Magnetic Field

The sharp low-frequency edge of the near-exponential cyclotron line shape (see

Ch. 4) serves as a convenient magnetometer. The algorithm for “edge-tracking”,

simply consists of increasing a microwave drive frequency until a cyclotron quantum

43
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jump occurs, recording that frequency, and then resetting the drive frequency to a

lower value. In the exponential limit, the width of the edge is much smaller than the

linewidth, so this technique yield sub-linewidth field measurements. Magnetic field

stability is monitored by this technique.

3.2 Achieving Stability in the External Field

In order to achieve stability in the external B-field, the homogeneous region of

the field is made large as possible, and efforts are made to keep the trap center from

moving. We adjust a set of superconducting shim coils to achieve a homogeneity

of about 1 × 10−8 per cm3, as measured by the width of the NMR resonance of a

water-filled 1 cm3 probe.

3.2.1 Pressure regulation

It has been observed in previous Penning trap experiments [77] that regulation of

the gas pressures above the cryogen baths plays a crucial role in obtaining a highly

stable B-field. We regulate the gas pressure over each of the five cryogen baths sepa-

rately, to better than 1 mpsi. By allowing pressures to drift slowly while monitoring

the field stability, it has been determined that pressure regulation to this level is

sufficient to regulate the magnetic field to better than 0.5 ppb.
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3.2.2 Temperature Regulation

As the temperature of the dewar changes, the aluminum sides of the dewar undergo

thermal contraction and expansion. In cases of a poorly shimmed magnet, the effects

are clearly observable in the edge-tracking frequency, as shown in Fig. 3.1.
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Figure 3.1: Thermal cycles of magnetic field when shimming was not good and the
temperature of the dewar was not regulated.

To reduce thermal fluctuations of the trap position, the entire dewar and magnet

are enclosed in an insulated shed [78], which uses forced-air circulation to maintain
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thermal equilibrium. The temperature is regulated using a water-circulation system

that forces water from a heated bath through a radiator located in the shed. A

lock loop regulates the temperature at a thermometer within the shed by heating or

cooling the bath. This technique has demonstrated temperature stability within the

shed of better than 0.1 K over 24-hour cycles within the shed, while the temperature

of the room fluctuated by 1 to 2 K.

3.2.3 Adjustable Spacer

In order to guarantee that the trap center was located at the homogeneous region

of the B-field, an adjustable-height spacer was added to the experiment [79] . The

cyclotron frequency of a single electron is used to measure the field as the spacer

height is adjusted, as shown in Fig. 3.2. The spacer height is then adjusted such that

the trapped electron is at the local field minimum.
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Figure 3.2: Map of field profile along ẑ axis made by measuring the cyclotron fre-
quency of a single electron versus spacer height.
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3.2.4 Realized Field Stability

The various efforts discussed in this section contribute to a marked improvement

(Fig. 3.3) in field stability compared to the poor stability shown in Fig. 3.1. For the

g value measurements at νc = 146.8 GHz, B-field stability was typically better than

1 ppb over 12 hours. Large field fluctuations shown in Fig. 3.3 correspond to work

hours, on weekdays and Saturdays, of a nearby construction project.

Unfortunately, during the g value measurements at νc = 149.0 GHz, the magnet

exhibited a large drift. After two months of settling time, the drift was still on the

order of 0.5 ppb per hour. Fortunately, the improvements discussed in this section

prevent additional short-term variations of the field, so the linear component of the

drift can be accounted for in g value measurements, as discussed in Sec. 4.5.4.

3.3 Achieving a Stable Trap Magnetism

Paramagnetic materials exhibit magnetism which follows the Curie law:

B =
λ

T
, (3.1)

where λ is the curie constant for the material. In the g value experiments discussed

here, the quantity of concern is not the magnetization itself, but its stability versus

small temperature changes. Thus, the quantity of concern is
∣∣∣∣
dB

dT

∣∣∣∣ =
λ

T 2
. (3.2)

As we shall see, the T−2 sensitivity to temperature fluctuations causes some materials

which are innocuous in a helium-temperature experiment to become highly problem-

atic in a dilution refrigerator experiment. Eq. (3.2) shows that if the magnetism of a



Chapter 3: Magnetic Field Stability 48

B
-f

ie
ld

 s
h

if
t 

(p
p

b
)

-20

-10

0

10

20

time (hours)

0 10 20 30 40 50 60

d
ew

ar
 t

em
p

er
at

u
re

 (
C

)

19.0

19.5

20.0

20.5

21.0

21.5

Figure 3.3: Stability of the B-field achieved by pressure and temperature regulation,
shimming, and positioning of the trap center at the shimmed location. The zero of the
x-axis corresponds to midnight. The noisy portions are during construction hours,
where the relatively large field fluctuations are most likely due to shifts of the trap
center induced by vibrations.
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material follows the Curie law, its sensitivity to temperature fluctuations is a factor

of 16 worse at 1 K than at 4 K.

Electronic paramagnetism is a well-known problem for cryogenic precision exper-

iments sensitive to the magnetic environment. In one case, a G-10 support tube

which was poorly thermally anchored caused field instabilities of worse than 1× 10−6

at the center of a solenoid in a system which was designed for a stability of better

than 1× 10−10 [80]. In another case, the original molybdenum electrodes of a g value

experiment were replaced by copper electrodes, because of the larger electronic para-

magnetism of molybdenum [69]. (Since molybdenum is a metal, the paramagnetism

of pure molybdenum is negligible [81]. However, some reports [82] have shown a large

inverse-temperature dependence of molybdenum magnetism, which is presumably due

to impurities.)

In previous experiments at 4 K, nuclear paramagnetism could be ignored since

it is suppressed below electronic paramagnetism by a factor of (µN/µB)2 ∼ 105,

where µN is the nuclear magneton and µB is the Bohr magneton. However, below

1 Kelvin, electronic paramagnetism saturates in a field of a few Tesla and nuclear

paramagnetism becomes important. Table 3.1 lists the curie constants for nuclear

paramagnetism of several materials.

3.3.1 Copper Trap

Unaware of the importance of nuclear paramagnetism in a sub-Kelvin g value mea-

surement, we began work on this experiment using a Penning trap and accompanying

apparatus constructed primarily of OFHC copper. The insulating spacers between
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material: λ ( µK):

Ag 0.0020

Al 0.86

Au 0.0016

Be 0.22

Brass (70-30) 0.38

Cu 0.56

In 1.1

Mo 0.015

Ni 0.00072

Pb 0.0057

Sn 0.015

Ti 0.0066

Zn 0.0022

Fused Quartz 0.0022

G-10 (FR-4) 0.94

MACOR 0.15

Sapphire 0.68

Teflon 0.86

Table 3.1: Nuclear curie constants for various metals and insulators with naturally
occurring isotopic abundances

electrodes were made from MACOR, a machineable ceramic which is unfortunately

rich in aluminum (see Table 3.1). A diagram of the copper trap apparatus is shown
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in Fig 3.4.

copper

brass

indium

nickel

MACOR

other

titanium

molybdenum

indium

nickel

fused quartz

other

silver

Figure 3.4: Copper and silver traps and vacuum enclosures

In order to obtain the narrow cyclotron and anomaly line widths afforded by the

dilution refrigerator, the cryogenic FET amplifiers must be shut off while exciting

these motions, as discussed in Ch. 4. The first-stage amplifier FET typically is

set to dissipate about 10 µW and is heat-sunk to a post well-coupled to the mixing

chamber. The 10 µW power dissipation causes a ∼ 10 mK change in the equilibrium

temperature at the mixing chamber, which resulted in a ∼ 100 ppb shift in the B-

field at the trap center. Such a field instability is far too large a shift for the sub-ppb
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measurement of νc required for sub-ppt g value measurements. Another source of

power dissipation is the anomaly drive. As discussed in Ch. 4, anomaly transitions

are driven by exciting the axial motion far off resonance, requiring a drive voltage

that caused substantial heating in the sub-Kelvin environment.

Investigation of the dependence of the magnetic field shift as a function of temper-

ature revealed the inverse-temperature dependence characteristic of paramagnetism,

as shown in Fig. 3.5. Table 3.2 lists the magnitude of the nuclear paramagnetic

contributions of various parts of the copper trap apparatus. The contribution of an

element to the temperature dependence of B at the trap center depends on its geome-

try. (For example, the contribution of the same magnetic dipole can be either positive

or negative, depending on its location relative to the trap center.)

The predicted coefficient for the nuclear Curie-law paramagnetism of 60 ppb / K−1

for the entire trap structure agrees reasonably well with the measured value of 40 ppb

/ K−1. The contributions of the different trap electrodes lead to a substantial degree

of mutual cancelation, so uneven heating of trap electrodes is a very good candidate

for the discrepancy. Impurities in the copper electrodes is another candidate for the

discrepancy between the predicted and observed temperature dependence.

One approach to dealing with the extreme B-field sensitivity to temperature is to

carefully regulate the trap temperature and various heat flows. Toward this end, a

radiofrequency drive matching the anomaly drive strength must always be applied,

and a dummy heater matching the first-stage FET power must be turned on whenever

the FET is turned off. Cyclotron line shapes in the copper trap at 100 mK were

successfully measured using this technique.
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description: material ∆B/B (ppb/K−1)

ring electrode Cu -89.0

compensation electrodes (2) Cu -7.8

endcap electrodes (2) Cu 146.2

all trap electrodes Cu 49.5

trap spacers MACOR -2.3

vacuum enclosure Cu 12.1

total 64

Table 3.2: Nuclear paramagnetism of portions of the copper trap apparatus labeled
in Fig. 3.4. At 100 mK, a 1 ppb/K−1 contribution causes a 0.1 ppb shift in the
magnetic field at the trap center for a 1 mK temperature change.

Figure 3.5: Temperature dependence of the magnetic field at the trap center in the
copper trap (filled circles) and the silver trap (open squares). Fits to the data show
40 ppb / K−1 for the copper trap and 0.1 ppb / K−1 for the silver trap.

However, it was desired to further narrow the cyclotron and anomaly line widths

by either increasing the axial frequency or by reducing the magnetic bottle (see Ch.
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4). It was not clear that attempts to regulate the temperature and heat flows could

be made sufficiently precise for line widths an order of magnitude narrower. Thus, the

entire trap apparatus was rebuilt from materials with smaller nuclear paramagnetism,

as discussed in Sec. 3.3.2.

3.3.2 Silver Trap

An entirely new trap and support structure was constructed from materials with

low nuclear curie constants. Silver was used for the electrode material, and ground

quartz was used for the insulating spacers between electrodes. The vacuum enclosure

was made of titanium. To avoid cold welds when the titanium bolts were tightened

to make indium seals, the pieces with threaded holes were made from molybdenum.

Contributions to the overall paramagnetism of the most significant pieces is shown in

Table 3.3.

The performance of the silver trap, which was quite satisfactory, is shown in

Fig. 3.5. Of primary concern for a g value measurement is the stability of the B-

field against short-timescale temperature changes, such as when the FET is shut off.

Long-timescale temperature changes are not as important, since the trap temperature

can be regulated on timescales longer than tens of minutes. Thus, temperature steps

used to take the data for Fig. 3.5 were made as quickly as possible (∼ 5 minutes per

temperature step).

Current through the heater resistor, located on one side of the mixing chamber,

was changed while the temperature was monitored on the other side of the mixing

chamber. The mixing chamber heater was used for these tests rather than a heater



Chapter 3: Magnetic Field Stability 55

description: material ∆B/B (ppb/K−1)

ring electrode Ag -0.32

compensation electrodes (2) Ag -0.03

endcap electrodes (2) Ag 0.55

all trap electrodes Ag 0.20

trap spacers Fused Quartz 0.01

vacuum enclosure Ti 2.2

cancelation ring Mo -1.1

Table 3.3: Nuclear paramagnetism of the most significant elements of the silver trap
apparatus. At 100 mK, a 1 ppb/K−1 contribution causes a 0.1 ppb shift in B at the
trap center for a 1 mK temperature change.

closer to the trap in an attempt to evenly heat the entire trap apparatus. When the

temperature of the mixing chamber was changed in this way, fast magnetic field shifts

(timescales ≤ 2 minutes), followed by plateaus were observed. These fast shifts of B

with temperature were clearly observable and were considered to be the quantities of

interest, as discussed above. Any residual drift on longer time scales, if present, was

relatively small and was ignored.

The observed temperature dependence of B at the lowest temperatures is approx-

imately an order of magnitude less than expected for contributions of all materials

in the area of the trap. It is consistent with heating of only the trap electrodes, but

since the source of heat used for the tests was located at the mixing chamber, there

is no reason to expect the electrodes to respond to the heater faster than much of

the rest of the apparatus. The disagreement between the predicted and calculated
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temperature dependence of the silver trap apparatus was originally considered to be

due to the success of the Mo cancelation ring, but is now considered to be fortuitous

but not understood.



Chapter 4

Measurement of Cyclotron and

Anomaly Frequencies

The basic ingredients of a g value experiment are the measurements of the cy-

clotron and anomaly frequencies. In this work we present the first fully quantum

measurement of the electron g value. Although previous g value experiments [2, 3]

measured the anomaly frequency by observing quantized spin flips, classical cyclotron

spectroscopy was used. Quantum cyclotron spectroscopy eliminates systematic un-

certainty associated with relativistic mass corrections of excited states, as discussed

in Sec. 6.2.1. This work also represents the first sub-Kelvin g value measurement. Be-

sides allowing quantum spectroscopy by cooling the cyclotron oscillator to its ground

state, a reduced axial temperature narrows the cyclotron and anomaly line shapes,

allowing a more precise measurement of the g value.

57
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4.1 Cyclotron and Anomaly Transitions in a Pen-

ning Trap

As discussed in Sec. 6.1, a g value measurement is performed by measuring the

ratio of anomaly to cyclotron frequencies, ωa/ωc. The quantum level diagram for

these transitions is shown in Fig. 4.1.

hωc

nc = 0

nc = 1

nc = 2

hωs

hωa
nc = 0

nc = 1

nc = 2

Figure 4.1: Diagram of spin and cyclotron quantized energies of an electron in a
magnetic field. The effects of special relativity and of the electrostatic trapping
potential are not included here. For B = 5.5 T and νs ≈ νc = ωc/(2π) ≈ 150 GHz,
νa = ωa/(2π) ≈ 170 MHz.

As discussed in Sec. 4.5, all spectroscopy in the Harvard g value experiment is

performed by constructing histograms of the success rate of driving one pure quan-

tum state to another versus drive frequency. Cyclotron spectroscopy is performed

by attempting to drive |s =↑, nc = 0〉 → |s =↑, nc = 1〉. Anomaly spectroscopy is

performed by attempting to drive |s =↑, nc = 0〉→ |s =↓, nc = 1〉.
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4.2 Theoretical Cyclotron and Anomaly Line Shapes

A semiclassical theory of the cyclotron and anomaly line shapes is presented by

Brown [83], and a fully quantum theory is presented by D’Urso [70]. The discussion

in this section only considers the line shape for transitions between two states of

well-defined spin and cyclotron quantum numbers.

4.2.1 Magnetic Bottle Broadening

As discussed in Sec. 2.3.7, in order to allow detection of cyclotron and spin tran-

sitions, a small so-called magnetic bottle ∆B is imposed upon the homogeneous

trapping field ~B = Bẑ. The ẑ component of the leading-order non-uniform term of

this field, called the “magnetic bottle”, is given by

∆B = B2

(
z2 − ρ2

2

)
. (4.1)

While the magnetic bottle has the beneficial effect of allowing detection of cyclotron

transitions via shifts in the axial frequency (see Sec. 2.3.7), it also produces an un-

desirable inhomogeneous broadening of the cyclotron and anomaly line shapes. This

broadening occurs because, in the presence of the bottle, the average magnetic field

sampled by the on-axis (ρ = 0) electron is given by

〈Btotal〉 = B + B2

〈
z2

〉
= B +

2B2Ez

mω2
z

, (4.2)

where Ez is the axial energy. Thus, the magnetic field seen by the electron depends

on its axial excitation.
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4.2.2 Line Shapes

The theory governing line shape broadening is the same for both cyclotron and

anomaly resonances, but the resonances acquire different shapes due to their different

frequencies. The parameter which determines the shape of the broadened resonance

is γz/∆ω, where γz/(2π) is the axial damping width. The thermal shift parameter

∆ω is equal to the frequency offset of the weighted center of the line shape from the

resonance frequency ω0 of an electron at rest at z = 0. For a thermal distribution of

axial states at temperature Tz, ∆ω is given by

∆ω = ω0B2

B

kBTz

mω2
z

. (4.3)

The theoretical curves for various values of γz/∆ω are shown in Fig. 4.2. Because of

the frequency-time uncertainty principle, 1/∆ω sets the scale for the observation time

required to distinguish one frequency on the resonance from another. If γz << ∆ω,

thermal fluctuations of the axial energy (and therefore of the magnetic field) are

slow compared with the required observation time. In this case (the “exponential

limit”), the resulting line shape vanishes below ω0 and is a decaying exponential of

width ∆ω above ω0. This distribution reflects the Boltzmann distribution of axial

energies. In the “Lorentzian limit” where γz >> ∆ω, the magnetic field fluctuates

rapidly compared with the time required by the uncertainty principle to observe one

frequency on the resonance; the resulting line shape is a narrow Lorentzian, offset from

ω0 by ∆ω. The weighted center of a line shape in one of these limits, or anywhere

in between, is at ω = ω0 + ∆ω, regardless of the lineshape parameter γz/∆ω. The
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Figure 4.2: Cyclotron or anomaly line shapes at various values of the lineshape pa-
rameter γz/∆ω. The “exponential limit” is obtained at the smaller values shown for
this parameter, and the “Lorentzian limit” is obtained at the larger values.

expression for the theoretical line shapes [84] is

χ(ω) =
4

π
Re

γ′γz

(γ′ + γz)2

∞∑
n=0

(γ′ − γz)
2n(γ′ + γz)

−2n

(n + 1
2
)γ′ − 1

2
γz − i(ω − ω0)

, (4.4)

(Note: the equation given by Brown and Gabrielse in the commonly used Ref. [69]

has one term with a sign error). For the present experiment, the cyclotron reso-

nance approaches the exponential limit, and the anomaly resonance approaches the

Lorentzian limit, as shown in Figure 4.3.
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Figure 4.3: Theoretical cyclotron and anomaly line shapes for B2 = 1500 T/m2, γz

= (2π) 1 Hz, Tz = 100 mK, νz = 200 MHz, ωc = 149 GHz, ωa = 173 MHz.

4.2.3 Frequency-Time Broadening

Owing to the high frequency of the cyclotron motion, frequency-time broadening

from the finite cyclotron lifetime is negligible compared to the magnetic bottle broad-

ening. However, the frequency-time uncertainty principle does modify the anomaly

line shapes from those discussed in Sec. 4.2.2.

Anomaly spectroscopy is performed between |s =↓, nc = 1〉 and |s =↑, nc = 0〉.

The finite lifetime of the |s =↓, nc = 1〉 state causes its energy to be broadened, re-

sulting in a broadening of the frequency according to ∆ω ∆t ≈ 1. Much of the work

reported here was performed at νc = 146.8 GHz, where the measured cyclotron lifetime

was 1.4 s (see Sec. 5.3). The resulting frequency-time broadening, ∆ν ≈ 0.1 Hz ≈ 0.5

ppb, contributes substantially to the anomaly line shapes reported in Sec. 4.5.2 for

this B-field. At 149.0 GHz, where the cavity modes are well decoupled from the

cyclotron oscillator, τ = 6.7s, and the line width is dominated by other non-ideal

sources of broadening (see Sec. 4.6.1).
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4.3 Axial Temperature

Although measurement of the axial frequency plays only a secondary role in mea-

surement of the magnetic moment of the electron, as described in Sec. 4.2, the inhomo-

geneous broadening of the cyclotron and anomaly line shapes is directly proportional

to the axial temperature. Thus, obtaining a low axial temperature plays a central

role in improving the precision of g value measurements.

4.3.1 Measurement of the Axial Temperature

Owing to the presence of the magnetic bottle, a finite axial temperature Tz gives

rise to a range of magnetic fields sampled by the electron. The result for the cyclotron

and anomaly resonances is an inhomogeneous broadening ∆ω proportional to Tz,

described by Eq. 4.3.

Since the axial oscillator is strongly coupled to the tuned circuit, which includes

the FET amplifier input (see Sec. 2.3.2), the temperature of the electrons in the

channel of the transistor contributes to the trapped electron’s axial temperature. To

obtain a low axial temperature and the resulting narrow cyclotron and anomaly line

widths, the amplifier is typically turned off while the cyclotron or anomaly excitations

are applied.

The inhomogeneous broadening of the cyclotron line shape is used to measure the

axial temperature Tz via Eq. 4.3. Other broadening mechanisms currently dominate

the anomaly line width. So, the only observable effect of Tz on the anomaly line

shape is to shift its center, and no information about Tz can be obtained from this

resonance.



Chapter 4: Measurement of Cyclotron and Anomaly Frequencies 64

4.3.2 Achieving a Cold Axial Temperature

In the first experiments on a single electron in a dilution refrigerator environment

[85, 53], it was found that Tz was 16 Kelvin when the HFET (Harvard Field Effect

Transistor) [53] amplifier was left on during cyclotron excitation. When the HFET

was turned off during cyclotron excitation, the failure to observe driven cyclotron ex-

citations at the expected frequency led to speculation that the electron had cooled and

the line shape was narrower than the drive frequency step. Equipment malfunctions

prevented further investigation for some time.

Subsequent work at 1.6 Kelvin showed that, with the HEMT (High Electron

Mobility Transistor) amplifier either on or off, the axial temperature Tz of the electron

was consistently 16 Kelvin. In later experiments, a thermometer mounted on the

amplifier circuit board registered a temperature of 4 K with the amplifier on. The

time constant for heat to leave the circuit board after the FET was turned off was on

the order of 20 minutes. The conclusion was that the amplifier was not well enough

heat-sunk to the refrigerator, and its internal temperature was well above ambient.

It is likely that in the original dilution refrigerator experiments, the inability to find

a broad cyclotron resonance when the HFET was turned off [53], was actually due

to a large magnetic field shift associated with nuclear paramagnetism of the copper

trap (see Ch. 3).

In order to better heat sink the amplifier, the trap support structure was changed.

The original structure was a single rod of annealed OFHC copper with many mount-

ing holes drilled through it. This structure was replaced by an annealed OFHC tripod

with square cross-sectioned legs. The new support structure provided better struc-
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Figure 4.4: Cyclotron line shapes (with νz = 64 MHz) for the HFET amplifier off
during excitation (squares), HEMT 1st- and 2nd-stage amplifiers on during excitation
(triangles), and HEMT 1st- and 2nd-stage amplifiers off during excitation (circles).
The best fits yield 16 K, 3.7 K, and 0.32 K respectively.

tural stability (important for positioning the trap center reliably at the B-field center)

and a flat surface well-connected to the mixing chamber for heat-sinking the FET.

To provide better heat-sinking, the amplifiers were rebuilt [70]. The new HEMT

amplifier had a drain soldered directly to a copper plate, which was bolted to the

tripod leg. Previously, the FET drain had been electrically floating. In order to

avoid creating voltage offsets at the trap associated with return current from the

FET, a floating power supply was used to supply the drain voltage. Also, a second-

stage amplifier was added at the still to increase the cryogenic gain and to improve

isolation of noise travelling down the drain coax from room temperature.
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With the improved heat sinking, the axial temperature was measured to be an

improved temperature of 3.7 K if both the first- and second-stage amplifiers were left

on during cyclotron excitation. For these tests, the mixing chamber was held at 100

mK. Turning off the first-stage amplifier achieved an axial temperature of 600 mK.

Turning off both amplifiers during the cyclotron excitation yielded Tz = 320 mK.

The benefit of turning off the second-stage amplifier is most likely due to reducing

its reverse conductance, which reduces the transmission of noise from the later stages

[70].

The cyclotron resonances corresponding to these improvements are shown in Fig.

4.4. The sustained elevation of the electron temperature above the 100 mK of the

environment is most likely due to heating from a noise drive [70].

4.4 Choice of Axial Frequency

This work was begun at νz = 60 MHz, but it was realized [70] that there were two

independent advantages of working at a higher axial frequency. Less anomaly drive

power would be needed to create spin-flip transitions at a reasonable rate, and the

thermal shift parameter ∆ω would be reduced without a proportional reduction in

the signal from a single quantum jump.

4.4.1 Axial Frequency and Anomaly Drive Strength

Anomaly transitions are created by driving the electron axially far off of its reso-

nance frequency [53]. Far off resonance, the response function χa scales linearly with

detuning, so driving the 170 MHz anomaly transition requires a factor of ∼ 3 less
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drive power if the axial frequency is changed from 60 MHz to 200 MHz. A weaker

anomaly drive causes less heating of the sub-Kelvin environment. Power dissipation

is potentially a problem, because variations in temperature can cause magnetic field

shifts associated with nuclear paramagnetism of material near the trap, as discussed

in Ch. 3.

As discussed in Ch. 6, there are several sources of systematic error in a g value

measurement associated with anomaly drive strength. The most significant of these

errors are associated with the induced motion of the electron [86]. However, it can

be shown that the weaker drive power afforded by νz = 200 MHz does not help in

this case, since the electron is still driven to the same amplitude to obtain a given

anomaly transition rate.

4.4.2 Axial Frequency and Thermal Broadening

In order to improve the precision of g value experiments, it is desirable to make

the thermal shift parameter ∆ω of Eq. (4.3) as small as possible while maintaining

the ability to resolve single-quantum cyclotron jumps (see Sec. 2.3.7). Above we

have discussed the cooling of Tz toward this end. Since ∆ω ∝ B2/ν
2
z , we can also

consider using a smaller magnetic bottle or a larger axial frequency to reduce the

inhomogeneous broadening of νc and νa. Eq. (2.12) shows that δ ∝ B2/νz, where δ

is the axial frequency shift due to a single-quantum cyclotron jump. The thermal

shift parameter and the jump size both decrease in the same way if B2 is reduced.

However, if νz is increased, ∆ω shrinks faster than does δ. For the case of νz =
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65 MHz → 200 MHz without changing B2, we get

δ200

δ65

=
1

3

∆ω200

∆ω65

=
1

9
. (4.5)

So reducing the thermal broadening of the cyclotron and anomaly line shapes is better

accomplished by increasing the axial frequency than by reducing the magnetic bottle.

This is true provided that axial frequency shifts of the same size can still be detected

at the higher frequency, an issue discussed in Sec. 4.4.3.

4.4.3 Axial Frequency and Quantum Jump Resolution

As discussed in Sec. 4.4.2, to reduce the thermal shift parameter ∆ω, the ratio

B2/νz should be made as small as possible while maintaining the ability to resolve

single-quantum cyclotron transitions. It was also shown that it is preferable to accom-

plish this by increasing νz rather than by decreasing B2. However, it is not obvious,

a priori, what effect the choice of νz has on quantum jump resolution.

In order to resolve a quantum jump in a given averaging time, the signal-to-noise

ratio S/N of the axial signal must be larger than some value. Assuming the noise

is thermal, the voltage noise N has no frequency dependence. The magnitude of the

voltage signal S is proportional to the tuned circuit on-resonance resistance R (see

Sec. 2.3.2) and to the current I that the driven electron sends through R:

S

N
∝ IR. (4.6)

If z is the instantaneous position of the electron, I ∝ dz
dt

∝ ωz. Using of Q = RωzC

and assuming that C will not depend strongly on frequency, we can rewrite Eq. (4.6)



Chapter 4: Measurement of Cyclotron and Anomaly Frequencies 69

as

S

N
∝ Q. (4.7)

So for any axial frequency, we expect that the ability to resolve quantum jumps of a

given size is proportional to the amplifier Q value.

Next, we will consider how Q is expected to behave with frequency. Q can be

expressed as

Q =
1

rωzC
, (4.8)

where r is the tuned circuit loss represented as a series resistance. For optimal

detection [77], the amplifier is designed such that the physical resistance r is primarily

due to loss in the tuned circuit, rather than to loss in the FET channel. Since we

expect that both the inductance and resistance will be proportional to the inductor

length,

r ∝ L ∝ 1

ω2
z

, (4.9)

where we have again assumed that C will not vary strongly with frequency. Thus,

Eq. 4.8 becomes

Q ∝ ωz. (4.10)

Although many approximations were made to arrive at Eq. (4.10), when considered

along with Eq. (4.7) and the other advantages of a higher axial frequency discussed

above, it was decided to design and build a 200 MHz amplifier [70].

The actual 200 MHz amplifier which was constructed has Q ≈ 600 [70], similar

to the Q of the 60 MHz amplifier. So, the quantum jump resolution did not improve

by increasing νz, but the motivating benefits discussed in Sec. 4.4.1 and 4.4.2 were

achieved.
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4.5 Single Quantum Spectroscopy

As discussed in Sec. 6.2.1, the presence of relativistic effects makes it advanta-

geous to perform cyclotron spectroscopy between known pure quantum states. The

enhanced cyclotron lifetime obtained by tuning the magnetic field well away from

the nearest electromagnetic cavity mode (see Sec. 5.3), makes single quantum cy-

clotron spectroscopy possible while still using a relatively small magnetic bottle (see

Sec. 2.3.7).

As shown in Fig. 6.2, there is no relativistic shift of the anomaly frequency. How-

ever, reduced lifetimes of excited cyclotron states would broaden the anomaly line

shape, so it is desirable to perform anomaly spectroscopy between the lowest possible

quantum states: |s =↓, nc = 1〉 and |s =↑, nc = 0〉.

Each time a cyclotron excitation is attempted, an off-resonant anomaly pulse is

also applied, and vice versa. This procedure is used so that any affect that either of

these drives has on the axial or magnetron state distribution occurs while both line

shapes are being studied; any effects will tend to cancel out in a g value measurement.

4.5.1 Cyclotron Spectroscopy

In the work presented here, cyclotron spectroscopy is performed between the quan-

tum states |s =↑, nc = 0〉 and |s =↑, nc = 1〉. The following steps are used to attempt

to drive a cyclotron excitation:

1. Check that the electron is in the |s =↑, nc = 0〉 state

2. Turn on a strong resonant magnetron cooling drive (see Sec 2.3.6); wait t1 sec-
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onds

3. Shut off the axial drive; wait t2 seconds

4. Shut off the fist- and second-stage amplifiers; wait t3 seconds

5. Shut off the magnetron cooling drive; wait t4 seconds

6. Pulse the on-resonance cyclotron drive along with an off-resonance anomaly

drive for t5 seconds

7. Turn on the amplifiers and axial drive; wait t6 seconds

8. Check for transition to |s =↑, nc = 1〉

Examples of observed cyclotron excitations are shown in Fig. 2.14. The cyclotron line

shape is constructed by building a histogram of successful excitations to |s =↑, nc = 1〉

versus microwave drive frequency.

4.5.2 Anomaly Spectroscopy

Anomaly spectroscopy is performed between the |s =↑, nc = 0〉 and |s =↓, nc = 1〉

quantum states. The following steps are used to attempt an anomaly excitation:

1. Check that the electron is in the |s =↑, nc = 0〉 state

2. Turn on a strong resonant magnetron cooling drive; wait t1 seconds

3. Shut off the axial drive; wait t2 seconds

4. Shut off the fist- and second-stage amplifiers; wait t3 seconds
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5. Shut off the magnetron cooling drive; wait t4 seconds

6. Pulse the on-resonance anomaly drive along with an off-resonance cyclotron

drive for t5 seconds

7. Turn on the amplifiers and axial drive; wait t6 seconds

8. Check for transition to |s =↓, nc = 0〉; continue checking for t7 seconds to allow

for slow cyclotron decay from |s =↓, nc = 1〉

9. If a transition to |s =↓, nc = 0〉 was observed, reset the electron in |s =↑, nc = 0〉

by successive cyclotron and anomaly drive pulses

An example of an observed spin transition is shown in Fig. 2.15. The anomaly line

shape is constructed by building a histogram of successful spin flips versus anomaly

drive frequency.

4.5.3 Choice of Quantum States for Spectroscopy

Cyclotron spectroscopy could be performed equally well between |nc = 0〉 and

|nc = 1〉, in either the |s =↓〉 or |s =↑〉 ladder. However, as discussed in Sec. 6.2.1, the

appropriate relativistic g value correction differs by 1.2 ppt, depending on spin state.

So it is necessary to know which spin state was used for cyclotron spectroscopy. As

outlined in Sec. 4.5.1 all cyclotron spectroscopy for g value measurements is performed

between |s =↑, nc = 0〉 and |s =↑, nc = 1〉.

Anomaly spectroscopy is performed between |s =↑, nc = 0〉 and |s =↓, nc = 1〉.

As discussed in 4.2.3, the frequency-time uncertainty principle sets the natural line

width of the anomaly transition. This line width is the same regardless of whether
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|s =↓, nc = 1〉 or |s =↑, nc = 0〉 is chosen as the initial state. However, there are

also effects of the finite cyclotron lifetime which depend on the choice of initial spin

state. If the electron begins in state |s =↓, nc = 1〉 there is a probability pc dt that

the electron will spontaneously decay to |s =↓, nc = 0〉 in a time interval dt. If we

apply an anomaly drive, and the the electron is still in |s =↓, nc = 1〉, there is a

probability pa dt that the electron will transition to |s =↑, nc = 0〉 in a time dt. Thus

the probability dP that, under the influence of a weak anomaly drive, the electron

will transition to |s =↑, nc = 0〉 between a time t and t + dt is given by

dP = (pa dt)(1−
∫ t

0

pc dτ) (4.11)

If the weak anomaly drive is applied for a time T , then the probability P that the

electron will transition to |s =↑, nc = 0〉 is given by

P =

∫ T

0

dP = paT −
∫ T

0

dt pa

∫ t

0

pc dτ

= paT

(
1− pcT

2

)
(4.12)

So, in the case of a weak anomaly drive and the initial state |s =↓〉, the transition

probability is linear in drive strength but non-linear in time. The time non-linearity

is absent if the initial state is |s =↑〉.

It is not immediately obvious whether the time non-linearity of Eq. (4.12) cre-

ates distortions in the line shape function χa(ω). For this reason, anomaly spec-

troscopy in this work is always performed by attempting to drive from |s =↑, nc = 0〉→

|s =↓, nc = 1〉. The disadvantage of this choice is that several cyclotron lifetimes τc

must pass before a failure to drive the anomaly transition can be confirmed. Since

building a non-saturated histogram involves far more failures to drive a transition
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than successes, there is a significant overhead for the choice of initial spin state |s =↑〉.

With an inhibited cyclotron lifetime of ∼ 7 s, as at 149.0 GHz for the current trap

(see Sec. 5.3), the overhead in wait time noticeably degraded the statistics in overnight

scans.

In contrast, if anomaly spectroscopy were performed by driving the transition

|s =↓, nc = 1〉 → |s =↑, nc = 0〉, one would only have to wait an average of τc (rather

than a fixed value of several τc) to confirm a failed anomaly transition. If it were

determined that the effects of performing anomaly spectroscopy from the initial state

|s =↓, nc = 1〉 were well-understood and acceptable, the quality of histograms for

overnight scans could be greatly improved.

4.5.4 Data Collection

As discussed in Ch. 3, it was generally not possible to take g value data during day-

time hours. This limited most scan lengths to 10 to 15 hours. At several (typically

three or four) intervals over the course of a g value measurement, cyclotron edge-

tracking was performed (see Sec. 3.1). These intervals provided information about

changes in the magnetic field so that data over the course of a night could be nor-

malized against field drift. Fig. 4.5 shows normalization for a cyclotron scan during

a period when the field drift was quite large (see Sec. 3.2.4).

Between edge-tracking intervals, anomaly and cyclotron scans are alternated. One

attempted excitation is made at each cyclotron frequency, and then one attempted

anomaly transition is performed at each anomaly frequency, etc. During periods of

large field drift, the frequencies for excitation attempts are shifted from one scan to
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Figure 4.5: Correcting a cyclotron line shape for field drift of ∼ 0.6 ppb per hour.
Upper: edge-tracking points (closed circles) with fit (line) and uncorrected cyclotron
excitation events (open squares). Lower: uncorrected histogram (dotted line) and
histogram corrected for drift (triangles).

the next in a manner projected to follow the field drift. Spans are made wide enough

so that only an approximate prediction of the field drift for the night is needed.

Each attempted excitation is recorded with a time stamp, and histograms normalized

against field drift are later created for g value analysis, as shown in Fig. 4.5.
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4.6 Extracting Frequencies from Resonance His-

tograms

One advantage of the Harvard g value measurement is that the cyclotron and

anomaly line widths are substantially narrower than in previous experiments [2, 8].

Example line shapes are shown in Fig. 4.6. As a result of the narrow line shapes, a 1

ppt g value measurement can be performed with almost no line splitting and a very

limited understanding of the resonance shapes. Such a measurement would already

surpass previous measurements by a substantial factor. However, with minimal line

splitting, the Harvard g value measurement can do even better.

Two line-splitting methods are used in this work. Conceptually, it is perhaps

simplest to fit the cyclotron and anomaly line shapes to the theoretical curves and

then extract the frequencies ν0
c and ν0

a corresponding to the resonances of an electron

at 0 Kelvin. In practice, there are several complications with this procedure. An

alternative to fitting the lines is to split the measured resonances statistically, by

taking their weighted averages. The latter method is what is actually used for analysis

of the Harvard g value data.

4.6.1 Line-Fit Method

Previous g value measurements [54] were performed by extracting from the mea-

sured cyclotron and anomaly resonances the frequencies ν0
c and ν0

a , corresponding to

the electron at rest in the center of the trap. (See Sec. 4.2.2 for a discussion of the

theoretical line shapes.) Experimentally, this is achieved by determining ν0
c from the
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left edge of the cyclotron line shape and Tz from the width of the exponential tail.

The value of Tz is then used to deduce the offset of ν0
a from the measured center

frequency of the Lorentzian anomaly resonance.

Line-Fit Method Results

At νz = 60 MHz, the Harvard line shapes showed good agreement with the ex-

pected line shapes of Sec. 4.2.2, as can be seen for the cyclotron line shapes in Fig. 4.4.

However, as shown in Fig. 4.6, the 200 MHz cyclotron line shapes were found to have

rounded low-frequency edges. Although the rounding width is less than the exponen-

tial tail width, the rounding still contributes substantially to the overall line shape.

It is unknown whether the same rounding was present at νz = 60 MHz since, due

to complications with B-field stability present at that time, the edges of those line

shapes (which are also an order of magnitude wider than the νz = 200 MHz line

shapes) were never examined with sufficient precision.

The origin of the rounding is unknown, although it is speculated that magnetic

field jitter or mechanical vibrations might be responsible. Since the edge-tracking

resolution (see in Sec. 3.1) performs less well than expected at 200 MHz, it is believed

that the broadening mechanism occurs on time scales faster than ∼ 10 minutes, so

slow drifts seem to be ruled out.

For the purposes of line fitting, it seems reasonable to assign a Gaussian distri-

bution to the broadening, since it is likely associated with a random process. Line

fits are performed by first fitting the measured cyclotron histogram to a convolution

of the ideal (near-exponential) line shape with a normalized Gaussian function. The
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Figure 4.6: Measured cyclotron (left) and anomaly (right) line shapes with νz = 200
MHz and νc = 146.8 GHz. The data for both line shapes were collected over a period
of about 10 hours. Solid lines represent the best fits including Gaussian broadening.
Dashed lines show the predictions for the same fit parameters but with the Gaussian
broadening parameter set to zero. The relatively short cyclotron lifetime τc at this
field value causes substantial broadening of the anomaly resonance width. Light
bars represent the 68% confidence interval for the ν0

c and ν0
a from the line-fit method.

Dark bars represent the 68% confidence interval for the ν∗c and ν∗a from the line-center
method.

three free parameters of this fit are the overall amplitude, the axial temperature, and

the Gaussian broadening width. An estimate of the frequency ν0
c is thus extracted.

The axial temperature and the Gaussian broadening are then used as input parame-

ters for the anomaly fit. As discussed in Sec. 4.2.3, the measured cyclotron lifetime

also needs to be included as a fit parameter for the anomaly line.

The results of the line-fitting method on a small data set are shown in Fig. 4.7.

The data set used was actually part of a search for an anomaly systematic power

shift. Later studies confirm that there is no observable power shift, so it is expected

that all g value measurements in Fig. 4.7 should yield the same value. As far as can

be judged from the limited data set in the figure, the line-fitting method behaves well;

the estimated fit uncertainties and the observed scatter seem consistent.
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Figure 4.7: Demonstration of equivalence of the line-fitting method and the line-
center method for determining the g value, using data from a search for an anomaly
power shift at νc = 146.8 GHz. g is calculated using the line fit-method (left) and
line center-method (right). Solid lines indicate weighted averages and dashed lines
indicate uncertainties in the weighted averages. An uncertainty ∆g/g ≈ 1× 10−12, if
due in equal parts to the uncertainties in the anomaly and cyclotron line fitting, would
correspond to an error of ∆ν/ν ≈ 0.7× 10−9 in the line shapes shown in Fig. 4.6.

Line-Fit Method Drawbacks

Further studies of the quality of fits were not performed because it was judged that

the line-center method, discussed in Sec. 4.6.2, was a better way to extract frequencies

from the measured histograms. There are several drawbacks of using the line-fitting

method for a g value measurement which contribute to this conclusion.

First, the data of Figs. 4.6 and 4.7 were taken at νc = 146.8 GHz. Here, the rela-

tively poor decoupling from the nearby cavity mode, a situation which is unfavorable

for a g value measurement, did not enhance the cyclotron lifetime by a large factor,

allowing more sweeps to be taken in an overnight scan (see Sec. 4.5.3). At νc = 149.0

GHz, where decoupling from cavity modes is much more favorable for a g value mea-

surement, the longer cyclotron lifetime made the statistics of the collected histograms

noticeably worse. Overnight scans at 149.0 GHz seldom yielded traces which could
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be fit with confidence.

A related drawback of the line-fitting method is that the effects of the thermal

shift parameter ∆ω and of the Gaussian rounding parameter are difficult to reliably

separate. For the cyclotron line shapes, both of these parameters contribute to the

overall line width. Therefore it is expected that a fitting algorithm will have some

difficulty in accurately determining these fit parameters and their associated uncer-

tainty. Since the axial temperature is used as an input parameter to the anomaly line

fit, the possibility of introducing systematic shifts into g value measurements from

poorly fit cyclotron line shapes seems substantial.

Even with line shapes without extra broadening and with good statistics, the line-

fitting method is not ideal. In particular, one would like to avoid relying on the fit

of the cyclotron line shape in order to calculate the required offset to apply to the

anomaly line center. It would be much preferred to use the center of the anomaly

line as a measurement of νa.

The line-center method of extracting νc and νa from measured histograms, dis-

cussed in Sec. 4.6.2, addresses all these concerns.

4.6.2 Line-Center Method

As discussed in Sec. 4.2.2, the presence of the magnetic bottle makes the resonance

frequencies νc and νa dependent upon the axial energy. Thus, to determine the g value

accurately, a measurement of the cyclotron and anomaly frequencies corresponding

to the same axial energy must be obtained. Although in principle, as discussed in

Sec. 4.6.1, the frequencies ν0
c and ν0

a corresponding to a vanishing axial energy can be
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extracted from the thermally shifted line shapes, in practice there are complications

with this procedure. It was realized over the course of this work that the quantities

ν∗c and ν∗a , corresponding to the resonance frequencies at the average axial energy,

serve just as well for a g value measurement and are substantially easier to measure.

Averaging the Spectral Distribution

Sec. 4.2.2 discusses how the same distribution of axial energies can yield different

line shapes, depending on the time constants involved. Here, we will use the generic

term “magnetic oscillator” to represent either the cyclotron or anomaly oscillator. The

magnetic oscillator has a range of frequencies, caused by the thermal distribution of

the axial energies in the presence of the magnetic bottle. Essentially, the different

line shapes arise depending on whether a coherent or an incoherent sampling of the

magnetic oscillation is performed.

If the axial energy changes very slowly compared with the time required by the

uncertainty principle to probe the magnetic line shape, then spectroscopy essentially

performs an incoherent sum over the distribution of magnetic oscillator frequencies.

In this case, the spectrum acquires an exponential shape because of the Boltzmann

distribution of axial energies. If, on the other hand, the axial energy changes very

quickly compared with the time required to probe the resonance, a coherent sum

over the magnetic oscillation is performed. In this case, the phases over the range

of oscillation frequencies cancel on average except at the central value, producing a

narrow Lorentzian line shape.

As can be seen in Fig. 4.2, the average value of the resulting spectrum always
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corresponds to the average axial energy. Coherent summing, incoherent summing, or

an arbitrary combination of the two always produces a spectrum which preserves the

mean oscillation frequency. Thus, the frequencies ν∗c and ν∗a can be obtained simply

by taking the weighted mean of the measured cyclotron and anomaly histograms.

Line-Center Method Advantages

As explained above, we can use a statistical method to split the lines and obtain ν∗c

and ν∗a , which correspond to the cyclotron and anomaly resonance frequencies at the

average energy of the axial oscillator. Compared with the line-fit method of Sec. 4.6.1,

which attempts to extract ν0
c and ν0

a , the line-center method has two advantages.

First, the requirements on good histogram statistics are reduced. In a fit of the

cyclotron histogram, the sources of broadening from the rounding parameter and from

the temperature parameter need to be distinguished, so good statistics are required.

The requirements on statistics for computing a weighted average are not as stringent.

Secondly, no model for the rounding of the measured line shapes needs to be

developed in the line-center method. The rounding of the line shapes occurs because,

through an unknown mechanism, the distribution of B-field values sampled by the

electron is modified from a Boltzmann distribution. However, the particular form

of the non-thermal distribution is not important, since the weighted mean of the

modified cyclotron and anomaly histograms will both reflect the modified average

oscillation frequency.
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Line-Center Calculation Details

The weighted center ν∗ of a frequency distribution is given by

ν∗ =

∑
νiwi∑
wi

, (4.13)

where νi are the frequencies and wi are the assigned weights. The weight for a particu-

lar point should be proportional to the area under the portion of the curve represented

by that point. In the algorithm used for this work, the weight is approximated by a

trapezoid rule, where lines to the neighboring points are used to estimate area under

the curve. Each point in the histogram is assigned a height uncertainty based on the

binomial distribution, and that error is propogated through Eq. (4.13) to obtain an

estimate of uncertainty in the weighted center ν∗. Since g/2 ≈ 1 + νa/νc, the error in

g is given by

∆g

g
≈ 10−3

√(
∆ν∗a
ν∗a

)2

+

(
∆ν∗c
ν∗c

)2

. (4.14)

The results of the line-fit method and the line-center method for one pair of anomaly

and cyclotron scans is shown in Fig. 4.6.

Line-Center Calculation Results

The uncertainty estimate discussed above will not be accurate for poor statistics

or for too few frequency bins. Therefore, the spread of a sample of many g value

measurements is considered a better estimate of the true statistical uncertainty as-

sociated with the line-center method. To evaluate the statistical performance of the

line-center method, we consider data sets taken at νc = 149.0 GHz, shown in Fig. 4.8.

These data were taken as searches for anomaly and cyclotron drive-power systematic
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effects. As discussed in Ch. 6, the fits shown in the graphs are consistent with van-

ishing power shifts, but for our purposes here we simply consider the fit residuals. A

histogram of the residuals is shown in Fig. 4.9.

Figure 4.8: Searches for anomaly (left) and cyclotron (right) drive systematics taken
at νc = 149.0 GHz. The g value measurements are obtained using the line-center
method. Due to an anharmonicity-induced systematic shift which was not properly
accounted for in the data of the left graph (see Sec. 6.2.2), there is a small offset (∼
0.2 ppt) between the g value measurements obtained from the two graphs which has
been subtracted out here.

A few things are to be noted from these plots. First, the total repeatability of

the g value data is quite impressive: there is about 1 ppt full range scatter, with a

standard deviation of 0.32 ppt. Propogating errors through the line-center method

and then averaging the results yields a mean uncertainty of 0.36 ppt. The agreement

between these two error assignments is good; it can be concluded that the line-center

method does not grossly underestimate the uncertainty. (This conclusion is also fairly

obvious by cursory inspection of the distributions and error bars shown in Fig. 4.8.)

There is no known reason to expect systematic errors in the line-center calcula-

tions, since the frequency bin width is less than the width of the sharpest features
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Figure 4.9: Histogram of residuals of linear fits to the data shown in Fig. 4.8.

in the histograms. However, in order to search for a possible systematic effect, the

results of the line-center method can be compared with the results of the line-fit

method. This comparison is shown in Fig. 4.7. Besides noting that the error bars

obtained from the line-center calculation once again seem consistent with the scatter,

it is also noted that the two methods show very good agreement. There is no reason

to expect any systematic shifts of the two methods to be correlated, so the agreement

between the g value measurements shown in Fig. 4.7 is taken as an encouraging sign.

Comparison of the line-center method to a more crude line-fit method (one which does

not include a rounding parameter) has been performed [78]. The agreement between

these two techniques was also found to be good. Thus, the line-center method is used

in the final g value analysis presented in this thesis.
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Cavity Shifts

Standing-wave modes of the electromagnetic field in the cavity formed by Penning

trap electrodes modify the behavior of the cyclotron oscillator. The cyclotron damp-

ing rate is altered, and the cyclotron frequency can be substantially shifted. Cavity

shifts, which were estimated but not observed, limited the accuracy of a previous g

value measurement in a hyperbolic trap to 4.3 parts per trillion (ppt). In contrast

with a hyperbolic Penning trap, a cylindrical trap allows the identification of observed

electromagnetic modes with TE and TM modes, each having a well-characterized

coupling to the cyclotron oscillator. The cavity-induced systematic shift of a g value

measurement in the cylindrical Penning trap can then be calculated precisely [87].

In this experiment, we observe and identify cavity modes of the cylindrical trap

in the frequency region of interest. We also present the first demonstration of the

dependence of inhibited spontaneous emission with detuning of the cyclotron fre-

quency from cavity mode frequencies. Finally, we present the first demonstration of

g value shift with detuning from mode frequencies and find that the cavity-induced

86



Chapter 5: Cavity Shifts 87

shift agrees well with theory for the measured mode spectrum of the trap. The pre-

liminary g value measurement presented here obtains a 0.6 ppt uncertainty due to

cavity shifts, which is currently the leading uncertainty of the measurement.

5.1 Calculation of Cavity Effects

In free space, a cyclotron oscillator with ωc = (2π) 150 GHz loses energy via syn-

chrotron radiation with a time constant τc = 1/γc = 0.08 s. In a lossless microwave

cavity, synchrotron radiation only occurs at certain eigenfrequencies of the electro-

magnetic field with the correct geometry. In a lossy cavity, synchrotron radiation at

frequencies between these mode frequencies is not forbidden, but its suppression leads

to inhibited spontaneous emission, i.e. an enhanced cyclotron lifetime [57]. When

the cyclotron frequency ωc is tuned near the frequency of a coupled cavity mode,

spontaneous emission is enhanced.

The cyclotron oscillator also experiences frequency shifts due to interaction with

the electromagnetic cavity modes. It is tempting to guess that the cyclotron oscil-

lator will shift toward the nearest cavity mode, where synchrotron radiation is more

strongly allowed. However, as discussed in Sec. 5.1.4, the effect of the interaction

with a cavity mode is to repel the cyclotron oscillator away in frequency. The result

of a repelled frequency is what one would expect considering that, in general, the

eigenfrequencies of a system of coupled oscillators are repelled from one another.
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5.1.1 Cavity Shifts of a g value Measurement

The field geometry, resonant frequency, and quality factor of each cavity mode

determines its contribution to the cyclotron damping rate γ and to the shift of the

cyclotron frequency ∆ω ≡ ω−ωc [88, 68]. The effects of the cavity modes on the spin

frequency are well below the projected accuracy of foreseeable g value experiments

[89, 90].

Neglecting small corrections, the g value is calculated from the measured anomaly

frequency ωa and the measured cyclotron frequency ωc by

g

2
≈ 1 +

ωa

ωc

= 1 +
ωs − ωc

ωc

=
ωs

ωc

. (5.1)

Since ωs is not modified by cavity mode interactions, the cavity-induced shift in the

g value is given by

∆g

g
=

∆ω

ωc

. (5.2)

5.1.2 Coupled Cavity Modes

Cavity modes with an electric field at the trap center perpendicular to ~B = Bẑ

couple to the cyclotron oscillator. The electromagnetic eigenmodes of a cylindrical

cavity are commonly labeled as TEmnp and TMmnp [91]. The TE modes have Ez = 0

over all space, and the TM modes have Bz = 0, where ẑ is the cylinder axis. Of

interest for a g value measurement are the TE and TM modes with m = 1 and odd

p, which have a non-vanishing transverse electric field at z = 0, as depicted in Fig. 5.1.

A non-vanishing transverse electric field at z = 0 allows these modes to couple to the

cyclotron motion of a centered electron.
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Figure 5.1: Field geometry of cavity modes TM1n1 (left) and TE1n1 (right) along the
cylinder axis ẑ. Magnetic field is represented by a dashed vector and electric field by
a solid vector. Heavy vectors are confined to the ŷ − ẑ plane, and light vectors are
parallel to x̂. The non-vanishing transverse electric field of these modes at the trap
center allows them to couple to the cyclotron oscillator. Modes with p > 1 have more
transverse field nodes along ẑ.

5.1.3 Cavity Effects in a Hyperbolic Trap

In a traditional hyperbolic Penning trap cavity, although the standing-wave modes

of the radiation field do not correspond to TE and TM modes, the effects of the modes

on a g value experiment can be calculated [56]. However, there are a few drawbacks

that make hyperbolic traps less favorable than cylindrical traps for minimizing cavity

shift errors.

Because of its reduced symmetry, a hyperbolic trap geometry has roughly twice

the density of coupled modes than does a cylindrical trap of equivalent size [56].
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The lower symmetry of the hyperbolic geometry and the poorly defined boundary

conditions of the asymptotic region are expected to make the mode Qs tend toward

lower values. This effect, combined with the higher mode density, raises the question

as to whether the coupled modes of an actual hyperbolic trap can be experimentally

identified, which is necessary for accurate calculation of cavity shifts [68]. Cavity

modes of a hyperbolic trap have been observed [92], but they were not identified with

a predicted spectrum.

One solution to the cavity shift problem is to construct trap electrodes from a

lossy material, deliberately lowering the Q of the trap in an approximation to the

free-space limit. A lossy phosphor bronze trap [3, 8] demonstrated some success in

this approach, but the observed inhibited spontaneous emission factor of up to 2 to 4.5

over a 2% change in B showed that cavity modes were still playing a role. However,

this measurement was limited to ∆g/g = 4.0 ppt by other problems (some of which

were actually incurred by complications associated with the short cyclotron lifetime.)

Another solution to the cavity shift problem, used in the Harvard g value mea-

surement presented here, is to work in a high-Q trap where the geometry is more

conducive to precise understanding of cavity shifts. In fact, it was the problem of

cavity shifts which originally led to the development of cylindrical Penning traps [73].

5.1.4 Cavity Effects in a Cylindrical Trap: Mode Sum Cal-

culation

Cavity effects in a cylindrical Penning trap can be approximated as a sum over

cavity modes [84, 88]. The interaction between the cyclotron oscillator at frequency
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ωc and only one cavity mode would impart to the cyclotron oscillator a damping rate

γ and a frequency shift ∆ω given by

∆ω =
γM

2

δ

1 + δ2
, (5.3)

γ = γM
1

1 + δ2
, (5.4)

where δ is the detuning parameter (defined below) and γM is the maximum cyclotron

damping rate obtained at δ = 0. The unperturbed resonance frequencies of the

cyclotron and cavity oscillators are related by

ωc = ωM +
1

2
ΓMδ, (5.5)

where ωM and ΓM are the frequency and width of a TE or TM mode. ΓM is related

to QM , the mode quality factor, by QM = ωM/ΓM . It is convenient to express the

maximum damping rate γM in terms of the measured mode frequency and quality

factor and the analytically calculated coupling constant λM :

γM

ωM

= 2 QM

(
λM

ωM

)2

. (5.6)

We can now express the frequency shift and damping rate, summed over all cavity

modes, in terms of measured mode frequencies and quality factors and calculated

coupling constants:

∆ω − i

2
γ =

∑
M

ωcλ
2
M

ω2
c + i ωc ωM/QM − ω2

M

. (5.7)

For the TEmnp modes,

λ2
mnp =





rec
2

z0ρ2
0

1

α2
mn − 1

2α2
mn

Jm(αmn)2
for m = 1 and p odd

0 for m 6= 1 or p even

(5.8)

ω2
mnp =

((
pπ

2z0

)2

+

(
αmn

ρ0

)2
)

c2, (5.9)
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mode eigenfrequency (GHz) λ2
M × 1010 (s−2) measured frequency (GHz)

TM131 108.8 0.3

TE125 111.8 5.8

TM125 121.6 4.7

TM133 121.8 2.5

TE141 124.7 12.5

TE135 132.0 9.2 131.7

TE143 136.2 12.5 135.7

TE117 136.7 2.8 136.7

TM117 141.2 3.8 141.4

TM141 141.6 0.3 141.9

TM135 144.3 4.9 144.5

TE127 146.5 5.9 146.3

TM143 151.7 2.1 151.8

TM127 154.2 5.8 154.3

TE145 156.6 12.5

TE151 157.6 15.8

TE137 162.4 9.2

TE153 166.8 15.8

TM145 170.3 4.6

TM137 172.6 6.7

Table 5.1: Calculated cavity mode frequencies and coupling constants (second and
third columns) for modes near the region used for g value measurements. The mode-
frequency calculation uses the experimentally determined best-fit trap dimensions
discussed in Sec. 5.2.4. The final column gives measured frequencies of the observed
modes.
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where re = e2/mc2 is the classical radius of the electron, ρ0 is the cavity radius, and

αmn, given by J ′m(αmn) = 0, is the nth zero of the derivative of the mth-order Bessel

function.

For the TMmnp modes,

λ2
mnp =





rec
2

z0ρ2
0

(
pπc

z0ωmnp

)2
1

2J0(βmn)
for m = 1 and p odd

0 for m 6= 1 or p even

(5.10)

ω2
mnp =

((
pπ

2z0

)2

+

(
βmn

ρ0

)2
)

c2, (5.11)

where βmn (given by Jm(βmn) = 0) is the nth zero of the mth-order Bessel function.

Calculated mode frequencies and coupling constants for m=1, p-odd modes for

best-fit trap dimensions (see Sec. 5.2.4) are given in Table 5.1. The calculated g value

shift and damping rate due to an example cavity mode, TE127, is shown in Fig. 5.2.

���

�

��

�
�
�
�
	


��



���
�
����
�
����
�
����
�
�

��

��

��

��

��

��

�

��
 
!
"#

$%&
'
($%)
'
($%*
'
($%+
'
(

,-./0.12345678

Figure 5.2: Mode sum prediction for g value shift (left) and cyclotron damping rate
(right) for cavity mode TE127 with Q = 500. No other modes are included in the
calculation.
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5.1.5 Cavity Effects in a Cylindrical Trap: Renormalized

Calculation

Unfortunately, the mode sum calculation discussed in Sect. 5.1.4 does not include

renormalization corrections related to the self-field interaction of the electron. The

mode frequencies shown in Table 5.1 remain correct, as they are actually derived

from the full calculation discussed in this section. When applied far off resonance,

Eq. (5.3) is dominated by the unphysical back-reaction of the electron self field. The

resulting error becomes large when predicting the cavity effects far off resonance, and

the results actually diverge. The exact solution, obtained by summation over image

charges rather than over cavity modes, can be properly renormalized and does not

suffer from self-field interaction problems [87] [68]. In the renormalized solution, Eq.

(5.7) of the mode sum calculation is replaced by

∆ω − i

2
γ = − i

2
γc + ωc [ΣS(ω̃c) + ΣP (ω̃c)] , (5.12)

where the complex frequency ω̃c = (1 + i/2Q) ωc accounts for cavity lossiness. ΣS

describes the interaction with the sides of the cavity and ΣP describes the interaction

with the parallel plates. These expressions are given by

ΣS(ω) =− re

z0

∞∑
n=0

{
K ′

1(µnρ0)

I ′1(µnρ0)
+

k2
nc

2

ω2

[
K1(µnρ0)

I1(µnρ0)
− K1(knρ0)

I1(knρ0)

]}
, (5.13)

ΣP (ω) =
re

z0

ln
[
1 + e2i ωz0/c

]−

re

z0

∞∑
n=1

(−1)n

[
e2inωz0/c

(
ic

2n2z0 ω
− c2

4n3z2
0 ω2

)
+

c2

4n3z2
0 ω2

]
, (5.14)
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where

kn = (n +
1

2
)π/z0, (5.15)

µn = (k2
n − ω2/c2)1/2. (5.16)

Unfortunately, in the renormalized model, cavity lossiness cannot be assigned

individually for each mode, since the sum is performed over image charges rather

than over modes. However, a slightly different treatment of cavity loss than described

above can assign different quality factors QE and QM to the TE and TM modes

respectively. This is achieved by taking ω → (1 + i/2QE) ω in the denominator

function I ′1(µnρ0) of Eq. (5.13) while all other frequencies in Eqs. (5.13) and (5.14)

are given by (1 + i/2QM) ω.
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Figure 5.3: Left: comparison of g value shift between modes TE127 and TM143 of
renormalized calculation (solid) and mode sum calculation for four (dots), six (short
dash), and eight (long dash) modes included. Right: comparison of g value shift across
mode TM143 using the renormalized calculation (solid) and mode sum calculation for
three (dots), five (short dash), and seven(long dash) modes included.

Another drawback of the renormalized calculation is that frequencies of cavity

modes cannot be individually adjusted; the only input parameters are the cavity Q



Chapter 5: Cavity Shifts 96

and trap dimensions ρ0 and z0. Even when the trap dimensions are determined in

situ, perturbations due to slits between electrodes shift the mode frequencies (see

Sec. 5.2).

Comparisons between results of the mode sum calculation and the renormalized

calculation are shown in Fig. 5.3. The mode sum calculation is not sufficiently accu-

rate to be used in a part-per-trillion g value measurement. However, since the mode

sum calculation allows the couplings and frequencies of cavity modes to be individ-

ually adjusted, its flexibility can be useful in certain estimates of cavity effects. For

instance, it is worth noting the 5 ppt offset from zero of the exact calculation in the

right-hand plot of Fig. 5.3. Comparison to the mode sum calculations in this figure

suggests that for a g value measurement, where ωc is tuned between the two nearest

modes, offsets caused by non-nearest modes can contribute at the few ppt level.

5.1.6 Dependence of Cavity Effects on Mode Q-Factor

To minimize cavity shifts in a g value measurement, the magnetic field should

be tuned such that ωc is between the frequencies of coupled cavity modes. Given a

choice of cyclotron frequency, one can ask what the optimal mode Q-factor would be.

Combining Eqs. (5.3) through (5.6), we arrive at

∆ωc =

(
λ2

MSM

ωM

)
Q2

M

1 + S2
MQ2

M

, (5.17)

γ =

(
λ2

M

ωM

)
QM

1 + S2
MQ2

M

. (5.18)

where ωM is the mode frequency and SM = 2|ωc − ωM | /ωM is the fractional mode

spacing, assuming ωc is tuned halfway between modes.
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While Eq. 5.18 shows that lower mode Q-factors lead to smaller g value shifts, in

practice one would need to make Q so low that the modes were significantly over-

lapping (and therefore difficult to identify) in order to substantially reduce the shift.

Fig. 5.4 shows the effects of Q-factor on the damping rate and g value shift for one

cavity mode.
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Figure 5.4: Dependence of g value shift and cyclotron damping rate on mode Q-factor.
Results were obtained using the mode sum calculation with contributions only from
TE127 and the cyclotron frequency tuned halfway between TE127 and TM143. The
renormalized calculation also yields saturated behavior for the g value shift at modest
values of Q.

One important result shown in Fig. 5.4 is that, unlike the damping rate, the g

value shift saturates for mode Q above ∼ 100. Generally, the dependence of the g

value shift on Q is saturated if ωc is detuned from the nearest cavity mode by more

than the mode width, a condition easily obtained in cylindrical Penning traps. Thus,

the renormalized calculation for g value shifts is not limited by the fact that it does

not individually parameterize mode Q-factors. Also, precise knowledge of mode Q-

factors is not necessary for the g value measurement presented in this work. Fig. 5.17

shows the effects of a large range of Qs on the damping rates and cavity shifts.



Chapter 5: Cavity Shifts 98

5.2 Measured Mode Spectrum of the Actual Trap

To understand cavity shifts of ωc, the cavity mode spectrum must be known. This

measured spectrum is compared with predicted spectra to make a best-fit determina-

tion of actual trap dimensions and to identify the measured modes (see Sect. 5.2.3).

Trap dimensions, obtained in situ by this technique, are used in the renormalized

calculation of cavity shifts discussed in Sect. 5.1.5.

5.2.1 Mapping the Cavity Modes

The most direct technique for measuring the cavity mode structure would be to

map the field-dependence of the cyclotron damping rate. This map would directly

yield frequencies and Q-factors of only the coupled modes. It would also yield an

absolute measure of the cavity coupling versus frequency and could thus be used as

a test of the renormalized calculation.

In practice, making a mode map using the cyclotron damping rate presents several

challenges. Gathering statistics at each field value takes several hours, making it a

tedious process to obtain a detailed map. Also, it is technically challenging to measure

the short cyclotron lifetime in the vicinity of a cavity mode.

In this work, we measure cavity mode frequencies by observing the response of

a large cloud of electrons to an axial parametric drive [93], discussed in Sec. 2.3.5.

For a cloud of electrons, the axial and perpendicular electron motions are coupled

by collisions. The response of a cloud to the parametric axial drive depends on the

total rate at which injected energy is lost, and thus through collisions is sensitive to

synchrotron coupling to the cavity.
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Figure 5.5: Mode map over the nine observed coupled cavity modes, made using a
parametrically driven cloud of 3 × 104 electrons. Calibration peaks (see Sec. 5.2.2)
are marked with asterisks.

From a map of the axial parametric response, the frequencies of modes which

couple to the cyclotron motion can be determined. Fig. 5.5 shows such a mode map

across several coupled cavity modes. Unlike for a single electron, the finite size of an

electron cloud allows it to couple to cavity modes with vanishing transverse electric

field at the trap center. Identification of the modes which couple to a single electron

is discussed in Sec. 5.2.3 and Sec. 5.2.4.
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5.2.2 Calibration of Cavity Mode Maps

A cavity mode map is created by observing the parametric axial response of a cloud

of electrons as the magnet current is changed. Fig. 5.6 shows the schematic diagram of

the magnet charging circuit. In order to create a map of parametric response versus

field, the measured magnet current must be calibrated. For a constant charging

voltage V , the magnetic field B(t) as a function of measured return current IT (t) is

given by [72]

B(t) = g

(
I(0) +

V

L
(t− τ0)

)
, (5.19)

where L is the coil inductance, g is a factor describing the coil geometry, I is the

solenoid current, and the constant τ0 is related to the fact that some charging current

flows through the resistors R1 and R2. The solenoid current is given in terms of the

measured return current IT by

I(t) = IT (t)− IR1(t)− IR2(t)− Ishims − IR3(t). (5.20)

Even though the presence of the constant τ0 and the combination of all currents at

the shunt resistor present complications, it is possible [72] to obtain a calibration for

the magnetic field B(t) versus measured return current IT (t).

Unfortunately, the equipment used for this work produced anomalies in charging

behavior which prevent the use of Eq. (5.19) to calibrate the current. Oscillations

of unknown origin in the measured current were on the order of 0.1 A; although not

ideal, these could be averaged away. However, the measured charging rate, typically

between 0.5 and 1.5 mA/s, was subject to sudden interruptions lasting several minutes

before a similar, but not identical, charging rate returned. An example of the charging
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Magnet Charging Supply

Nalorac Model E70B

0
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Figure 5.6: Schematic diagram of magnet charging circuit.

oscillations and interruption are shown in Fig. 5.7. When the current was calibrated

by the method discussed below, it was found that the proportionality constant gV/L

in Eq. (5.19) varied by as much as 5%. Since calibration of Eq. (5.19) requires

sweeping back and forth across a cavity mode, but the proportionality constant tended

to jump when the charging direction was changed, calibration of B versus IT was

impractical. The source of these problems is unknown, but they are presumably

related to instabilities in the charging voltage or the value of the shunt resistor.

The final calibration of cavity mode maps was performed in such a way that

knowledge of the exact relationship between return current and field was not needed.
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Figure 5.7: Return current through the shunt resistor while discharging the magnet
using Vc = - 0.25 V. Data after the interruption in charging rate are not used. Inset:
expanded graph showing return current oscillations.

The magnetic current was tuned so that the parametric response indicated that the

cyclotron frequency was at a peak of one of the narrow cavity modes which couple

weakly to a cloud but not to a single electron. The cyclotron resonance frequency of

a single electron was then measured at each of these calibration peaks to obtain the

B-field at these points. The calibration peaks are marked in Fig. 5.5.

This calibration technique allows each mode map to be calibrated individually.

The current offsets from the shim current and from the parallel resistors do not need

to be known. However, the technique relies on these offsets being static. Toward this

goal, as indicated in Fig. 5.7, only portions of maps free of charge-rate shifts were

used in any calibration. Although the constants vary, as shown in Fig. 5.8, the used

portions of each map had good linearity between measured current and the cyclotron

frequency at the calibration peaks. The rms value of residuals over all calibration
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Figure 5.8: Left: measured return current at calibrated peak frequencies for used
parametric mode maps. Right: frequency residuals of linear current-frequency cali-
bration fits.

peaks on all maps is 0.060 GHz.

Several separately calibrated maps are combined in order to make best estimates

of the frequencies of coupled cavity modes. The identification of these modes in each

map is discussed in Sec. 5.2.3. The scatter of these frequencies, shown in Fig. 5.9,

provides an absolute determination of the ability to assign a frequency to a feature

of the mode spectrum, and is thus crucial for estimating cavity shifts in a g value

measurement. The rms calibration scatter over all observed coupled modes is 0.27

GHz, corresponding to an average fractional scatter of 0.15%. One of the calibrated

maps shown in Fig. 5.9 was taken at 60% the charging rate of the others, as well as

after a (non-intentional) magnet quench and trap thermal cycling, demonstrating the

mode structure to be robust against measurement technique and physical stresses on

the trap.
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Figure 5.9: Scatter in determination of frequencies of coupled cavity modes.

5.2.3 Identification of Coupled Cavity Modes

Identification of coupled cavity modes in the measured mode maps is necessary

in order to choose a magnetic field value for which the cyclotron frequency suffers

from a minimal cavity shift. Also, as discussed in Sec. 5.2.4, the measured frequencies

of observed coupled cavity modes is used in an in situ determination of the cavity

dimensions.

Cavity modes which couple to a single electron can generally be recognized in

mode maps such as the one shown in Fig. 5.5 as the modes of lower Q. This difference

in observed Q arises because modes which couple to the single electron also couple

more strongly to a cloud, creating a strong damping channel for energy in these

modes. However, in some cases this indicator still leaves ambiguity. Unambiguous

identification of coupled cavity modes can be made by observing which modes show
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saturation behavior in the parametric response of small electron clouds, as shown in

Fig. 5.10.
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Figure 5.10: Mode map made by parametrically driving a cloud of 3 × 104 electrons
(upper) and 1.6 × 104 electrons (lower). In the map made using the smaller cloud,
the three strongly coupled modes with the largest coupling constants (see Table 5.1)
exhibit saturation behavior. Mode maps made with even fewer electrons show more
dramatic saturation.

The axial parametric response of a cloud of electrons is sensitive to cavity modes

because increased cyclotron damping enables the cloud to more fully synchronize with

the parametric drive, as discussed in Sec. 5.2.1. Saturation behavior is understood as

full synchronization of the cloud, so that increased coupling to the cavity does not

yield increased response to the parametric drive. However, the scaling of saturation

threshold with cloud size is not understood. Larger clouds couple more strongly to
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the modes (a scaling which is understood), but they also have more electrons which

must be synchronized before saturation occurs (a scaling which is not understood). In

fact, earlier research [74] reports that larger clouds have a lower saturation threshold,

contrary to the findings of this work.

5.2.4 In situ Determination of Cavity Dimensions

As discussed in Sec. 5.1.5, the mode sum calculation is not sufficiently accurate to

determine cavity shifts for a g value measurement. Thus, even though the coupling

strength of cavity modes can be accurately calculated, it is not sufficient to mea-

sure the frequencies of these modes to predict cyclotron frequency shifts. Instead,

the dimensions of the microwave cavity must be determined and then used in the

renormalized calculation.

In order to determine trap dimensions, a least-squares fit is used to find trap

dimensions which best reproduce measured mode frequencies. In previous work [93],

the azimuthally symmetric TE0np were initially used because their induced surface

currents, which flow parallel to most of the trap slits, are expected to induce mode

frequency shifts smaller than those of modes with different geometries. The best-fit

trap dimensions yielded an rms frequency deviation of 0.08% for these modes. Using

this determination of trap dimensions, frequency deviations for the coupled modes

were then observed to be typically 1%.

In this work, we use the measured frequencies of the coupled cavity modes, TE

and TM with m = 1 and p odd. This method is used since these modes are most

readily identified (see Sec. 5.2.3). Fig. 5.11 shows a contour plot of the disagreement
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between the frequencies of the nine observed coupled cavity modes and the frequencies

predicted for a range of trap dimensions. The fitting algorithm demands a one-to-one

correspondence between observed modes and predicted modes within the frequency

span. Each local minimum represents a different identification of the observed cavity

modes with predicted modes.
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Figure 5.11: Cavity mode identification and in situ determination of trap dimensions
ρ0 and z0. Shading corresponds to the rms disagreement between measured and best-
match predicted spectra of coupled cavity modes for given trap dimensions. Contours
are marked at intervals of 1 GHz rms error for the nine observed modes.

The global minimum, established convincingly in Fig. 5.11 as corresponding to

the correct mode identification, is for trap dimensions ρ0 = 0.17861 inches and z0 =
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0.15273 inches. (As discussed in Sec. 5.3, these dimensions differ slightly from those

used for the g value analysis). For the trap dimensions given above, the rms fractional

error between predicted and observed frequencies is 0.15%. The rms frequency error

is 0.27 GHz. The trap was designed to have dimensions ρ0 = 0.1791 inches and

z0 = 0.1510 inches at low temperatures. The disagreement between the targeted and

observed trap dimensions is reasonable, given the expected 1-2 thousandths of an inch

machining tolerance for the silver electrodes. As shown in Fig. 2.1, ρ0 is determined

by the dimension of the inner radius of each of the silver electrodes, so agreement

between the expected value and the best-fit value is limited by electrode machining

tolerances. Since the dimension z0 depends on the ẑ dimension of machining (which

is in some cases more difficult) of all the silver electrodes, on the grinding of the glass

spacers, and on how well these pieces fit together, a larger error is expected.
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Figure 5.12: Comparison of predicted and measured frequencies of coupled cavity
modes for best-fit trap dimensions ρ0 = 0.17861 inches, z0 = 0.15274 inches. Error
bars represent the uncertainty in calibration of measured mode frequencies.
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Fig. 5.12 shows good agreement between observed mode frequencies and the best-

fit predictions. It is obvious in the figure that disagreements between observation

and prediction are much smaller than the typical mode spacing. The uniqueness of

the best fit and the agreement between predicted and observed spectra to within the

calibration error confirm the mode identification and in situ determination of trap

dimensions. Perturbations due to the slits between electrodes are also expected to

cause mode frequency shifts [93], but they do not seem to present a problem for mode

identification.

5.2.5 Problems with Q Determination from Parametric Maps

We found that the parametric mode-mapping technique was not as well behaved

as in some previous work [72]. The 10 times deeper axial potential, the lower tem-

perature, and the less noisy environment are candidates which might contribute to

the discrepancy. Difficulties we encountered in this research might also be related to

problems seen in other experiments which used the parametric resonance to measure

cavity-cloud interactions [74].

As in previous work [72], the parametric response of large clouds of electrons yields

mode maps with Q values of coupled modes appearing much lower than those of the

non-coupled modes. There is no known reason to expect that that this would be true.

The observed broadening is most likely induced by the coupling of the cloud to cavity

modes, providing a strong damping channel for the mode energy. Mode maps made

with fewer electrons would be expected to yield less broadening, but in this work

they could not be used because of problems with saturation (see Sec. 5.2.3). Thus,
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the parametric mode maps we obtained are not expected to yield the correct cavity

Q.

In fact, if interpreted naively, parametric maps suggests a cavity Q which is disap-

pointingly far away from values obtained from the cyclotron lifetime data discussed

in Sec. 5.3. Because of drifts and offsets in the parametric maps, the mode resonances

obtained are not readily fit to Lorentzian shapes, but best attempts yielded Q values

between 300 and 600. In contrast, fits using single-electron cyclotron lifetime data

suggest Q values between 1000 and 10,000. Thus, the parametric mode maps are

considered useful in locating the frequencies of the coupled cavity modes but not in

estimating their Q values. Implications of this limitation of the parametric mode

maps are discussed in Sec. 5.5.

5.3 Cyclotron Lifetime Map and Trap Parameters

In this section, we present the first map of cyclotron lifetime versus detuning

from identified cavity mode frequencies. Although knowledge of the cavity Q is not

critical for a g value measurement (see Sec. 5.4.3), QE and QM are estimated from

the cyclotron lifetime map. Lifetime data are also used to resolve ambiguity in the

assignment of TE127.
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5.3.1 Lifetime Measurement of a Quantum Cyclotron

The differential equation for the radial coordinates ~ρ of the damped cyclotron

oscillator is

d2~ρ

dt2
+ γ

d~ρ

dt
+ ω2~ρ = 0, (5.21)

where γ, given by Eq. (5.12), is the damping due to interaction with cavity modes.

For the underdamped case (γ < ω0), the energy of the oscillator obeys

E = E0e
−γt , (5.22)

which has the familiar differential form

dE

dt
= −γE. (5.23)

The cyclotron damping rate is measured by observing spontaneous decays of the

quantized single-electron oscillator, as discussed in Sec. 2.3.7. For the quantum cy-

clotron oscillator,

E = (n +
1

2
)~ωc, (5.24)

where n = 0, 1, 2, ... is the quantum state number. The ensemble average 〈n〉 is given

by

〈n〉 = 0 · n0 + 1 · n1 + 2 · n2 + . . . , (5.25)

where ni is the occupation fraction of the ith state. From Eq. (5.23) and Eq. (5.24),

we see that the ensemble average 〈n〉 obeys

d 〈n〉
dt

= −γ 〈n〉 . (5.26)
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For the special case where only |n = 0〉 and |n = 1〉 are occupied, Eq. (5.26) and Eq.

(5.25) give

dn1

dt
= −γn1, (5.27)

which leads to

n1 = e−γt (5.28)

if the oscillator starts in the state |n = 1〉 at t = 0. It follows that a histogram of

observed lifetimes of spontaneous decays from |n = 1〉 → |n = 0〉 forms an exponential

curve with time constant τ = 1/γ. Since Eq. (5.28) is independent of history, this is
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Figure 5.13: Histogram of observed lifetimes of spontaneous cyclotron decays from
|n = 1〉 → |n = 0〉 at ωc = (2π) 149.0 GHz. The fit gives τ = 1/γ = 6.70 s ± 0.18 s.

true regardless of how the oscillator was prepared in the |n = 1〉 state (i.e. whether

it arrived there from |n = 0〉 or |n = 2〉) or how long it remained in that state before

its lifetime began to be timed. Fig. 5.13 shows a histogram of |n = 1〉 lifetimes at the

value of magnetic field which yielded the longest observed lifetime in the silver trap.

The measured lifetimes are given in Table 5.2.
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5.3.2 Measured Damping Rates and Trap Parameters

The single-electron cyclotron lifetime has been measured at several values of mag-

netic field. The results are given in Table 5.2. The lifetime data are used to fit the

values of QE and QM , holding trap dimensions fixed, as shown in Fig. 5.14. If more

lifetime data were available, trap dimensions could also be varied in these fits, per-

haps allowing trap dimensions to be determined without the use of parametrically

driven electron clouds. The sizeable difference in cavity shifts induced by TE127 as

compared to TM143 is due partly to the disparity of coupling strengths (see Table 5.1)

and partly to the different Q values.

ωc/(2π) (GHz) cyclotron lifetime (s)

146.832 1.43 ± 0.13

147.567 5.50 ± 0.26

149.046 6.70 ± 0.18

151.196 1.38 ± 0.08

Table 5.2: Measured cyclotron lifetimes for the spontaneous decay |n = 1〉 → |n = 0〉
at various B-field values with ωc tuned between the frequencies of TE127 and TM143.

Fig. 5.10 shows that, of the three narrow peaks near the center of the TE127

pedestal, the left two peaks are the best candidates for TE127. The broad pedestal,

not typical of other cavity modes in the spectrum, is presumably due to contributions

of many non-coupled cavity modes. Fits of QE and QM to the lifetime data are

performed for both assignments of the TE127 frequency, as shown in Fig. 5.14. The

results of the fits are given in Table 5.3. The more reasonable QE value obtained for

the left-hand peak make this frequency assignment for TE127 the favored choice.
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Figure 5.14: Differing choices for the frequency assignment of TE127. Upper: para-
metric mode map in the region of the g value measurements. The two candidate peaks
for TE127 are marked with asterisks. Middle: best fits to the lifetime data made by
varying QE and QM and holding trap dimensions fixed. The solid (dashed) line show
predictions for the trap dimensions corresponding to the left (right) asterisk. Bottom:
predicted g value shift for the same parameters. The inset of the bottom plot, which
has the same vertical scale as the larger plot, shows the region of the 149.0 GHz g
value measurement.
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Figure 5.15: Variation of the frequency assignment of TE127. Upper: parametric mode
map in the region of the g value measurements. Middle: best fits to the lifetime
data made by varying QE and QM and holding trap dimensions fixed. The solid
line corresponds the best fit with the trap dimensions fixed at the favored frequency
assignments from Table 5.3. The dotted (dashed) line shows best-Q-fit results for trap
dimensions corresponding to the same frequency for TM143 (set at the asterisk) while
the frequency of TE127 is decreased (increased) by 0.27 GHz. Bottom: predicted g
value shift for the same sets of parameters.
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parameter left peak middle peak lower limit upper limit

ρ0 (inches) 0.17839 0.17844 0.17832 0.17846

z0 (inches) 0.15286 0.15263 0.15320 0.15252

QE 6520 12,580 3730 22,610

QM 1370 1310 1430 1270

Table 5.3: Trap dimensions and best-fit QE and QM for various fits to the lifetime
data. Values for “left (right) peak” correspond to the fit for the left (right) asterisk
of Fig. 5.14. Values for “lower (upper) limit” correspond to the fit for the dotted
(dashed) curve of Fig. 5.15. The “left peak” parameters are the favored values and
are used for the final g value analysis.

Because of the broad pedestal at TE127, there is also some question as to whether

either of the candidate peaks of Fig. 5.14 actually correspond to TE127, or whether

it might be buried in the middle, or near an edge, of the pedestal. The lifetime data

can be used to help constrain the location of TE127 within the pedestal, as shown in

Fig. 5.15. In this figure, best fits for QE and QM are performed using trap dimensions

which hold the frequency of TM143 fixed but vary the assignment of TE127 by ±0.27

GHz (see Sec. 5.4.1 for details on this choice of frequency variation). The fit for the

dotted curve shows poor agreement with the lifetime data, and the fit for the dashed

curve yields an unreasonably high value for QE, as shown in Table 5.3. Thus, the

lifetime data constrain the frequency of TE127 to be within ±0.27 GHz of the favored

value (but see Sec. 5.4.2 for further discussion).
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5.4 Cavity-Shift Uncertainty in the g Value

Two g value measurements, at different values of magnetic field, are presented in

Ch. 6. The first measurement, with ωc = (2π) 146.8321 GHz, was performed quite

near to cavity mode TE127, and the associated cavity shift is large. The second

measurement, at ωc = (2π) 149.0464 GHz, is near the zero-crossing of the cavity shift

between TE127 and TM143. Calculated cavity shifts and uncertainties for these two

B-field values are given in Table 5.4. The (good) agreement between the calculated

and observed cavity shift is discussed in Sec. 6.2.6.

The cavity shift at each field has three sources of systematic uncertainty. First,

there is error in estimation of trap dimensions due to mode frequency miscalibration.

Second, there is error because slits and other trap imperfections cause shifts in the

mode frequencies, which cannot be accounted for in the renormalized calculation.

Finally, there is error from uncertainty in the cavity Q.

5.4.1 Mode-Frequency Error Contribution to Cavity Shifts

The first two sources of systematic error, frequency-calibration error and mode-

perturbation error, can be treated together. Both types of error contribute to the 0.27

GHz rms discrepancy between measured and predicted mode frequencies described in

Sec. 5.2.2.

Ideally, the g value uncertainty associated with a frequency shift of each cavity

mode would be calculated independently. These g value errors would be summed in

quadrature over all the modes. However, the renormalized calculation does not allow

manipulation of individual mode frequencies, and the mode sum calculation is not
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Figure 5.16: Effects of mode frequency variation across a portion of the mode spec-
trum. Upper: parametric mode map in the region of the g value measurements. Mid-
dle: predicted cyclotron damping rates for various trap dimensions. The solid curve
gives results for the best-fit parameters from Table 5.3, and the dotted (dashed) lines
shows results for trap dimensions that shift the frequencies of TE127 and TM143 down
(up) by 0.27 GHz. Lower: calculated cavity shift for the same sets of trap dimensions.
The inset, which has the same vertical scale as the larger plot, shows the uncertainty
(at νc = at 149.0 GHz) associated with mode-frequency uncertainty, which is the
dominant source of error in the g value measurement presented in this thesis. See
Sec. 5.4.2 for a more conservative error estimate.
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sufficiently accurate.

So, in order to convert frequency error from miscalibration and from mode pertur-

bations into a g value error, a conservative approach is used. It is noted by examining

Fig. 5.2 that, provided ωc is detuned from the nearest mode by more than the mode

width, a positive shift of the mode frequency creates a negative shift of the g value.

This relation is true for both positive and negative detunings. Thus, if we calculate

the resulting g value shift if all modes increased their frequency by a given uncer-

tainty, we have calculated an uncertainty significantly higher than the more correct,

but less practical, error estimate discussed in the previous paragraph.

νc (GHz) ∆g/g d (∆g/g) / d νc error from ∆νM error from ∆QM

146.832 -10.2 ppt 19.4 ppt / GHz 5.9 ppt 0.9 ppt

149.046 0.07 ppt 1.94 ppt / GHz 0.52 ppt 0.01 ppt

146.832∗ - - - -

149.046∗ 0.07 ppt 1.94 ppt / GHz 1.0 ppt 0.02 ppt

Table 5.4: Summary of cavity shifts and uncertainties for the two B-fields where g
value measurements were performed. The second column gives the calculated g value
shift. The third column gives the slope of the g value shift versus frequency. The
final two columns give estimates of the calculated g value error from mode-frequency
uncertainty and from mode-Q uncertainty. Entries with an asterisk correspond to
the conservative error estimate discussed in Sec. 5.4.2. Values for the conservative
error estimate at νc = 146.832 GHz are not given because the detuning of νc from
the frequency of TE127 becomes negligible at one limit, preventing the same error
analysis from being used.

.

This conservative error estimate is used to establish a cavity shift uncertainty from

mode-frequency errors. Although not shown in Table 5.4, the g value shift incurred if
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all the modes shift up or down by 0.27 GHz is actually asymmetric; the error estimates

given in the table are the averages of the upper and lower uncertainty intervals. The

correct asymmetric error intervals are shown in Fig. 6.7.

5.4.2 A Conservative Mode-Frequency Error Estimate

At present, some of the researchers would prefer confirming data at other magnetic

fields before concluding that the data in Fig. 5.15 establish the frequency of TE127

to be within ± 0.27 GHz of the favored value. The more conservative approach is

to assign a mode-frequency uncertainty of ± 0.5 GHz, which corresponds to the half-

width of the pedestal at TE127.

This more conservative error estimate results in approximately twice the g value

uncertainty from mode-frequency error at νc = 149.0 GHz (∆g/g ≈ 0.5 ppt →

∆g/g ≈ 1 ppt). Also, this approach sends the upper-frequency limit for TE127 to

146.8 GHz, making the uncertainty in the νc = 146.832 GHz g value measurement

very large. Results for the conservative error estimate are marked with an asterisk in

Table 5.4. The conservative mode-frequency error estimate described in this section

is not used in subsequent analysis. However, the final choice of error assignment is

still being discussed within the research group and may be revised before publication.

5.4.3 Q-Error Contribution to Cavity Shifts

Finally, the uncertainty in cavity Q is estimated based on the measured cyclotron

lifetimes, discussed in Sec. 5.3. As discussed in Sec. 5.3.2, estimates of Q from para-

metric mode maps yield incorrect results, and insufficient cyclotron lifetime data have
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been collected to reliably fit QE and QM . A conservative lower limit for cavity Q is

made by taking the lowest possible value from a naive interpretation of parametric

mode maps (see Sec. 5.2.5). A conservative upper estimate of cavity Q is made by

assigning all Q values to a (somewhat arbitrary) factor of 1.5 times the favored QE

value from Table 5.3. The results of these Q variations are shown in Fig. 5.17.

The inset of Fig. 5.17 shows the same conclusion as reached in Sec. 5.1.6–knowledge

of cavity Q is of minimal importance for calculating the g value shift. The effects of

cavity Q uncertainty on g value error, conservatively estimated as described above,

are listed in Table 5.4.

5.5 Implications of Q Uncertainties

As discussed in Sec. 5.4.3, precise knowledge of the cavity Q values is not important

at the current level of g value accuracy, provided the g value measurement is performed

at sufficient detuning from the nearest cavity mode. However, the implications of the

failure of our parametric mode maps to measure the true cavity Q (see Sec. 5.2.5),

are important. If precise knowledge of mode Q is required, care must be taken when

using a cloud of electrons to measure Q values, that the results are independent of

cloud size. In the work presented here, this was not possible since saturation behavior

was encountered before the cloud size could be sufficiently reduced.

Measurements of mode Qs in hyperbolic traps [92] have been cited to justify

uncertainties assigned to the 1987 University of Washington g value measurement

[2], where the proximity of the cyclotron frequency to coupled cavity modes was not

known. This approach essentially uses the measured cyclotron damping rate along
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Figure 5.17: Effects of Q variation across a portion of the mode spectrum. Upper:
parametric mode map in the region of the g value measurements. Middle: cyclotron
damping rates for various Q values, using the favored trap dimensions of Table 5.3,
which yield mode frequencies marked with asterisks in the upper plot. The solid
line shows results for best fit to the lifetime data: QE = 6520, QM = 1370. The
dashed (dotted) line shows results for QE = QM = 9000 (QE = QM = 300). Lower:
calculated g value cavity shift for the same sets of Q values. The inset, which has the
same vertical scale as the larger graph, shows that the effects of Q variation over this
very large range of Qs has a negligible effect on the g value at 149.0 GHz.
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with Q to estimate cyclotron frequency detuning from the nearest cavity mode. The

cavity shift of the g value is then estimated based on that detuning. It is easy to show

from Eqs. (5.3) and (5.4) that the estimate of cavity shift obtained by this method

is proportional to the value used for Q. Thus, estimates of cavity shift require an

accurate determination of cavity Q. The study of cavity Q in the hyperbolic trap used

large electron clouds to measure the mode Qs but did not report that measured Qs

were found to be independent of cloud size, leaving it unclear whether the difficulties

discussed above with using electron clouds to measure cavity Q had been considered.

The technique used to estimate cavity shift in the hyperbolic trap experiment,

discussed above, is contrasted with the technique used in this work. We obtain the

detuning by comparing the cyclotron frequency to a known cavity mode spectrum.

We only use the Q values in the final calculation of cavity shift, where they turn out

to be unimportant. As shown in Sec. 5.1.6 and 5.4.3, this technique makes our g value

measurement insensitive to a cavity Q over a very large range of values.



Chapter 6

Determination of the g value

In this chapter we present a result for the first fully quantum measurement of the

electron magnetic moment. This result also represents the first demonstration of g

value cavity shifts and the first comparison with predicted shifts based on an inde-

pendently measured and identified cavity mode spectrum. The g value measurement

presented here, with a preliminary uncertainty assignment of 0.6 parts per trillion

(ppt), is a factor of 7 more accurate than the best previous results [2, 8].

6.1 Measurement of the g value

The electron’s intrinsic g value is defined by the relation between its magnetic

moment ~µ and its spin angular momentum ~S:

~µ = g
q~
2m

~S

~
, (6.1)

where q = −e is the electron charge and the quantity e~/2m is recognized as the Bohr

magneton µB. As discussed in Sec. 1.2.1, all recent g value measurements [8] achieve

124
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a 103 increase in precision by directly measuring the quantity g - 2 rather than g.

hωc

nc = 0

nc = 1

nc = 2

hωs

hωa
nc = 0

nc = 1

nc = 2

Figure 6.1: Diagram of quantized spin and cyclotron energies of an electron in a
magnetic field. The effects of special relativity and of the electrostatic trapping
potential are not included here. For B = 5.5 T, νs ≈ νc = ωc/(2π) ≈ 150 GHz, and
νa = ωa/(2π) ≈ 170 MHz.

A quantum level diagram of spin and cyclotron motions for an electron in a mag-

netic field (neglecting small corrections from the electric field and from special rel-

ativity) is shown in Fig. 6.1. As discussed in the following sections, the observed

eigenfrequencies in the Penning trap, ω̄c, ω̄a, and ω̄z, are slightly modified from the

corresponding free-space values ωc, ωa, and ωz because of the electrostatic trapping

potential. Corrections for the effects of special relativity are discussed in Sec. 6.2.1.

6.1.1 g Value Measurement in a Pure B-Field

It is easy to show that in the absence of an electric field, the ratio of anomaly to

cyclotron frequencies is proportional to g−2. The energy change ∆E associated with
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a spin-flip transition is given by

∆E = ~ωs = g
e~
2m

B, (6.2)

where ωs is the spin-flip frequency, m is the electron mass, and where we have used

the definition of g from Eq. (6.1). Using ωc = eB/m and Eq. (6.2), we arrive at

g

2
=

ωs

ωc

= 1 +
ωa

ωc

(6.3)

where the anomaly frequency ωa is defined as ωa ≡ ωs − ωc. An anomaly transition,

shown in Fig. 6.1, is a two-photon transition involving both a spin flip and a cyclotron

jump. Eq. (6.3) is often expressed in terms of the “electron anomaly” ae ≡ (g −

2)/2 = ωa/ωc. Thus, without including perturbations from the electrostatic fields of

the Penning trap, g - 2 is determined by measurement of the anomaly to cyclotron

frequency ratio.

Although one would not choose to measure the g value by driving a direct spin-flip

at ωs, there is some theoretical interest in studying the interaction of this resonance

with the electromagnetic modes of the trap cavity [90, 89]. However, it is difficult to

generate a microwave field at the spin-flip frequency ωs/2π ≈ 150 GHz strong enough

to drive this transition directly; in fact, a direct spin-flip transition has not yet been

observed in a Penning trap.

6.1.2 g Value Measurement in an Ideal Penning Trap

The presence of the electric field in an ideal Penning trap causes the eigenfrequency

ω′c corresponding to cyclotron motion to be slightly different from its free-space value
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ωc :

ω′c = ωc − ωm. (6.4)

The magnetron frequency ωm is given by

ωm =
ω2

z

2ω′c
, (6.5)

where ωz is the axial frequency. The spin frequency is not affected by the electrostatic

trapping potential, so

ω′a = ωs − ω′c. (6.6)

Combination of Eqs. (6.3), (6.4) and (6.6) yields g in terms of the eigenfrequencies

of an ideal Penning trap:

g

2
= 1 +

ω′a − ω2
z/2ω

′
c

ω′c + ω2
z/2ω

′
c

. (6.7)

6.1.3 g Value Measurement in an Imperfect Penning Trap

Real Penning traps have a variety of imperfections, including misalignment of

trap electrodes with respect to the B-field, misalignment of electrodes with respect to

one another, and imperfections in electrode geometry. These imperfections cause the

measured eigenfrequencies ω̄c, ω̄a, ω̄m, ω̄z to differ from their corresponding values in

an ideal Penning trap. For the leading-order corrections to the electrostatic potential

(those that alter the quadratic terms) an invariance theorem [94] allows g to be

determined precisely from the observed eigenfrequencies:

g

2
= 1 +

ω̄a − ω̄2
z/2ω̄c

ω̄c + ω̄2
z/2ω̄c

. (6.8)

Thus the invariance theorem conveniently allows a simple expression to be used to

calculate g from the eigenfrequencies of an imperfect trap. It is not clear a priori
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that the expression in terms of the imperfect-trap eigenfrequencies, Eq. (6.8), would

have the same form as Eq. (6.7), which expresses g in terms of the eigenfrequencies

of an ideal trap. As verified in Sec. 6.2.7, the imperfections of the trap used in this

work are sufficiently small to allow use of Eq. (6.8).

6.2 Corrections and Systematic Uncertainties

There are a few corrections and several sources of systematic uncertainty involved

in using Eq. (6.8) to obtain a g value from measured frequencies. All significant

corrections and sources of systematic error are collected in Table 6.2 of Sec. 6.3.

6.2.1 Relativistic Shift

The simple harmonic-oscillator level diagram shown in Fig. 6.1 does not include the

effects of special relativity. As the cyclotron oscillator gains energy, its dynamics are

modified by special relativity, making the oscillator slightly anharmonic. Amazingly,

the accuracy of the current experiment is such that accounting for the relativistic

mass increase associated with quantum zero-point energy is an essential correction to

g, at the level of 0.6 ppt. For the choice of spin ladder used in this work (spin up),

the relativistic mass increase of a spin flip requires a further 1.2 ppt correction.

The relativistic cyclotron frequency ωc is given by

ωc =
eB

γm
, (6.9)

γ is the familiar relativistic correction factor. For small excitation energies En ¿ mc2,
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we can expand Eq. (6.9) as

ωc =
eB

m + En/c2
≈ ω0

(
1− En

mc2

)
, (6.10)

where ω0 is the classical cyclotron frequency.

For a harmonic cyclotron oscillator, the energy En of the nth quantum state is

given by

En =

(
n +

1

2

)
~ωc . (6.11)

The change δ in cyclotron frequency per energy quantum can then be approximated

by using the level spacing of the harmonic oscillator:

δ ≈ dωc

dn
= − ω0

mc2

dEn

dn
≈ −ωc

~ωc

mc2
. (6.12)

A fully quantum calculation [69] yields the exact result δ = −~ω2
c/mc2, which

matches the approximate result of Eq. (6.12). For the level of accuracy of this work,

we also need to know the zero-point and spin contributions to the frequency shifts.

The results of the fully quantum calculation [69], including these contributions, is

shown in Fig. 6.2.

For νc = 150 GHz, δ/(2π) = 182 Hz. This shift corresponds to a 1.8 ppb cyclotron

frequency shift for the interval |s =↑, nc = 0〉 → |s =↑, nc = 1〉, where all cyclotron

spectroscopy in the Harvard 2004 experiment is performed. The measured cyclotron

frequency ω̄c (|↑, 0〉 → |↑, 1〉) must be converted to the zero-energy cyclotron frequency

ω̄c (which does not correspond to a measurable interval) by using

ω̄c = ω̄c (|↑, 0〉 → |↑, 1〉) +

(
3

2

)
δ. (6.13)

The value of ω̄c obtained from Eq. (6.13) is then used in Eq. (6.8) to compute the g

value.
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Figure 6.2: Spin and cyclotron energy levels including relativistic shifts. For a mag-
netic field of 5.4 Tesla, δ/(2π) = 1.2 ppb.

The significant contribution of the relativistic correction term δ, corresponding to

∆g/g = 1.4 × 10−12 per quantum level, illustrates one of the important advantages

of the novel single-quantum cyclotron spectroscopy used in this experiment. If the

cyclotron frequency is measured using classical spectroscopy, as in previous experi-

ments [2, 54], there will be a distribution of occupied cyclotron states. The resulting

frequency shift is by no means trivial to calculate, and it depends on both cyclotron

temperature and drive strength. Errors in previous 4.2 Kelvin g value experiments

introduced by thermal excitation to |nc = 1〉 and by the relativistic shift might have

been as large as ∆g/g ≈ 1 × 10−12 [51, 52]. Single-quantum spectroscopy between

known states completely eliminates the uncertainty from relativistic effects.
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6.2.2 Axial Shift from Anharmonicity

The axial frequency νz enters into the g value measurement as a correction to νa

and νc. From Eq. (6.8), it can be shown that the error ∆g/g induced by an axial

frequency error ∆νz is given by

∆g

g
≈ − ν̄z

ν̄2
c

∆ν̄z = −9× 10−15∆ν̄z, (6.14)

where the last equality is for ν̄c = 150 GHz and ν̄z is expressed in Hz. In principle,

errors in ∆g/g from axial frequency shifts can be made negligible, but this requires

some care to guarantee that the correct value for ν̄z has been measured.

As discussed in Sec. 2.3.4, the axial frequency is shifted by the large excitation of

the self-excited oscillator (SEO) due to axial anharmonicity. However, cyclotron and

anomaly measurements are made after the amplifiers have been shut off and the axial

oscillator has cooled to ∼ 300 mK (see Sec. 4.3). So the axial frequency at Tz = 300

mK, and not while the oscillator is self-excited, must be used in Eq. (6.8). The cold

Tz conditions can be approached by measuring the axial frequency when feedback

is shut off and the electron is driven only by the thermal noise of the amplifiers (in

our case ∼ 5 K). The electron resonance is observed as a dip in the amplifier noise

resonance [69]. The shift in ν̄z between the dip frequency and the SEO-driven value

is between +10 to +40 Hz (out of νz = 200 MHz) for usable SEO gain settings. This

range would correspond to an error of 0.09 × 10−12 ≤ ∆g
g
≤ 0.4 × 10−12, if the SEO

value for ν̄z instead of the non-driven value were mistakenly used in Eq. (6.8).

The dip in the noise spectrum still suffers from the broadening associated with

a thermal distribution of axial energies in an anharmonic potential. However, the

anharmonicity-induced broadening of the dip is observed to be less than 1 Hz, which
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limits the further anharmonicity-induced shift between 5 K and 300 mK to less than

1 Hz as well. Thus, a measurement of the dip frequency suffices as a measurement of

ν̄z at the 1 Hz level accuracy, corresponding to ∆g/g ≈ 10−14.

For the final data taken at νc = 149.0 GHz, the dip frequency was used for ν̄z, so

there is no corresponding correction or uncertainty. However, at νc = 146.8 GHz, the

dip frequency was not measured. As a result, an anharmonicity-induced correction

of ∆g/g = (0.2± 0.3)× 10−12 is applied to those measurements.

One of the advantages of the SEO is that it allows axial detection to be performed

at large oscillation amplitudes, where the trap is made to be locally harmonic [66].

However, this comes at the cost of making the trap locally anharmonic for the colder

axial temperatures where the g value measurement is performed. In future g value

measurements, the SEO might need to be operated with low gains so that the an-

harmonicity at the trap center is reduced. Choking down the SEO gain in this way

would unfortunately reduce its advantage over conventional externally-driven axial

detection. Tuning the compensation potential to different settings for detection and

for g value measurement might also circumvent anharmonicity problems.

Anharmonicity of the axial frequency at low excitation energies also perturbs the

anomaly and cyclotron line shapes discussed in Sec. 4.2.2. The magnetic bottle causes

the resonant frequency to vary with axial energy. The cyclotron and anomaly fre-

quencies ν̄c and ν̄a are functions of the magnetron frequency ν̄m = ν̄2
z/2ν̄c. Thus

anharmonicity of the axial frequency also causes ν̄c and ν̄a to vary with axial en-

ergy, changing the effective magnetic bottle. The effect on the g value calculation

of Eq.(6.8) is much more significant in ν̄a than for ν̄c, so the effective bottle shift
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does not cancel out. Like the the other effects discussed above, though, this is not a

problem at the current level of precision.

6.2.3 Axial Frequency Shift from the Anomaly Drive

There is also a shift in the axial frequency due due to the anomaly drive, which

involves two effects [86]. The first is a Paul-trap effect, where the off-resonant anomaly
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Figure 6.3: Shift of axial frequency with anomaly drive synthesizer power, for the
experimental setup at νc = 149 GHz.

drive changes the effective trap potential. The second effect is the shift of the free-

oscillation frequency at νz as a result of forced off-resonance oscillation at νa. The

frequency shift from both effects is expected to scale linearly with the square of the

anomaly drive voltage, in good agreement with the measured shift, shown in Fig. 6.3.

The axial frequency shift provides a means of calibrating the anomaly drive voltage at

the trap; in further discussion, the anomaly drive power is expressed in terms of the

axial frequency shift. Although the effects on a g value measurement of these axial
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shifts can easily be accounted for, they are negligible in the Harvard experiment since

the proximity of the anomaly and axial frequencies allows a relatively weak anomaly

drive to be used. The maximum anomaly drive strength used during a systematic

study only caused a 4 ppb axial frequency shift, as shown in Fig. 6.4. As can be seen

from Eq. (6.8), the effect on a g value measurement is negligible.

6.2.4 Anomaly Power Shifts

The anomaly transition probability dP for a short time interval dt is given [69] by

dP

dt
=

π

2
Ω2

aχa(ω), (6.15)

where χa(ω) is the anomaly response function described in Ch. 4. The rabi frequency

Ωa is given by

Ωa = B2zaρc
µB

~
, (6.16)

where B2 is the bottle parameter, za is the amplitude of the off-resonant axial oscil-

lation at νa, and ρc is the cyclotron radius. The amplitude za is proportional to the

anomaly drive voltage Va. It has been shown [86] that for fixed axial and anomaly

frequencies, all shifts of the anomaly resonance follow the relation

∆νa

νa

∝ V 2
a , (6.17)

where V 2
a is the anomaly drive voltage. Combining the above equations and requiring

anomaly transitions of a given rate, we find

∆νa

νa

∝ 1

χa(ω)B2
2

. (6.18)
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The response parameter χa(ω) obeys

χa(ω) ∝ 1

∆ω
, (6.19)

where ∆ω ∝ B2Tz is the thermal shift parameter of Sec. 4.2.2, and Tz is the axial

temperature. We finally arrive at

∆νa

νa

∝ Tz

B2

, (6.20)

which gives the dependence of anomaly power shifts on axial temperature and bottle

size for a given anomaly transition rate.

Previous g value experiments have encountered difficulties with anomaly drive

systematics [54], particularly those which used a very small (B2 = 10 T/m2) magnetic

bottle [86, 51, 95, 40]. According to Eq. (6.20), the fact that the Harvard bottle

(B2 = 1540 T/m2) is an order of magnitude larger than even the B2 = 150 T/m2

magnetic bottles previously used and the temperature is over an order of magnitude

smaller, we expect to observe negligible anomaly power shifts at the current level of

accuracy.

A study of the anomaly drive power shift is shown in Fig. 6.4. Any anomaly drive

shift is expected to be proportional to the square of the anomaly voltage Va [86].

The power shift graph is calibrated in terms of the fractional axial frequency shift

δ = ∆νz/νz×109 induced by the anomaly drive, which is also proportional to V 2
a (see

Sec. 6.2.3). A linear fit to the measured points shown in Fig. 6.4 yields

∆ae

∆δ
= 0.01 (11)× 10−12, (6.21)

which is consistent with a vanishing power shift. The data for the reported value at

νc = 149.0 GHz were taken at an anomaly drive strength corresponding to δ = 1.3.
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Figure 6.4: Shift of measured g value with anomaly power, measured at νc = 149.0
GHz. Anomaly power is expressed in terms of the axial shift parameter δ (see Fig. 6.3).
All data in this plot were taken at the same axial frequency and SEO gain setting,
but only the SEO-excited axial frequency was recorded. As a result, the y-axis has
a small but unknown offset which prevent these data from being used for a precise g
value measurement. All data in this plot were taken with a cyclotron power of P ≈
60 in the units of Eq. (6.22). Only statistical errors are included in the figure and in
the fit.

No offset is applied to the measured g values, but an uncertainty of 0.14 × 10−12 is

obtained from Eq. (6.21).

The data used for obtaining g at νc = 146.8 GHz are those shown in Fig. 4.7,

over which the anomaly drive strength varies. However, like for the data of Fig. 6.4,

no systematic shift over these data was observed. A conservative error estimate for

the νc = 146.8 GHz data is made by assigning an uncertainty corresponding to the

possible shift at the highest used anomaly power: ∆g/g = (0± 0.4)× 10−12.
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6.2.5 Cyclotron Power Shifts

Although cyclotron power shifts were observed in the 1987 University of Washing-

ton experiment at the 0.6 ppt level [2], their origin is not understood. Data obtained

in a trap with a variable magnetic bottle [8] shows that the cyclotron power shifts

are proportional to B2. It might be expected that the effect of the 10 times larger

bottle in the Harvard experiment would roughly cancel the effect of the ∼ 10 times

weaker drive allowed by the narrower line width (see Sec. 6.2.4). However, in the Har-

vard experiment, far less drive strength is required than is suggested by the linewidth

argument because we resolve single-quantum cyclotron transitions (which have a rel-

atively long lifetime), rather than requiring sustained excitation of several quanta

(which start at a shorter lifetime and become even shorter in excited states).

In a study of cyclotron power shifts, drive strength is varied by adjusting a preci-

sion D-band microwave attenuator, so relative changes of microwave power are well

calibrated. However, there is not currently a good method to calibrate the absolute

microwave power which reaches the trap. Cyclotron excitation fraction under con-

trolled conditions might be used to obtain an absolute calibration, but statistical

fluctuations and magnetic field drift would make precise calibration difficult. The

lack of absolute calibration is not considered to be a problem, though, since searches

for shifts scaling with drive power can still be performed, even if the absolute scaling

is unknown.

A study of cyclotron power shift is shown in Fig. 6.5. The x-axis is linear in drive

power, where the power parameter P is given by

P = 10−A/10 ∗ 1000, (6.22)
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Figure 6.5: Shift of g with cyclotron drive strength, measured at νc = 149.0 GHz.
All corrections discussed in this chapter were applied to the data, but only statistical
uncertainties are drawn and used for the fit. All data in this plot were taken with
an anomaly drive strength corresponding to δ = 1.3 (See Sec. 6.2.4). The point at
P = 25, where final g value data was taken, represents an average over seven separate
g value measurements.

where A is the D-band attenuator setting in decibels.

The fit to the data in Fig. 6.5 is given by

g

2
= 1.001 159 652 180 92 (16)− [

4.1 (4.7)× 10−15
]× P, (6.23)

where P is microwave power in the units of Fig. 6.5. The data are consistent with a

vanishing cyclotron drive power shift, so no offset to the measured g values is applied.

The final data for 149.0 GHz were taken at a cyclotron drive power P = 25, at

which power Eq. (6.23) yields an uncertainty from a possible power shift of ∆ae =

0.12× 10−12, which is reported in Table 6.3.

Data at νc = 146.8 GHz were taken with a different pin-hole attenuator mounted
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on the trap window, so the calibration of the cyclotron drive for those data relative to

P is not precisely known. Comparing the cyclotron excitation fraction for histograms

taken at the two different field values, it is determined that data taken at 146.8 GHz

correspond to 30 ≤ P ≤ 60. Therefore, a conservative error estimate is made for

a possible cyclotron power shift of the νc = 146.8 GHz by assigning an uncertainty

corresponding P = 60 of ∆g/g = 0.3× 1012.

6.2.6 Cavity Shifts

The procedure for obtaining corrections associated with cavity shifts is described

in Ch. 5. The g value measurements obtained at the two different B-field values

used in this work are shown in Fig. 6.6. All corrections and uncertainties (including

statistical uncertainty) discussed in this chapter, aside from those associated with

cavity shifts, are included in the uncertainty intervals.

As discussed in Sec. 5.4, cavity shift uncertainty comes from two sources: mode

frequency uncertainty and mode Q uncertainty. Both sources of uncertainty have

a larger effect when the g value is measured near a cavity mode. Mode-frequency

uncertainty is exaggerated near a cavity mode because in this region the cavity shift

is changing rapidly with frequency. As discussed in Sec. 5.1.6, mode Q is insignificant

if νc is far-detuned from the mode frequencies, and Q only has a small effect when

the g value is measured near a mode. Table 6.1 shows the relative contributions to

cavity shift error for the measurements at the two different field values.

Fig. 6.6 shows a comparison of g value measurements made at different B-fields

along with the shift predicted by the independently measured cavity mode spectrum.



Chapter 6: Determination of the g value 140

���

���

��

��

��

��

	




�
�


�
�
��
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�

�� 
!
"��#
!
$��#
!
"��%
!
$��%
!
"

&'&()*+),-+./0.,&'12345

678

679

:;

:<

:=

:>

?

@

A
B
C
B
D
E
F�
�

Figure 6.6: Measurements of the g value at B-fields with different cavity shifts. The
lower-frequency point is near cavity mode TE127, and the higher-frequency point is
well-centered between TE127 and TM143. Error bars represent all uncertainty besides
those from cavity-shift corrections. The solid line represents the predicted cavity
shift, with the offset in g defined by the νc = 149.0 GHz measurement. The dashed
lines represent the estimated 68% confidence region of the cavity shift correction.

νc |νc − νM1| |νc − νM2| calculated shift in ∆g/g × 1012

146.8 GHz 0.51 (27) 4.95 (27) -10.2 (5.9) (0.9)

149.0 GHz 2.72 (27) 2.73 (27) 0.07 (0.52) (0.01)

Table 6.1: Cavity shifts and uncertainties for g value measurements at νc = 146.8
GHz and at νc = 149.0 GHz. The second and third columns report the frequency
offset (in GHz) from the nearest modes on the low and high-frequency sides, respec-
tively. The final column reports the calculated cavity shift, where the first and second
errors are estimates of the mode-frequency uncertainty and the mode-Q uncertainty,
respectively. (As shown in Fig. 6.7, the upper and lower cavity shift uncertainties are
actually asymmetric; the errors reported in the fourth column are the averages of the
upper and lower uncertainty intervals.)
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This comparison represents the first demonstration of the long-anticipated [87] cavity

shifts of Penning trap g value experiments and the first comparison with predicted

shifts based on an independently identified cavity mode spectrum.

It can be seen from Fig. 6.6 that the predicted cavity shift shows good agreement,

to well within the uncertainty, with the measured g value shift. However, this state-

ment still leaves open the question of whether the cavity shift model has calculated

the correct offset for the measured g values. The cavity shift calculations inher-

ently determine absolute shifts and not relative shifts. So, if enough relative g value

comparisons are made at different fields, like the comparison shown in Fig. 6.6, the

absolute offsets of the cavity shift calculation could be verified with a high degree of

confidence.

6.2.7 Shifts from Trap Misalignment

Following Ref. [69], limits on trap misalignment and asymmetry can be determined

by comparing the measured magnetron frequency ν̄m to the value predicted for an

ideal trap ν̄2
z/2ν̄c.

Misalignment between the trap axis and the field axis is parameterized by the

angles θ and φ, where

Bz = B cos θ,

Bx = B sin θcosφ, (6.24)

By = B sin θsinφ.

The results of electrode internal misalignment and imperfections can be parameterized



Chapter 6: Determination of the g value 142

by ε, where the electrostatic potential energy U is given by

U =
1

2
mω2

z

[
z2 − 1

2

(
x2 + y2

)− 1

2
ε
(
x2 − y2

)]
. (6.25)

The observed magnetron frequency ω̄m is given by

ω̄m ≈ ω̃m

(
1− ε2

)1/2
[
1− 3

2
sin2 θ

(
1 +

1

3
ε cos 2φ

)]−3/2

, (6.26)

where ω̃m is defined as

ω̃m ≡ ω̄2
z

2ω̄c

. (6.27)

As discussed in Sec. 2.3.6, Eq. 6.26 along with measurement of ω̄m and ω̄c can be used

to estimate the size of imperfections in the experimental trap. The observation of

ω̄m > ω̃m in the traps described in this work and elsewhere [96, 97] is consistent with

Eq. 6.26 and the expectation that for experimental traps θ > ε [69]. Thus, Eq. 6.26

is used as an estimate of θ, assuming a small ε, in this work. Using this assumption

and the measurement of ω̄m described in Sec. 2.3.6, we conclude θ < 0.5◦.

For θ ¿ 1 and ε ¿ 1,

ω

ω̄c

= 1 +
1

2

[
ω̄z

ω̄c

]2

+
9

16

[
ω̄z

ω̄c

]4 (
θ2 − 2

9
ε2

)
(6.28)

gives the error introduced in ω̄c by trap imperfections. For angular misalignment

of θ = 1◦, the fractional error in ωc given by Eq. (6.28) is on the order of 10−18.

Therefore, the invariance theorem of Eq. (6.8), can be used to accurately determine

g from the measured eigenfrequencies.



Chapter 6: Determination of the g value 143

6.3 g Value Measurement Results

All known corrections and systematic uncertainties are listed in Table 6.2. The

largest uncertainties come from cavity shift corrections. Table 6.3 shows the final g

value measurements with all corrections and uncertainties included. After including

corrections for the cavity shift, the agreement between the values obtained at the

different fields is quite good. The results are also plotted in Fig. 6.7.

source ∆g/g × 1012 at 146.8 GHz ∆g/g × 1012 at 149.0 GHz

relativistic ∆νc − 2.07 (0.00) − 2.10 (0.00)

misalignment 0.00 (0.00) 0.00 (0.00)

νz anharmonicity 0.2 (0.3) 0.00 (0.02)

anomaly power 0.0 (0.4) 0.00 (0.14)

cyclotron power 0.0 (0.3) 0.00 (0.12)

cavity shift 10.2 (6.0) −0.07 (0.52)

total corrections 8.3 (6.0) -2.17 (0.55)

Table 6.2: Systematic corrections and uncertainties in obtaining the g value from
measured frequencies for the two different B-field values. Non-parenthesized items
represent corrections applied to obtain the correct value for g, and parenthesized
items represent uncertainties.

Since the uncertainties of the cavity shift calculation are already included in the 0.6

ppt standard error of the 149.0 GHz measurement, the larger uncertainty at 146.8 GHz

should not be regarded as degrading the accuracy. These results can be interpreted

as a 0.6 ppt g value measurement at 149.0 GHz, where the cyclotron frequency is far

detuned from the nearest cavity mode, and an independent confirmation of the cavity
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νc g/2 without cavity corrections g/2 with cavity corrections

146.8 GHz 1.001 159 652 171 48 (12) (58) 1.001 159 652 181 68 (12) (600)

149.0 GHz 1.001 159 652 180 93 (15) (19) 1.001 159 652 180 86 (15) (55)

wtd. mean 1.001 159 652 180 87 (57)

Table 6.3: Final results for g value measurements at the two different B-field values.
In the first two rows, the first parenthesized quantity is the statistical uncertainty
and the second is the systematic uncertainty. Only the overall uncertainty is given
for the weighted mean. See Sec. 5.4.2 for discussion on the assigned uncertainty.

shift calculation, made by comparison with the 146.8 GHz result, where the cyclotron

frequency is strongly affected by the nearby mode. Alternatively, a weighted mean of

the two measurements can be performed; the result is also shown in Table 6.3.
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Figure 6.7: g value measurement at νc = 146.8 GHz and at νc = 149.0 GHz. All
known corrections and sources of uncertainty, both statistical and systematic, are
included.
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Conclusion

We have presented a preliminary result for the first fully quantum measurement of

the electron magnetic moment. This result, with an uncertainty of 0.6 parts per tril-

lion (ppt), is a factor of 7 more accurate than the best previous g value measurements

[2, 8]. The result is regarded as preliminary since we are currently preparing to take

g value measurements at a few more values of magnetic field and since the assigned

error might be revised before publication (see Sec. 5.4.2). In this chapter, we review

the status of the measurement. We also discuss prospects for future experiments.

7.1 Harvard g value Measurement

The g value result from this thesis, presented in Ch. 6, is

g

2
= 1.001 159 652 180 86 (57). (7.1)

The 0.6 ppt uncertainty is dominated by the cavity shift systematic. As discussed

in Sec. 1.1.2, this g value is used along with existing QED calculations [12, 4, 6] to

145
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determine a new value for the fine structure constant

α−1 = 137.035 999 777 (27) (67), (7.2)

where the first uncertainty is from theory and the second is from experiment.

Figure 7.1: Comparison of recent g value measurements. The zero of vertical axes is
set to the Harvard 2004 result presented in this thesis. “UW” denotes experiments
[2, 8] performed at the University of Washington.

Agreement of the Harvard determination of α with other measurements is shown

in Fig. 1.2. A comparison of the Harvard g value result with recent measurements

from the University of Washington (see Sec. 1.3), is shown in Fig. 7.1. The difference

between the Harvard result and the 1987 University Washington result [2], approaches

a 2σ disagreement. This rather large disagreement is perhaps not surprising consid-
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ering the lack of knowledge of the hyperbolic trap cavity modes which lead to the

reported 4.3 ppt uncertainty of the 1987 measurement (see Sec. 5.5). Agreement be-

tween the Harvard result and the 1990 University of Washington result [8], where a

lossy hyperbolic trap was used to reduce cavity shifts, is reasonable.

7.2 Strengths of the Harvard g value Measurement

The g value measurement presented here uses quantum spectroscopy (see Ch. 4)

between only ground and first-excited states of the spin and cyclotron motions. Rep-

resenting a marked improvement over the classical cyclotron spectroscopy of previous

experiments [54], this procedure completely eliminates frequency-shift uncertainties

associated with relativistic mass corrections of excited states.

Single quantum spectroscopy is possible because the apparatus is cooled by a

dilution refrigerator, causing only the ground cyclotron state to be occupied. Also,

the sub-Kelvin environment cools the axial motion, reducing thermal broadening

of the cyclotron and anomaly resonances (see Ch. 4) while still allowing resolution

of single-quantum cyclotron jumps. The use of a higher axial frequency [70] has

a similar effect. Cooling of the axial temperature and the use of single-quantum

cyclotron spectroscopy also reduce drive-power systematic shifts (see Ch. 6).

Finally, the Harvard g value measurement is performed in a cylindrical Penning

trap [73], as contrasted with the hyperbolic traps used in previous g value experiments

[8]. The electromagnetic standing-wave modes of the cylindrical trap cavity are iden-

tified as well characterized TE and TM modes. The low mode density and precise

mode characterization (see Ch. 5) afforded by a cylindrical trap allows the cyclotron
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frequency to be far detuned from independently identified cavity mode frequencies.

The frequency shift from residual interaction with cavity modes can be calculated to

a high degree of accuracy.

7.3 Future g value Experiments

The leading uncertainty of this g value measurement is associated with an im-

precise knowledge of cavity mode frequencies (see Ch.5). Although we were largely

limited by equipment problems, it is also unclear why we were unable to use the

precise frequency-calibration techniques of previous experiments [72]. Improved cal-

ibration of mode maps would substantially reduce the leading uncertainty of the g

value measurement presented in this thesis. Eventually, the use of a higher-Q trap

cavity might also be important in reducing cavity-shift errors.

At some point, g value experiments might become accurate enough that mode

Q plays a non-negligible role in calculating cavity shifts. If it is determined that

the parametric technique for measuring the cavity mode spectrum cannot be used

to measure the mode Q values, techniques might be developed to use the measured

cyclotron lifetime for mapping the cavity coupling. This could be a significant im-

provement, since such a map would not rely on complicated interactions in a cloud of

electrons to determine the damping rate of a single electron. A technique which uses

the parametric response of a single electron has succeeded in measuring an enhanced

decay rate of 23 Hz near a cavity mode [98] and might be useful for making such a

lifetime map.

If the anomaly and cyclotron line widths (see Ch. 4) could be narrowed, g value
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precision would be further improved. First the source of the mysterious line shape

rounding must be eliminated. Substantial line-shape narrowing could then be accom-

plished by reducing the magnetic bottle size. With the axial frequency resolution

currently provided by the self-excited oscillator [66], a magnetic bottle a factor of

∼ 5 smaller could be used without much difficulty, resulting in narrowing of the cy-

clotron and anomaly line widths by the same factor. If, in addition to eliminating

the line-shape rounding, the axial temperature were cooled to the ∼ 30 mK limit of

the current dilution refrigerator, additional line-shape narrowing would be achieved.

Even lower temperatures might be reached using a more powerful pump for the di-

lution refrigerator. Cooling of the axial motion, perhaps to the ground state, might

also be accomplished by sideband cooling techniques [72, 70].

7.4 Implications for Other Precision Measurements

The techniques developed for the g value measurement presented in this thesis

also make possible improvements in other precision experiments. As discussed in

Sec. 1.1.4, narrowing of the cyclotron and anomaly resonance widths makes possible

improved tests of CPT symmetry and Lorentz invariance, both with and without

comparison to a positron. Also, much of the progress made for this g value measure-

ment might benefit a new measurement of the proton-to-electron mass ratio. This

mass ratio is used, along with h/mCs from cesium recoil experiments, in the most

competitive measurement of α. With improvements to the cesium recoil experiment

[22], uncertainty in the proton-to-electon mass ratio might soon dominate the error

of that measurement [20].
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