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Abstract

Recent work has described the collective behavior of a large number of parametrically

pumped electron oscillators as well as the behavior of a single electron in a Penning trap.

The excitation of a single particle oscillator is well described by the classical Mathieu equa-

tion with interesting nonlinear dynamics appearing with increasing numbers of electrons.

The plasma is extremely sensitive to the net heat in the system, particularly cooling from

transverse electromagnetic modes of the cylindrical Penning trap cavity. Under certain

conditions the plasma can be sufficiently cooled so that it acts like a rigid ball of charge.

The goal of the current work is to bridge the single particle and many particle regimes by

studying the collective behavior of “countable” numbers of electrons (i.e. 2,3,4), thereby

building a plasma one electron at a time.
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Chapter 1

Nonneutral Plasmas Confined in a

Penning Trap

1.1 Overview

The vast majority of physical systems are characterized by complex behavior due to non-

linear interactions between various components. The synchronization of various motions is

the hallmark of many such complex systems. Examples of self-synchronization of nonlinear

oscillators abound in biology, chemistry and physics. More than 300 years ago, Huygens

noted that clocks hanging on the same wall over time tended to synchronize the phases

of their swinging pendula [1]. More recently, self-organized behavior has been observed in

the beating of heart cells and arrays of Josephson junctions [2,3]. Nonlinear systems have

often been neglected as subjects of scientific research because they are difficult to char-

acterize and were assumed to lack any universality in their complex behavior. However,

there have been some recent advances in understanding of complex systems. For example,

in 1978 Feigenbaum showed there is a universality in chaos [4] and several researchers over

the past decade have described stochastic resonance of bistable systems in the presence

of noise [5, 6]. The work of this thesis takes the approach of starting with the well un-

derstood system of a single electron in a Penning trap. The complexity is increased by
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adding individual electrons to the trap.

The experiments performed for this thesis use electrons in a Penning trap with a

very good vacuum. The electrons are cooled by coupling them to electromagnetic modes

of a high quality cylindrical microwave cavity formed by the trap electrodes. A simple

cylindrical geometry allows easy identification of individual standing wave modes of the

cavity, which are well separated in frequency. Such cooling was first observed and used

by Tan and Gabrielse to synchronize the axial motion of between 10 and 10000 electrons

[7]. Without cavity cooling, the parametrically driven oscillatory axial motion produces

no observed excitation of the axial center of mass because anharmonic internal motions

dominate the motion of the center of mass. With strong cavity cooling, however, electron

synchronization causes a very large and clearly observable excitation of the center of mass.

One of two major advances reported in this thesis is the demonstration that with strong

cavity cooling the electrons synchronize so completely that the oscillation amplitude of

the center of mass is the same size as would be expected for a rigid ball of charge. This

dramatic synchronization of trapped electrons is achieved when the Coulomb interactions

shunting energy from the internal motions to the cyclotron motion which then damps to

the cavity. Such synchronization is presented for collections of electrons ranging from 2

to 1000.

Order has been previously observed in collections of trapped charged particles. In

1959, Wuerker, Shelton and Langmuir observed that aluminum particles in a Paul trap

formed an ordered array when cooled by gas collisions [8]. More recently similar ordered

systems have been observed with small numbers of laser cooled ions in Penning and Paul

traps [9–11]. Each of these systems required a transfer of energy to achieve order. However,

these experiments were performed at equilibrium; the cooling produced a high correlation

between the charges which resulted in crystallization. The observations in this thesis are

of a system that is far from equilibrium.

The second major advance reported here builds upon the demonstration by Tseng

et. al. [12] that a single electron in a Penning trap is a good approximation of an ideal
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parametric oscillator. The ideal parametric oscillator is a phase bistable system, but

we have studied the conditions under which random phase switching occurs due to the

presence of noise. Such abrupt transitions had been observed with many electrons [7], but

were not initially expected for a single electron. Two and three electrons that are fully

synchronized show similar phase switching behavior to a single electron. The transition

rates are exponentially lower for more electrons, presumably due to a higher efficiency of

cavity cooling of the internal motions. If the cavity cooling is decreased, the flip rate for

more than one electron increases with the loss of synchronization. This work stimulated

a theory by Maloney, et. al. of the Dykman group at Michigan State University [13] that

agrees with our measurement. Double well systems such as this were first described by

Kramers in 1940 in the context of chemical reactions [14]. The field has been expanded

and refined over the years to explain phase switching in electric circuits and Josephson

junctions [5, 15–17].

Chapter 1 discusses the individual motions of an electron in a trap, the interaction of

the electron with the cavity, and fluid behavior of a large plasma of electrons. Chapter

2 covers the details of the experimental apparatus. Chapter 3 develops the parametric

oscillator in the context of a single electron, and Chapter 4 discusses the onset of rigid

behavior for many electrons. Chapter 5 presents the measurements of phase flips of a single

electron and Chapter 6 describes how the flip rates for many electrons differ from those

of a single electron. Chapter 7 presents some conclusions and suggests future directions

of this work.

1.2 Electron Motions

The motions of a single electron in a Penning trap are very well understood [18–20]. There

are three fundamental oscillatory motions, the axial, the cyclotron and the magnetron.

Each motion would be independent except for couplings by electrostatic anharmonicity,

magnetic gradients, special relativity and, with more than one particle, the Coulomb

3



Figure 1.1: The three fundamental motions of an electron in a Penning Trap

interaction. Although it has been shown that the cyclotron motion of a single electron

at 4 Kelvin is intrinsically quantum mechanical, the energy and rapid decoherence of our

cyclotron oscillators make a quantum mechanical treatment unnecessary. In this section

we shall discuss the classical motions of a single electron. The full equations of motion for

an arbitrary number of electrons, including the Coulomb interaction, will be discussed in

Section 1.4.

The electron is confined by and oscillates in an electrostatic quadrupole potential

V (~r) = Vo
z2 − 1

2ρ
2

2d2
[1 + C2] (1.1)

where Vo is the voltage applied between the ring and endcaps, C2 is a dimensionless
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constant dependent on the trap geometry, and d is a characteristic trap dimension defined

in terms of the axial and radial trap dimensions, zo and ρo

d =

√
1
2

(
z2
o +

1
2
ρ2

o

)
= 0.354 cm. (1.2)

For the perfect quadrupole in Eq. 1.1, the axial motion along the direction of a uniform

magnetic field is a harmonic oscillator with an angular frequency given by

ω2
z =

eVo

md2
[1 + C2]. (1.3)

Vo is a potential applied to electrodes comprising the trap by an extremely stable solid

state power supply and voltage divider and is typically about 10 V. For our cylindrical

cavity trap, C2 is about 0.1 [21, 22]. This gives an axial frequency of approximately 60

MHz. In reality, the potential is not a perfect quadrupole because the electrodes are

not the equipotential surfaces of an ideal quadrupole. Therefore, the trap contains two

compensation electrodes with voltages set to minimize the anharmonicity. The actual

potential in the Penning trap can be written as a series expansion given by

V (~r) = Vo

(
z2 − 1

2ρ
2

2d2

)
+

1
2
Vo

∞∑
k even

Ck

(
r

d

)k

Pk(cos θ). (1.4)

The sum is only over even n because the potential must be symmetric under axial reflec-

tions. Pk are Legendre polynomials in cylindrical coordinates. The expansion coefficients

can be written as

Ck = C
(0)
k +Dk

Vc

Vo
(1.5)

where C0
k and Dk are calculable near the center of a perfectly aligned trap. The expansion

converges rapidly for small oscillations so only the terms C2, C4 and C6 are considered.

Table 1.2 gives the calculated coefficients for an ideal cylindrical trap with no gaps or slits

in the electrodes [21]. The compensation potential, Vc can be set to make C4 = 0 which

is considered to be the point at which the trap is “tuned.” This tune point can be seen
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Figure 1.2: Setting of the compensation voltage, Vc, to make C4 = 0 determined from fits
of parametric lineshapes. See Chapter 3 for details. The tune point is consistent for 1 to
1000 electrons.

experimentally with both coherent and parametric detection as is seen in Fig. 1.2 which

shows that the tune point is valid for up to 1000 electrons.

The cyclotron motion is the circular motion that occurs when a charged particle moves

in the presence of a magnetic field. In this case the magnetic field lines are highly homoge-

neous and aligned with the z axis of the trap so the cyclotron motion is entirely orthogonal

to the axial motion. The cyclotron frequency is given by

ωc =
eB

m
(1.6)

where m is the mass of the electron and e is the charge. The superconducting magnet used

in these experiments has a continuously variable field of up to 6 Tesla so the cyclotron
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k Co
k Dk

2 0.125 0.000428
4 -0.0164 ± 0.0009 -0.0551± 0.0004
6 -0.0905 0.0123

Table 1.1: Calculated values of anharmonicity coefficients for an ideal cylindrical trap with
no slits in its electrodes. The errors for k = 4 come from a calculated error in the trap
dimensions based on a measurement of many cavity standing wave modes (see Fig. 1.3)

frequency can be set between 0 and 160 GHz.

The last motion is a magnetron motion in the x-y plane caused by perpendicular

electric and magnetic fields. The frequency is given by

ωm =
ω2

z

2ω′
c

(1.7)

where ω′
c = ωc − ωm. The magnetron frequency, ωm/2π, ranges between 11 and 20 kHz.

Unlike the axial and cyclotron motion, the magnetron motion is unstable as the orbit sits

on a potential hill with larger orbits having lower energies. However, the damping time is

very long with such a large magnetic field and the motion for a single electron has been

shown to be “cooled” (pushed up the potential hill) by a drive applied at ωz + ωm [18].

1.3 Electromagnetic Cavity Modes

The electrodes that create the trapping potential for the Penning trap necessarily form

a microwave cavity which may enhance or inhibit synchrotron radiation of the electrons.

This trap was designed to approximate a perfect cylindrical cavity without slits and holes

and with walls of infinite conductivity. In a perfect cavity, the radiative mode structure

is well understood. The standing wave field vanishes at the walls which gives TM and TE

fields in cylindrical coordinates (ρ, φ, z) as [23]
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TM Fields

~Et =
pπρ2

0

z0χ2
mn

sin
(
pπz

z0

)
~∇tψ

~Bt =
iεωρ2

0

cχ2
mn

cos
(
pπz

z0

)
ẑ × ~∇tψ

Ez = ψ(ρ, φ) cos
(
pπz

z0

)

Hz = 0 (1.8)

ψ(ρ, φ) = E0Jm

(
χmnρ

ρ0

)
e±imφ (1.9)

TE Fields

~Et =
−iωρ2

0

cχ′2
mn

sin
(
pπz

z0

)
ẑ × ~∇tψ

~Bt =
pπρ2

0

z0χ′2
mn

cos
(
pπz

z0

)
~∇tψ

Ez = 0

Bz = ψ(ρ, φ) sin
(
pπz

z0

)
(1.10)

ψ(ρ, φ) = E0Jm

(
χ′

mnρ

ρ0

)
e±imφ (1.11)

m = 1, 2, 3...∞

n = 0, 1, 2...∞

p = 0, 1, 2...∞

where χmn is the nth root of the equation Jm(x) = 0 and χ′
mn is the nth root of J ′

m(x) = 0.
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The frequency of the TM fields are given by

ωmnp = c

√(
χmn

ρo

)2

+
(
pπ

2zo

)2

. (1.12)

The frequencies of the TE fields have the same form except χ′
mnp is substituted for χmnp.

Fig. 1.3 compares measured and calculated frequencies m=0 TE modes.
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zo = 0.38355(22) cm

Best-fit dimensions:

Figure 1.3: Comparison of measured and calculated frequencies for TE modes where m=0.

Of particular interest are the modes where m=1 and p is odd. These “strongly coupled”

modes have a standing wave maximum (an antinode) at the center of the trap in the radial

electric field which strongly couples the cavity and the cyclotron motion of electrons at

the center of the trap.

An electron cyclotron oscillator in a cavity may have inhibited or enhanced emission of

synchrotron radiation depending on the detuning of cyclotron frequency from a TE or TM

cavity mode [24]. If the modes are well separated in frequency, the shift in the cyclotron

9



frequency due to the interaction with the cavity mode is given by [25]

2π∆ν =
1
2
γQMδM (1.13)

γ = AM
QM

1 + (QM δM )2
(1.14)

where δM = 2(ωc − ωM )/ωM is the detuning of the cyclotron frequency from the mode

center frequency and QM is the quality factor of the mode. The frequency shifts are of

importance in precision measurements, such as a measurement of the anomalous magnetic

moment of the electron. The most precise measurement of the magnetic moment was

made in a hyperbolic Penning trap several years ago [26, 27]. The damping rate of the

cyclotron motion was observed to be 3 times smaller than that of free space, indicating the

cavity was inhibiting synchrotron radiation [24]. This was the leading order uncertainty

in that measurement. Since the cavity mode structure of a hyperbolic trap is difficult

to understand, a new series of measurements is planned for the cylindrical trap in which

the cavity shifts can be well understood. If ωM and QM can be measured to high level of

certainty, the cyclotron frequency can be set to the point where the frequency shift is zero.

The resulting measurement of the magnetic moment is free of the effects of the cavity.

An important component of this new measurement of the anomalous magnetic moment

is the accurate measurement of the frequency and quality factor of the cylindrical cavity.

Previous work has shown [7,25,28] that the electrons in the trap may be used as a probe

of the cavity. When the cyclotron frequency is resonant with a cavity mode, the energy in

the cyclotron motion is more efficiently transferred to the cavity than when the cyclotron

frequency is detuned from the mode. When more than one particle is in the trap, the

Coulomb interaction transfers energy between the cyclotron and axial motions so the

cavity mode cools the axial energy as well. Since theoretically the cooling rate depends on

the detuning of the cyclotron frequency as given in Eq. 1.14, the observed modes can be

fit to Lorentzians, yielding a center frequency and a width. If a Lorentzian shape is seen

in the cavity mode structure independent of the motion of the trapped electrons and the

10



strength of the parametric drive, it is assumed that what is measured is this cooling rate.

Fig. 1.4 shows observation of such modes (the details of how electrons are used to probe

the cavity will be discussed in Chapter 4). The frequencies of the observed modes agree

well with those predicted by the dimensions of the trap, but the quality factors of the

modes depend on more subtle details of the cavity such as machining imperfections and

gaps between the electrodes. Therefore the measurement of the widths of these Lorentzians

are the best measurement of the quality factors. However, Chapter 4 will show that the

nonlinear dynamics of the cloud of electrons sometimes produces cavity mode lineshapes

that are not Lorentzian. These effects will be explored in later chapters.

1.4 Full Equations of Motion

The full equations of motion for the kth electron in a plasma are [7]

z̈k + γz

N∑
i=0

żi + ω2
zzk + λ4ω

2
z(2z

2
k − 3ρ2

k)zk

+λ6ω
2
z(3z

4
k − 15z2

kρ
2
k +

45
8
ρ4

k)zk

= ω2
ee

N∑
i6=k

(zk − zi)
| ~rik |3 (1.15)

ẍk − ωcẏk − 1
2
ω2

zxk − 3λ4ω
2
z(z

2
k − ρ2

k

4
)xk −

15
2
λ6ω

2
z(z

4
k − 3

2
z2
kρ

2
k +

1
8
ρ4

k)xk

+
√
re
zo
ωMΛM (~rk)ḟx

= ω2
ee

N∑
i6=k

(xk − xi)
| ~rik |3 (1.16)

ÿk + ωcẋk − 1
2
ω2

zyk − 3λ4ω
2
z(z

2
k − ρ2

k

4
)yk −

11



15
2
λ6ω

2
z(z

4
k − 3

2
z2
kρ

2
k +

1
8
ρ4

k)yk

+
√
re
zo
ωMΛM (~rk)ḟy

= ω2
ee

N∑
i6=k

(yk − yi)
| ~rik |3 (1.17)


 f̈x

f̈y


+ ΓM


 ḟx

ḟy


+ ω2

M


 fx

fy




−
√
re
z0
ωM

N∑
k=1

ΛM (rk)


 ẋk

ẏk


 = 0 (1.18)

Eq. 1.18 gives the equation of motion for the dimensionless field components (fx, fy) for

an m=1 cavity mode near the center of the trap. Table 1.2 gives the values of the frequen-

cies and damping rates [7]. The frequency domain of this system spans many orders of

magnitude. The experimental consequence is that each of the motions can be driven sep-

arately without perturbing the other motions. However, the greatly separated timescales

makes the dynamics of the system very hard to calculate numerically, particularly when

the interesting motion is the axial oscillation (which is what is observed). The calculation

must compute many axial bounces to see the effect of the axial damping (For example, the

onset of parametric excitation occurs on the order of the axial damping time). Another

computational difficulty is the long range Coulomb interaction. Unlike other many body

systems (such as a collection of molecules) there are no shielding effects of the surrounding

electrons to shorten the range of the electric field from one particular electron. Therefore,

the repulsion force has to be calculated between each and every electron pair. These equa-

tions contain all the natural motions and damping mechanisms, but none of the externally

applied drives and noise that is seen in the actual experiment. As will be seen in Chapter

4, it is the relative balance of the noise and damping mechanisms that determines the

observed coherence of the electron plasma.
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Electron parameters
Axial damping width γz/2π 14 Hz
Collision constant ωee/2π 12 kHz
Axial frequency ωz/2π 61.6 MHz
Cyclotron Frequency ωc/2π 30 - 160 GHz
Mode Parameters (TE115)
Mode Frequency ωM/2π 98 GHz
Mode damping width ΓM/2π 300 MHz
Electron Cavity Coupling ΛM 0.31

Table 1.2: Typical values for electron and mode parameters.

1.5 Plasma Behavior

Since the equations in the previous section become unwieldy for more than a small num-

ber of electrons, a kinetic fluid description has been developed for a general collisionless

nonneutral plasma based on the Vlasov-Maxwell equation which gives a rigid rotor distri-

bution function rotating at ωr [29]

f(~r,~v) = no

[
m

2πkT

]
e−

H+ωlz
kT (1.19)

H =
1
2
mv2 + qφ(r, z) (1.20)

lz = mvθr +
qBr2

2
(1.21)

where H is the Hamiltonian for charges q in a Penning trap and lz is the canonical angular

momentum. The distribution function is separable into spatial and velocity parts

f(~r,~v) = n(r, z)
[

m

2πkT

]
e−

m(~v+mrθ̂)
2kT (1.22)

where

n(r, z) = n0e
− qφ(r,z)+ 1

2
mω(ωc−ω)r2

kT (1.23)
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At T=0, the density, n(r, z), is zero unless

qφ(r, z) +
1
2
mωr(ωc − ωr)r2 = 0 (1.24)

Therefore the density is a constant inside the plasma and zero outside the plasma. For

T > 0, the constant density goes to zero outside the cloud on the order of the Debeye

length [30]

λ0 =

√
εokT

n0q2
(1.25)

which is approximately 10 µm for this experiment at T = 4.2 K.

Using Poisson’s equation, the constant density can be determined from Eq. 1.24 to be

no =
2ε0mωr(ωc − ωr)

q2
. (1.26)

We define the plasma frequency as

ω2
p =

q2n0

ε0m
= 2ωr(ωc − ωr) = ωz

α2 − 1

Q0
1

[
α√

α2−1

] (1.27)

where Q0
1 is an associated Legendre polynomial of the 1st order and α = z/r is the aspect

ratio of the cloud. Therefore the density can be determined from the aspect ratio which in

turn may be determined from other measurable frequencies described in the next section.

The potential experienced by the charges inside the plasma may be split into two parts,

the trap potential and the space charge potential given by

φT (r, z) = mω2
z

4q (2z2 − r2)

φI(r, z) =
[

mω2
z

4q − mωr(ωc−ωr)
2q

]
r2 − mω2

z
4q z2

= mωp

6q [a(α)r2 + b(α)z2]

(1.28)

The space charge potential is of the form of a uniformly charged spheroid, an ellipse

rotated about the z axis.
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1.6 Electrostatic Fluid Modes

The isotropic nature of the Coulomb repulsion of the electrons allows energy to be trans-

ferred from one degree of freedom to another. Calculations by Dubin and others [31, 32]

have shown that a trapped nonneutral plasma has an infinite number of electrostatic fluid

modes which are calculated from a perturbation expansion of the trap potential, density

and fluid velocity. Accounting for the plasma frequency (ωp) as defined in the previous

section and the vortex frequency (Ωv = ωc −ωm) , the Poisson equation for the perturbed

trap potential (ψ) can be written as

∇ · ~ε · ∇ψ = 0 (1.29)

which is just Maxwell’s equation ∇· ~D = 0 for a medium with a linear frequency -dependent

anisotropic dielectric tensor given by

~ε =




ε1 −iε2 0

iε2 ε1 0

0 0 ε3


 (1.30)

ε1 = 1 − ω2
p

ω2 − Ω2
v

(1.31)

ε2 =
Ωvω

2
p

ω(ω2 − Ω2
v)

(1.32)

ε3 = 1 − ω2
p

ω2
(1.33)

inside the plasma. ~ε = 1 outside the plasma. The inner and outer solutions to Eq. (1.29)

must be matched across the boundary according to

ψin = ψout |boundary (1.34)
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n̂ · ~ε · ∇ψin = n̂ · ∇ψout |boundary . (1.35)

The solution is only separable in spheroidal coordinates (ξ1, ξ2, φ). Surfaces of ξ1 are

confocal spheroids; surfaces of ξ2 are confocal hyperboloids. φ is the usual azimuthal

angle. The solutions inside the plasma are of the form

ψ = AQm
l (ξ1/d)Pm

l (ξ2)ei(mφ−ωt) (1.36)

where A is a constant and Qm
l and Pm

l are associated Legendre functions. The frequencies

are given by the equation

ε3P
m′
l +mα

[
α2 − ε3

ε1

]1/2

Pm
l ε2 −

[
α2 − ε3/ε1
α2 − 1

]
Pm

l

Qm′
l

Qm
l

= 0 (1.37)

where Pm
l = Pm

l (α/(α2 − ε3/ε1)1/2), Qm
l = Qm

l (α/(α2 − 1)1/2), α = zo/ρo, and the primes

denote differentiation with respect to the entire argument.

The lowest order mode (1,0) is the rigid motion of the center of mass. Higher order

modes contain internal motions that change the shape of the plasma such as the mode

(2,0) in which the aspect ratio of the spheroid oscillates from large (long and thin) to small

(broad and flat). Some of these modes have been observed in ion [32] and electron [33]

plasmas. Because the frequencies of these modes depend on the steady state aspect ratio

and hence the density of the cloud, detection and identification of several modes could

give a good measure of the these parameters.
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Figure 1.4: Observed cavity modes of the cylindrical Penning trap.
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Chapter 2

Experimental Apparatus

2.1 Cylindrical Trap

The first Penning traps were made of electrodes that closely followed the quadrupole

equipotential surfaces [20]. The endcaps were hyperboloids and the ring had a hyperbolic

cross section. The cavity mode structure was very difficult to calculate [34] and the modes

detected were not well separated and hard to identify [24,26]. The inhibited emission of the

electron synchrotron radiation was the leading systematic uncertainty in the measurement

of the anomalous electron magnetic moment [26].

To produce a more easily understood set of radiation modes, a new type of trap was

proposed that approximated a right circular cylinder [21]. The cavity modes for this

geometry are easily understood as described in Chapter 1. To make the five separate

electrodes closely resemble an ideal cylindrical cavity, the OFHC copper electrodes were

machined to a precision of better than 0.001 inch, the surfaces were polished to have

a high degree of reflectivity and gaps between the electrodes have been minimized and

contain choke flanges. The cavity modes for this trap were measured and shown to be

well separated and of high quality (see Fig. 1.4). The trap also contains a waveguide

to pass microwaves into the trap (for cyclotron frequency measurements) and a tungsten

field emission point (FEP) to load electrons into the trap. (see Fig. 2.1)
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Figure 2.1: Cross section of cylindrical Penning trap

The challenge of designing this trap was to produce a sufficiently good electrostatic

quadrupole potential to allow the observation of a single trapped electron. This was

accomplished with two annular compensation electrodes located between the ring and the

endcaps that are used to tune out the higher order anharmonic terms in the potential

due to the fact that the equipotential surfaces are not hyperboloids. These compensation

electrodes are more prominent than those of a hyperbolic trap but the voltage can be set

to make C4 approach zero. C6 ≈ 0.1 is relatively unaffected by the compensation voltage;

it is larger than that of a hyperbolic trap, but is still small enough so as not to interfere

with the detection of small numbers of particles.

2.2 Cryostat

The trap is enclosed in a sealed vacuum can which is coupled to a liquid helium reservoir,

thereby achieving a high quality vacuum through cryopumping without the use of any
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Figure 2.2: Cold finger dewar system
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mechanical pump. Two different schemes of coupling the trap to a liquid helium reservoir

were used in this experiment. The first was a cold finger system where the trap can is

suspended below a dewar and cooled conductively through a structure of OFHC copper

(see Fig. 2.2). The entire system is suspended in the bore of the magnet which is evacuated

to provide long “hold time” of liquid helium in the dewar (5 days). This system easily

cools the vacuum can and electrodes but not the FET which provides the first stage of

amplification of the axial signal (see section 2.4) and sits just above the vacuum can but

is not well heat sunk to the dewar. It will be shown later that the power generated by the

FET dissipates quite a lot of heat which couples back into the electron plasma and destroys

the synchronization. Therefore, the experiment was continued in a bucket dewar system

where the vacuum can, amplifier and all other electronics near the trap are submerged in

a large dewar filled with liquid helium (see Fig. 2.3). The FET is then maintained much

closer to 4 K regardless of the power dissipated.

2.3 Superconducting Magnet

The magnetic field is provided by a superconducting solenoid that can carry up to 40

Amps, creating a field at the center of a solenoid of up to 6 Tesla. This field can be

precisely controlled by a power supply and a superconducting switch. The power supply

provides a current given by

I(t) =
V

R
+ J(t) (2.1)

where V is the voltage provided by the power supply, R is the shunt resistance in the power

supply provided by a protection resistor and the superconducting switch, and J(t) is the

current in the solenoid. Since the rate of current change in a solenoid depends inversely

on the inductance of the solenoid, the solenoid current is given by

J(t) = J(0) +
V

L
t (2.2)

35



Figure 2.3: Bucket dewar system
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and the magnetic field is

B(t) = g

[
J(0) +

V

L
t

]
(2.3)

where g depends on the geometry of the solenoid. The current produced by the power

supply, I(t), is what is experimentally monitored. Therefore it is convenient to define a

time constant as
V

R
=
V

L
τo (2.4)

such that the magnetic field is given by

B(t) = g

[
I(0) +

V

L
(t− τo)

]
. (2.5)

The measured cyclotron frequency is

νc =
e

m
g

[
Imeas − V

L
τo

]
(2.6)

where eg/m is the factor that converts the solenoid current to cyclotron frequency for

dI/dt = 0. By using a microwave source to excite the cyclotron oscillator, the conversion

for Nalorac magnet 43 is experimentally determined to be

eg

m
=
νc

I
= 4.1397GHz/A. (2.7)

The time constant τo is determined by using a high Q cavity mode as a marker during

sweeps of various speeds of the magnetic field. If the current of this marker is plotted

versus the sweep rate, the slope of the resulting line gives τo (see Fig. 2.4).

When a mode map is made, data is simultaneously collected on the center-of-mass

amplitude of the electron plasma, the current in the power supply and the time (∼ 3

points/sec). The sweep rate is determined by fitting the time-stamped current to a line.

The fitted function generates a new set of current values that removes small amounts of

jitter in the data due to inaccuracies in the shunt resistor. The new current values are
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Figure 2.4: Calibration of effective time constant of magnet shunt resistor

adjusted with the sweep rate and converted to the cyclotron frequency with Eq. 2.6. This

set of cyclotron frequencies are then plotted versus the center of mass amplitudes.

2.4 Detection

All information about the electrons in the trap is collected by the tuned circuit amplifier

which measures the current induced in the endcaps by the electrons as they oscillate

axially. The inductive amplifier is a six turn coil inside of a cylindrical can of OFHC

copper. One end of the coil is grounded and the other end is connected to one endcap.

The signal is tapped one turn from ground and capacitively coupled to a Mitsubishi dual

gate GaAs FET. The trap and amplifier can be modeled as a parallel LRC circuit (see

Fig. 2.5b) where the capacitance is determined by the electrodes and the inductance and

resistance is determined by the coil. The Johnson noise in the resistor is amplified near
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0 = 1/LC. (c)The equivalent LCR circuit with the addition of electrons
which short out the noise at ω2

z = 1/lc.
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Figure 2.9: Coherent detection of one electron

the resonant frequency of the circuit in a Lorentzian form [35]

V 2
s ∝ R2

1 +
(

RC
ω

)2 (
ω2 − 1

LC

)2 (2.8)

∝
R2
(

1
2τ

)2

(ω − ω0)2 +
(

1
2τ

)2 (2.9)

where ω2
o = 1/LC is the resonant frequency of the LCR circuit and τ = RC is the inverse

of the damping rate and we have assumed ω ≈ ω0. The quality factor, Q = ω0τ , of

a resonance is made as large as possible to improve the signal to noise and is typically

500-800.

Electrons in the trap can be modeled as an inductor and capacitor in series (see Fig.

2.5c) [36]. This circuit is then placed in parallel with the LRC circuit of the trap and

amplifier. When the natural frequency of the electron circuit (i.e. the axial frequency
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of the electrons given by Eq. 1.3) driven by thermal noise is resonant with the natural

frequency of the amplifier and trap, the electrons “short out” the Johnson noise amplified

by the circuit, creating a “dip” in the Lorentzian lineshape whose width is proportional

to the number of electrons in the trap (see Fig. 2.6).

Though not impossible [37], it is difficult to see the signal from small numbers of

electrons with the passive detection described above. Therefore a coherent detection

scheme was employed most of the time to count the number of electrons in the trap.

The axial signal is amplified at 4 K and at room temperature, filtered and mixed to a

convenient frequency to and detected with a lockin amplifier (see Figs. 2.7 and 2.8. The

phase is tuned so that the output signal is a Lorentzian in the frequency domain (see

Fig. 2.9). The FWHM of the Lorentzian equals Nγz where N is the number of electrons

and γz is the damping rate. Fig. 2.11 shows that for small numbers of electrons, the

widths are discrete multiples of the width for one electron. The damping rate depends on

the detuning of the axial frequency from the noise resonance; it is maximized when the

detuning is zero and decreases linearly with the fractional height of the noise resonance,

as is shown in Fig. 2.11. The maximal γz which is the FWHM of a single coherently

detected electron, is approximately 14 Hz (See Fig. 2.10).

If the phase is tuned so that the output is a dispersive curve, the amplitude on the tail

is proportional to the number of electrons. For sufficiently high drives and large filtering,

the loading of individual electrons can be viewed in real time, allowing precise control of

the number of electrons in the trap (see Fig. 2.10).

Though the electron motion is driven for coherent detection, the axial amplitude of the

electrons is still quite small compared with the amplitude of the electrons when paramet-

rically excited which can reach 10% of the length of the trap and which can be detected

with a straight forward square law detection scheme (see Fig. 2.7). However, since the

amplitude varies across a mode from the large oscillations mentioned above to essentially a

thermal excitation, a detector with a very large dynamic range is required. Therefore the

signal is mixed down to 90 kHz and fed into a Hewlett Packard 3561a spectrum analyzer
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which returns the amplitude in the 90 kHz channel only. This signal is squared and passed

to a computer which records all the data taken in this experiment. Fig 2.13 shows that

most of the dynamic range is needed to adequately display certain modes.
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Chapter 3

Parametric Excitation of One

Electron

The phenomenon of a one dimensional, parametrically excited oscillator is well understood.

Simply stated, an oscillator that is driven above a threshold strength at twice its natural

frequency will respond with a large amplitude at the natural frequency [38, 39]. If the

oscillator is undamped, the amplitude of the response increases exponentially over time

without bound. The damping and anharmonicity of the actual system keep the amplitude

finite. In this chapter we build on the demonstration by Tseng et. al. [12] that the axial

motion of one electron in a Penning trap is a good approximation of an ideal parametrically

excited oscillator. Using the model of the parametric oscillator, we measure the axial

amplitude by calibrating the gain in the detection circuit. In the next chapter we will

compare what we observe with one electron to what is observed for the center of mass

motion of more than one electron, which was first studied by Tan and Gabrielse [7], looking

in particular for differences arising from the internal motions of the electrons.
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3.1 Single Electron as a Parametric Oscillator

The equation of motion of the parametrically driven, anharmonic oscillator with charge

Ne and mass Nm is given by

Z̈ +NγzŻ + ω2
z(1 + h cos ωdt)Z + λ4ω

2
zZ

3 + λ6ω
2
zZ

5 = 0. (3.1)

We take Z to be the particle’s axial position scaled by the trap dimension, d. The drive

strength is given by h, ωd is the drive frequency, and the anharmonicity coefficients, λn,

can be expressed in terms of the coefficients of the Legendre expansion of the potential

discussed in Chapter 1

λ4 =
2C4

1 + C2
(3.2)

λ6 =
3C6

1 + C2
. (3.3)

There occurs a resonant response at drive frequencies near

ωd ≈ 2ωz

n
; (3.4)

we will only consider n = 1 here because excitations from the higher harmonics are harder

to produce. An excited solution, Z 6= 0, occurs only for frequencies defined by

ε− < ωd/2 < ε+ (3.5)

ε± = ±1
4
ωz

√
h2 − h2

T (3.6)

and for drive strengths above the threshold

hT =
2Nγz

ωz
(3.7)

See Fig. 3.1 for the parameter space defined by Eqs. 3.6 and 3.7; an excitation only occurs
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Figure 3.1: Dynamic regions of the parametric oscillator without anharmonicity (λ4, λ6 =
0)
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within the hyperbolic Mathieu instability region.

The experimental observations well match the predictions of the previous paragraph.

Fig. 3.2a shows that an excitation only occurs within a well defined region, which increases

with drive strength, h, as seen in Fig. 3.3. Fig. 3.2b shows the sharp threshold for a

single frequency. Hysteresis outside the hyperbola shown by Fig. 3.1 is observed in both

frequency and drive strength. For example, for the lineshape shown in Fig. 3.4, if the drive

frequency is moved from inside the hyperbola to a lower frequency outside the hyperbola,

the excitation can be maintained [12].

Inside the hyperbola we have solutions to Eq. 3.1 of the form

Z(t) = A(t) cos[(ωz + ε)t+ Ψ(t)] (3.8)

where A(t) and Ψ(t) are slowly varying and defined by the first order differential equations

dA

dt
=
γz

2
A

[
1 − h

hT
sin 2Ψ

]
(3.9)

dΨ
dt

= −ε+
1
4
hωz cos(2Ψ) +

3
8
λ4ωzA

2 +
5
16
λ6ωzA

4 (3.10)

For the steady state solutions, Ȧ = 0 and Ψ̇ = 0 which gives

sin(2Ψ) =
h

hT
(3.11)

5λ6ωz

16
A4

± +
3λ4ωz

8
A2

± + ε± − ε = 0. (3.12)

Eq. 3.11 is invariant under the transformation Ψ → Ψ + π which implies that the excited

state is phase bistable. However, it will be shown in Chapter 4.2 that the bistability is not

strictly preserved due to diffusion between the two stable states in the presence of noise.

Eq. 3.12 implies that the lineshape of the squared amplitude (which is what is measured)
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Figure 3.2: Parametric lineshapes (a) and amplitude at ε = 0 (b) of one electron for
various drive strengths
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Figure 3.4: Parametric resonance with predicted parabolic lineshape

is a parabola with the exact parameters of the lineshape determined by the anharmonicity

constants C4 and C6. As was discussed in Chapter 1, C6 is relatively insensitive to the

value of the compensation voltage, Vc, but that is not true for C4. Therefore, when C4 is

small the lineshape of A2 looks parabolic, but when C4 is made to contribute much more

than C6, the lineshape is closer to a line (see Fig. 3.5).

3.2 Measurement of the Axial Excursion of One Electron

The electrical signal, S, which we observe, is directly proportional to the amplitude, A, of

the electron axial motion and is given by

S = NαA, (3.13)

55



νz -61540500 (Hz)

-1000 -500 0 500 1000

νz -61540500 (Hz)

-500 0 500 1000 1500

C
M

 S
ig

na
l (

V
2 )

0

1e-6

2e-6

3e-6

4e-6

νz -61540500 (Hz)

-1000 -500 0 500 1000

(a) (b) (c)
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Calculated values Measured values α error in α
D4 mb 0.0126 0.0015
C0

4 bb 0.0119 0.0013
C4 and D4 b (average) 0.0143 0.0043
D4/D6 mb and ma 0.0029 0.0105

Table 3.1: Measurements of α with one electron.

where α is a function of the gain in the detection circuit (never changed for any measure-

ments) and N = 1. Deducing the amplitude of the axial motion, A, from the observed

signal size, S, is extremely important for understanding the motion of many electrons.

For a drive strength much larger than threshold, hT , we assume that electron acts as

an ideal parametrically excited oscillator with a steady state amplitude, A, that depends

on the drive frequency as

15C6ωz

16(1 + C2)
A4

+ +
3C4ωz

4(1 + C2)
A2

+ + ε+ − ε = 0 (3.14)

where the anharmonicity coefficients C2, C4 and C6 are defined in Chapter 1. We know

A+ is the relevant solution because C6 < 0 and C4 is typically small. We observe that S2
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as a function of relative detuning η = ε/ωz can be fit to a parabola

a(S2)2 + bS2 + c = η (3.15)

where

a =
15

16(1 + C2)α4

(
C0

6 +D6
Vc

Vo

)
(3.16)

b =
3

4(1 + C2)α2

(
C0

4 +D4
Vc

Vo

)
(3.17)

c =
ε+
ωz
. (3.18)

Eqs. 3.16 and 3.17 can be used to determine the calibration constant, α, in three

ways that produce answers that are in good agreement; a fourth method has too large an

error to be useful. Table 3.1 summarizes the results. Both a and b can be measured as a

function of the compensation potential, Vc, and fit to a line

a = ma
Vc

V0
+ ba (3.19)

b = mb
Vc

Vo
+ bb. (3.20)

Because D6 < C0
6 , a does not change appreciably as Vc changes. However, the value of b

does change, so α can be computed as

α2 =
3C0

4

4bb(1 + C2)
=

3D4

4mb(1 + C2)
. (3.21)

C0
4 and D4 are computed to good accuracy since the trap dimensions, ρo and zo, are known

to a very high accuracy from a fit of measured m=0 TE mode frequencies (See Fig. 1.3).

The mode frequencies are calculated over a grid of values of ρo and zo and compared to the

measured frequencies. The best fit is taken to be the dimensions (ρo, zo) which produces

the least total deviation from the measured frequencies (see Chapter 1). The uncertainty

in the trap dimensions is calculated from the error in the linear fit of the calculated and
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Figure 3.6: The linear coefficient (b) from the parabolic fits for various compensation
voltage settings. The circles and squares represent two different drive strengths.

measured frequencies.

Alternatively, α, can be calculated for any particular Vc from

α2 =
3

4b(1 + C2)

(
C0

4 +D4
Vc

Vo

)
(3.22)

with a much larger error than using Eq. 3.21, but a weighted mean of several such

calculations improves the error somewhat.

A fourth method, first described in [12], calculates α using the slope of b and a as

α =

√√√√ ∆b
∆Vc

∆a
∆Vc

5
4
D6

D4
(3.23)
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However, for this trap C6 is quite insensitive to changes in Vc, so ∆a/∆Vc is very small with

a large relative error (95%). This gives an α whose error limits encompass the previously

calculated values but whose absolute value is 10 times too small. For all measurements

discussed in later chapters, we use α = 0.0126 because of the small error in mb and D4.
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Chapter 4

Observations of Large Clouds of

Electrons

Within a cloud of electrons, each particle follows the equations of motion given in section

1.4. Because each particle experiences a slightly different force due to anharmonicity, the

center-of-mass amplitude is typically small, dominated by the internal motions, even when

driven parametrically. However, we observe that if the energy in the internal motions can

be damped, synchronization is observed. This chapter explores synchronization due to

damping to the 4.2 K microwave cavity.

4.1 Measurement of the Axial Excursion of Many Electrons

Measurements of the axial amplitude can be performed for the center-of-mass of more

than one electron, using the calibration procedure outlined in the last chapter. Because

the detection circuit measures the induced charge on one endcap by the trapped charges,

the measured signal scales with the number of electrons. However, many particles need

not act like a rigid oscillator because the internal motions may dominate, decreasing the

center of mass amplitude. It is convenient to use the ratio A/Arigid, where A is the actual

center-of-mass amplitude, and Arigid is the amplitude for N electrons rigidly attached
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together given by

15C6ωz

16(1 +C2)
A4

rigid +
3C4ωz

4(1 + C2)
A2

rigid + ε± − ε = 0. (4.1)

When A/Arigid = 1, the electron cloud oscillates like a rigid body. In general we would

expect A/Arigid < 1. The measured signal, S, is related to A as

S = Nα
A

Arigid
Arigid (4.2)

where α is the calibration obtained with one electron and N is the number of electrons in

the trap.

As in the last chapter, a measurement of A is made by measuring parametric lineshapes

for various anharmonicity settings, fitting the lineshapes to parabolas and relating the

quadratic and linear coefficients of the fits to α as

a =
15
(
C0

6 +D6
Vo
Vo

)
16(1 + C2)

(
Nα A

Arigid

)4 (4.3)

b =
3
(
C0

4 +D4
Vc
Vo

)
4(1 + C2)

(
Nα A

Arigid

)2 . (4.4)

As before, the calibration, α, can be defined in terms of the slope or intercept of either

Eq. 4.3 or Eq. 4.4, but we choose the slope of Eq. 4.4 to minimize the error. Therefore

the calibration of the center-of-mass axial amplitude of an arbitrary number of electrons

is

Nα
A

Arigid
=

√
3D4

4mb(1 + C2)
. (4.5)

Fig. 4.1a shows the measured slopes for various size clouds up to 1000 electrons, and Fig.

4.1b shows the factor of rigidity for the same clouds. All measurements were made with

the cyclotron frequency tuned near a cavity mode frequency, which, as we will see, is a

crucial component in obtaining synchronization.
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Figure 4.1: (a) Measured signal dependence on compensation voltage versus number of
electrons. The line is the scaled calibration for 1 electron. (b)The ratio, A/Arigid extracted
from (a) versus number of electrons. A/Arigid ≈ 1, showing that with strong cavity cooling,
the center-of-mass of each of these clouds oscillates with the same amplitude as a rigid
ball of charge.
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4.2 Axial Amplitude and Cyclotron Cavity Modes

As was described in Chapter 2, the detector is only sensitive to axial motion of the center-

of-mass motion. However, the center-of-mass motion may be swamped by the internal

motions due to anharmonicities, and the internal motions need to be cooled to observe

a significant center-of-mass amplitude. One extremely effective way to do this is to cool

the cyclotron energy to a TE or TM cavity mode. Near a mode the cyclotron motion is

damped at a rate of

γ =
γM

1 + δ2
(4.6)

where γM is the damping on top of the mode and δ is the dimensionless detuning from

the mode center frequency,

δ = 2
ωc − ωM

ΓM
. (4.7)

Since the axial motion couples to the cyclotron motion through the Coulomb inter-

action, the axial motion can also be cooled by the cavity mode. If the square of the

parametric amplitude, S2 at ωd = 2ωz, is plotted as a function of ωc (which is controlled

by changing the magnetic field), the result is a series of well defined and well separated

peaks that are well approximated by Lorentzians (see Fig 4.2). Therefore this “mode map”

is really a representation of the cooling power of the modes of the cavity. It is important

to stress that the parameter under control in this plot is the cyclotron frequency, and the

observed parameter is the orthogonal axial motion whose frequency is 1000 times smaller

than the cyclotron frequency, an indication that this is a highly nonlinear system.

The parametric amplitude may also be interpreted as the degree of synchronization

of the electrons. If N electrons are fully synchronized, they oscillate like a rigid ball of

charge Ne, and their center-of-mass amplitude is predicted by the rigid model described

in Chapter 3. Under certain conditions the electrons near a cavity mode become fully

synchronized and the cloud becomes rigid. When this rigid limit is reached, the parametric
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clotron frequency comes into resonance with a cavity mode.

amplitude is maximized and any further increase in the cavity mode cooling power does

not further increase the axial amplitude. In this configuration, the measured modes have

flat tops (see Fig. 4.3b) rather than peaks as is seen in Fig. 4.3a. The unsaturated parts

of the peaks can still be fit to Lorentzians. The measured amplitude of the saturated

part is described by A/Arigid ≈ 1 as discussed in the previous section, indicating that the

electrons are oscillating with same amplitude as a rigid charged ball. However, if noise

is added to the system, such as from heat in the FET, the parametric amplitude shrinks

from the rigid limit and the peaks appear Lorentzian as seen in Fig. 4.4.

If the amplitude of the measured cavity mode is probed more deeply, one finds that the

parametric lineshape for large cavity detunings deviates significantly from that predicted

by Eq. 3.14. Away from a cavity mode (δ ≈ 1), as the drive frequency is swept up, the

amplitude jumps to the predicted value as the drive enters the region of excitation, but

then collapses to a much smaller value. The amplitude remains small through the center
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Figure 4.3: TE115 cavity mode when the electron cloud is (a) not fully synchronized and
(b) fully synchronized near resonance. (a) and (b) were made with different size electron
clouds so the signal size was also different.

of the resonance, but eventually climbs up to the predicted value and follows the parabola

to the edge of the region of excitation. In fact, the initial spike is a transient effect; if

the drive frequency is swept down, the amplitude remains low. This collapsed amplitude

decreases with detuning, giving the cavity mode resonance it’s Lorentzian wings. Fig. 4.5

shows the parametric lineshapes at various mode detunings.

When measuring the synchronization of the electrons near a mode, the nature of the

unsaturated part of the lineshape seems to depend on several parameters such as drive

strength and anharmonicity. One way to crudely parameterize the partial synchronization

is to define a“flatness factor” of a mode, which is the ratio of the width of the saturated part

to the width at half the maximum amplitude. When f =0, the lineshape is peaked (though

need not be Lorentzian); when f=1, the lineshape is completely squared off. The flatness

factor of observed lineshapes for large N never reaches 1 because of the characteristic

knuckle on the trailing edge (see Fig. 4.6); this lineshape depends on which way the
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Figure 4.4: Mode maps at various FET drain currents when the FET is not submerged in
liquid helium. As the heat dissipated in the FET increases, the noise environment of the
electrons increases, and the level of synchronization decreases.
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mode. The circles are the amplitudes that would be measured in a “mode map”.
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Figure 4.6: The shape of the TE115 becomes highly asymmetric for large N and depends
on the direction the field is swept. (a) The field is swept down. (b) The field is swept up.

magnetic field is swept. Fig. 4.7 shows how the flatness of a mode changes with C4,

N, axial damping and drive strength. Since all of these parameters affect the rigid axial

excursion, Arigid, one might postulate that these mode lineshapes are distortions of how

much larger Arigid, predicted by the rigid model, is compared to the small unsynchronized

axial excursion of the center-of-mass which is unchanged for various parameters. For

example, as h increases, Arigid increases so the lineshape appears more squared off as

amplitude the rises steeply to a larger Arigid (see Fig. 4.8). This may also explain the

data for increasing N and γz. However, this does not explain the flatness dependence on

anharmonicity, for when C4 is large and positive, the mode lineshape is very square, but

Arigid is not as large as it is for other values of C4. The asymmetric lineshapes observed for

large N and large and positive C4 are also not understood. Since both of these parameters

affect the coupling of axial motion to the cavity mode (through the nonlinear terms in the

equation of motion), the lineshape may depend on how fast the electrons synchronize in

the rigid limit.
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Figure 4.7: Flatness factor (flat top width/FWHM) versus (a) C4, (b) number of electrons,
(c) drive strength, and (d) axial damping.
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4.7b and 4.7c) plotted against axial excursion, z ∝ Arigid, near a cavity mode.
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Chapter 5

Stochastic Behavior of One

Electron

5.1 Phase Bistability of the Parametric Excitation

As was stated in Chapter 3, the phase of the parametric excitation of the axial motion for

a single electron is given as

sin(2Ψ) =
h

hT
. (5.1)

Since the drive frequency is twice the response frequency, there is an phase ambiguity of

the response compared to the drive. Therefore, Ψ is only determined up to a value of π

and there is a random choice of two phases in the excited state, Ψ or Ψ + π. Fig. 5.1

shows the phase space plot of this system.

In the noise-free description of Chapter 3, both phases are completely stable. How-

ever, random jumps in this phase have been observed for a single electron. Noise drives

fluctuations in phase space that occasionally traverse the unstable point at the origin and

land in the opposite basin of attraction, thereby switching phase. We observe that the

level of noise relative to the amplitude of the excitation primarily determines the rate of

these flips.
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Figure 5.1: Phase space of parametrically excited oscillator. The dots (A) mark the stable
points and the cross (B) marks the unstable point at the origin. The lines trace the
separatrix of the two basin’s of attraction.

5.2 A Model of Phase Flip Transition Rates

In this section we derive the rate at which the phase response flips by 180 degrees, using

the model procedure described by the Dykman group [13]. We add a noise term, ξ(t), to

Eq. 3.1

Z̈ + γZŻ + ω2
ZZ + λ4ω

2
ZZ

3 + λ6ω
2
ZZ

5 + hω2
Z cos(ωdt)Z = ξ(t) (5.2)

We assume that the noise in the system, ξ(t), is white near the axial frequency. The noise

intensity of the thermal noise is D = 3|λ4|kT/8md2ωzγz where m is the electron mass and

d is the trap size constant.

The details of the derivation of the flip rate in the limit of a strong drive compared
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to threshold are contained in Appendix A. Only the results will be discussed here. The

general form of the flip rate (W ) is

W ∝ exp


− 2h

hT


 [1 − 4ρ(1 − ε

ε+
)]3/2 + 6ρ(1 − ε

ε+
) − 1

24ρ2D




 (5.3)

where ρ = 5λ6h/9λ2
4 and λ4, λ6 < 0. See Fig. 5.2 for a definition of ε and ε+. The expres-

sion for the flip rate is particularly simple when one of the anharmonic terms dominates

the equation of motion. If the trap is tuned to make |C4| < 10−5, then |C4| � |C6|A2,

and the flip rate can be approximated as

W ∝ exp

(
− 16md2ω

3/2
z

3
√

5k|λ6|1/2

(ε+ − ε)3/2

Tε+

)
(5.4)

If the trap is severely detuned so |C4| � |C6|A2, −ρ(1 − ε/ε+) is very small then Eq. 5.3

becomes

W ∝ exp

(
− 3ωz

8|λ4|k
(ε+ − ε)2

Tε+

)
(5.5)

These expressions are valid under several conditions. First is that a small displacement

from one of the stable points in phase space is extremely underdamped as equilibrium is

restored. The details of the damping condition are discussed in Appendix A. This damping

condition requires that ε+−ε be not too close to zero, which also ensures that the detuning

is larger than the axial damping width. However, Eq. 5.3 breaks down for (ε+ − ε)/ε+

greater than approximately 0.3, but Maloney, et. al. [13] have numerically calculated the

flip rate over the entire range of the excitation. A fit of the numerical values gives an

approximate flip rate of

W ∝ exp

[
0.85md2ω

3/2
z

k|λ6|1/2

(ε+ − ε)0.89

ε0.39
+ T

]
. (5.6)

When these numerical values are used, they will be noted in later sections. Finally, this

theory assumes that the probability of switching phase is exponentially small, so it is not
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Figure 5.2: Parametric resonance of a single electron with the edges, ε±, marked.

valid for values of the exponential argument in Eq. 5.3 that are near zero.

Eqs. 5.4 and 5.5 imply that the flip rate depends on drive strength, detuning from

the edge of the parametric resonance, and the effective temperature of the system. Since

the detuning determines the axial amplitude, and the effective temperature determines

the noise level, Eqs. 5.4 and 5.5 relate the flip rate to the amplitude of the oscillation

and the level of residual noise. Thus if the temperature increases, such as by applying

external noise, the flip rate increases; if the amplitude increases, such as by increasing the

detuning, the flip rate decreases.
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5.3 Data Acquisition

5.3.1 Statistical Errors

If the flips occur randomly, the events obey Poisson statistics, so the flip rate (W ) may

be given as

W =
n− 1∑

i τi
±

√
n− 1∑

i τi
(5.7)

where n is the number of flips recorded and τi is the elapsed time between flips. This

definition is preferable to the somewhat simpler form

W =
n

T
±

√
n

T
(5.8)

where n is the number of flips in a period T . This is because we wish to examine the

distribution of time between flips. It has been observed [7] that if a histogram of time

between flips is not the exponential distribution as would be expected for a random sys-

tem. Rather, there appeared to be more flips than expected for the shortest times. This

phenomenon is also investigated in this experiment (discussed further in a section 5.4.4).

The number of flips in Eq. 5.7 is smaller by 1 than Eq. 5.8 because within the period T

the time before the first flip and the time after the last flip is ignored; the first flip and

last flip serve as markers to begin counting time between flips.

Since the statistical error in the flip rate depends on the square root of the number

of flips, a minimum number of flips must be accumulated to have a certain confidence

in the flip rate. For most of the data collected, the minimum number of flips was 150,

giving a fractional error in the flip rate of 8.2%. If the minimum number of flips is not

exceeded after a single bin of time T, data in additional bins are acquired and the data

are combined into a single set and averaged using Eq. 5.7. The acquisition bin widths are

kept the same for a single flip rate measurement.

Data acquired in the manner described above, even for purely Poissonian statistics can

lead to bias in calculating the flip rate if the number of flips per bin is small enough that
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the time discarded before the first flip and after the last flip is a significant fraction of the

total bin. In other words, if a histogram of the number of flips per bin (x) for many bins

were plotted, the distribution should follow a Poisson function centered around the mean

number of flips (µ) [40],

P (x;µ) =
µx

x!
e−µ. (5.9)

However, because the time at the beginning and end of the bin is discarded, there would

be no measurements with 0 or 1 flip in a bin. This leads to a bias in the mean flip rate

unless the mean number of flips per bin is much bigger than 1. The fractional bias error

is given by the probability of a bin with 1 or 0 flips.

σb = P (0, 1;µ) = [1 + µ]e−µ. (5.10)

If µ = 7, σb = 0.73%. Therefore, if the average number of flips per bin is near 7,

the bias error is approximately 10 times smaller than the statistical error of 8.2% This

requirement is ensured by crudely estimating the flip rate from preliminary measurements.

Measurements of a wide range of flip rates typically needed 3 or 4 bins to acquire 150 flips.

5.3.2 Systematic Errors

Because the flip rate should depend on the drive strength (ε+) and detuning (ε+ − ε) (see

Fig. 5.2), determining the edges of the resonance precisely is important. For C4 small, ε+

is at the extremum of the parabola (see Fig. 5.2) where A ≈ 0 so its position can be easily

masked by noise. The excited and unexcited amplitudes are both stable for frequencies

below ε− so hysteresis can bias the measurement of ε+ − ε−. Furthermore, the entire

resonance can drift slowly over time due to drifts in the trapping potential; the drift rate

is typically between 1 and 3 Hz per hour.

A method to determine the edge of the parametric resonance, ε+, which is quite insen-

sitive to noise is employed to determine the drive frequency, 2(ε + ωz) and hence ε+ − ε.

The resonance is swept repeatedly, the amplitudes averaged and the smoothed data fit
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to a parabola, ωd/2 = aS4 + bS2 + c where ωd is the drive frequency, S is the measured

signal proportional to the electron amplitude, A, and c = ε+ + ωz. This procedure is

fairly quick (about 3 minutes) and is performed between each time bin. If many flip rate

measurements are made with the same drive strength over several hours, the drift and

scatter of the measurement of c can be determined. We assume that the drift is entirely

due to the change in ωz from changes in the trapping potential and the scatter is due to

inaccuracies in determining ε+. Therefore, the actual detuning from the edge, ε+ − ε can

be determine according to how much c changed over the measurement time (Ttot), with

an error of

σε+−ε =

√(
∆c
∆t

Ttot

)2

+ σ2
c (5.11)

where σc is the scatter in the measurement of c without the drift.

The parabolic fit does not also determine ε−. Instead, the width of the resonance,

ε+ − ε−, is determined from a sweep of the region around the parametric resonance; the

sweep always increases in frequency to minimize hysteresis. The data is then sorted from

the lowest frequency to look for the first point in which the amplitude is above a threshold

which gives ε−. A similar procedure is performed from the highest frequency to determine

ε+. This measurement is repeated several times to average out the scatter due to noise.

5.4 Measured Flip Rates

5.4.1 Detuning and drive strength

The phase flip rate measured for various parameters are shown in Figs 5.3, 5.4 and 5.5.

Fig. 5.3 shows the dependence of flip rate on the detuning of the drive frequency from the

upper edge of parametric resonance, ε+. The anharmonicity parameter, λ4, is less than

2 × 10−5; therefore the system is dominated by λ6 and lnW ∝ (ε+ − ε)3/2, as explained

in section 5.2. However, because the range of (ε+ − ε)/ε+ is outside the range prescribed

by Eq. 5.4, the form of the expected flip rate dependence is given approximately by Eq.

5.6. The measured dependence is clearly exponential, though it is difficult to distinguish
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Figure 5.3: Flip rate versus detuning of drive frequency from upper edge of parametric
resonance for various drive strengths. (a)ε+/2π = 31 Hz (b)ε+/2π = 60 Hz (c)ε+/2π = 100
Hz. The lines are fits to lnW = a + b(ε+ − ε)c where c=1 (solid), c=1/2 (dotted) and
c=3/2 (dashed). The data clearly is insensitive to the power of the fit.
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Figure 5.4: Linear coefficient of fit of y = a exp(−b(ε+ − ε)) versus 1/ε+ ≈ 4/hωz . A fit of
y = a exp(−b(ε+ − ε)3/2) produces a similar line.

the appropriate exponent of ε+ − ε. Each plot in Fig. 5.3 is for a different drive strength

or ε+; the slope decreases with increasing drive strength, as predicted by Eq. 5.4. The

explicit dependence of this slope on ε+ is shown in Fig. 5.4.

5.4.2 Externally Applied Noise

White noise is added to the system externally to simulate an increase in the thermal

noise, D, which was present naturally in our apparatus. The noise is generated from a

100 kHz bandwidth noise source provided as part of an HP 3561a spectrum analyzer. The

signal is then amplified, filtered down to 1 kHz, mixed to νz - 5 MHz, combined with the

parametric drive and applied to one endcap (see Fig. 2.8). A 5 MHz drive is also applied

to the ring electrode. The measured noise bandwidth at νz - 5 MHz is 2 kHz which is
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Figure 5.5: (a) Flip rates versus detuning from edge of parametric resonance for a single
drive strength (ε+/2π = 100 Hz) and various noise power attenuations: -18 dB, circles;
-21 dB, triangles; -30 dB, squares. The -30 dB line is not significantly different from data
that had no noise present. (b) Flip rates versus the inverse noise relative to -30 dB for a
detuning of 50 Hz. The horizontal line is the flip rate with no applied noise.
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Figure 5.6: Flip rates of various detunings, drives and anharmonicities, shown together on
the combined curve given by 5.3. The independent variable kTS1,2/D ∝ lnW is defined
in Appendix A. The plotting symbols designate different detunings: 20Hz, circles; 50 Hz,
triangles; 90 Hz, squares.

much larger than either the damping width (15 Hz) or the parametric width (200 Hz),

thus effectively simulating white noise. The results are unchanged for a total bandwidth of

4 kHz. Fig. 5.5a shows that the slope of lnW versus ε+ − ε decreases for increasing noise,

and Fig. 5.5b shows that the flip rate increases exponentially for increased noise with all

other parameters held constant. There is a range of approximately 12 dB in noise power

in which the noise changes the flip rate without wiping out the excitation. Systematic

tests have shown noise applied at νz - 4 MHz with a ring drive at 5 MHz or at νz - 5 MHz

with no drive on the ring have no effect on the flip rates.
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5.4.3 Anharmonicity

Flip rates were measured for various values of λ4. For the four compensation voltage

settings shown in Fig. 5.6, the value of ρ = 5λ6h/9λ2
4 varied between 0.01 and 750.

Therefore, neither limiting case in anharmonicity for the flip rate given in Eq. 5.3 can

be used so there is no simple dependence on λ4. Instead, Fig. 5.6 shows the data on a

combined curve with the x axis of lnW given by Eq. 5.3.

5.4.4 Distribution of Phase Residence Times

If phase flips are the manifestation of stochastic switching between two stable states, the

distribution of times in each phase (the time between flips) would be exponential. Fig. 5.7

shows that for a wide variety of parameters, the distribution is indeed exponential. Earlier

work [7] showed that for many electrons the distribution of flips was not quite exponential

because there were extra flips at short times. The distribution of flips for more than one

electron will be examined in the next chapter.

5.4.5 Correlation of Phase Flips and Amplitude Collapse

Examination of a section of raw data used for counting phase flips shows that for every

phase flip there is a corresponding collapse in amplitude (see Fig. 5.8). The theory by

Maloney et. al. suggests that the path in phase space from one stable point to the other

must pass through the unstable point at zero amplitude. However, approximately 9% of

the time there is an amplitude collapse that is not correlated with a phase flip. These may

be cases of fluctuations that bring the amplitude close to zero but stop before traversing

the unstable point and so fall back into the same basin without switching phase. It is not

known why these events should occur 9% of the time.
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Figure 5.7: Histograms of time between flips for various parameter settings: (a) ε+/2π =
100 Hz, (ε+ − ε)/2π = 20 Hz; (b) ε+/2π = 100 Hz, (ε+ − ε)/2π = 50 Hz; (c) ε+/2π = 100
Hz, (ε+ − ε)/2π = 90 Hz; (d) ε+/2π = 179 Hz, (ε+ − ε)/2π = 20 Hz;(e) ε+/2π = 100
Hz, (ε+ − ε)/2π = 100 Hz with added noise; (f) ε+/2π = 100 Hz, (ε+ − ε)/2π = 50 Hz,
C4 = −1.72 × 10−3 These plots show that an exponential distribution of time between
flips is measured for a wide variety of parameters.
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Figure 5.8: Sample of typical raw data of phase and amplitude over time. For every
amplitude collapse, there is a corresponding phase flip except in three cases marked by
grey circles.

Source Type Freq. typ. Vωz (V/
√

Hz)
1 MΩ on Ring 300 K Thermal DC 3.1 × 10−10

(< 25 mHz)
1 MΩ on Endcap 4.2 K Thermal DC 2.3 × 10−9

Fluke 732A on Ring 1/f (< 0.1 Hz) DC 1.7 × 10−8

PTS 250 and SRS 345 synth. noise floor near 2νz 2ωz 7.1 × 10−10

160 kΩ of inductive amplifier ≈ 4 K Thermal ωz 1.0 × 10−8

Table 5.1: Possible sources and types of noise, the frequency range and typical sizes at ωz

assuming A = 0.05. Narrow band noise was averaged over a bandwidth of ε+/2π = 100
Hz. See Fig. 2.8 for location of noise application.
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Figure 5.9: Flip rate versus noise power for externally applied white noise near ωz (black)
and 2ωz (white). The line is a fit for the black points only. The x axis was determined for
each plot from independent calibrations of the drive strength.

5.5 Sources of Noise

The effective temperature of the system is a combination of all the sources of noise present.

The theory by Maloney, et. al. [13] assumes that the noise is thermal white noise, but

in the real experiment other forms contribute as well. Table 5.1 shows all likely sources

of noise and their sizes. Noise only couples to the axial motion of the electron near the

axial frequency, ωz, but sources with frequencies near DC and 2ωz can mix with the axial

oscillation to give noise near ωz with strength

Vωz ≈ A
2z0
d

1 + C2

κ
VDC (5.12)

Vωz ≈ A
z0
d

1 + C2

κ
V2ωz (5.13)
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where A is the axial amplitude, C2 ≈ 0.1 and κ ≈ 0.79 are geometric constants and z0 and

d are the trap dimensions. Fig. 5.9 shows how the noise applied near 2ωz can be scaled

to the noise near ωz. Table 5.1 shows that only two sources of noise are significant, the

Johnson noise at ωz of the inductive amplifier, and the DC noise from the heavily filtered

Fluke 732A power supply which provides the trapping potential. The next sections will

discuss how the strengths of these sources are estimated.

5.5.1 Noise from the Inductive Amplifier

The rms voltage due to Johnson noise from a resistor, R, at temperature, T is given by [18]

Vωz =
√

4kTR
(

V√
Hz

)
(5.14)

where k is Boltzman’s constant. The effective resistance of the inductive amplifier can be

determined from the axial frequency and damping rate of the electron as [18]

R =
mγz(2z0)2

(eκ)2
= 296 ± 30 kΩ. (5.15)

The noise from the amplifier is measured on a HP 8560 spectrum analyzer and can be

related to the actual noise on the endcap with the relation [18]

Vωz =
√

2mdz0γzωz

eκ

S

αC
= (1.0 ± .3) × 10−8

(
V√
Hz

)
(5.16)

where α is the calibration constant given in Eq. 3.13 that relates the measured signal, S,

at 90 kHz to the axial amplitude and C relates the signal measured at 61 MHz to S. The

measured noise voltage implies the effective resistor has a temperature T = 6.1 ± 4 K.

5.5.2 Noise from the Power Supply

The trapping voltage, V0, is provided by a Fluke 732A solid state power supply which

produces low frequency noise whose power density increases as 1/f . The manufacturer
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specifications claim 1.1 µV of noise in the frequencies between 0.1 Hz and 10 Hz. However,

an RC filter (R=1 MΩ, C=10 µF) on the ring removes all noise for frequencies above 0.1 Hz

so this specification must be extrapolated to lower frequencies, specifically to νmin = 1/2T

where T is the bin time of a flip rate measurement. T varies from 500 to 5000 seconds

and is set by an estimate of the flip rate. A characteristic of pink noise is that there is an

equal amount of power in each decade of f so the total noise varies between 1.0 µV and

1.2 µV. Eq. 5.12 gives the noise at ωz as typically

Vωz = I√
∆ν
A (5.17)

I2 =
(

2z0
d

1+C2
κ

)2 ∫
V 2

DC(ν)dν = 1.2 × 10−11 V2. (5.18)

Because the DC noise is contained in a narrow frequency band, Vωz , the power density is

an average of the total power over the bandwidth, ∆ν, for which the electron is sensitive

to the noise. More theoretical work is needed to determine ∆ν, but it is probably related

to ε+ or ε+ − ε. To test the significance of the noise from this power supply, a flip rate

was measured with the power supply disconnected. The trapping voltage was maintained

by the 10 µF capacitor on the ring line as well as a small voltage applied to the variable

voltage line to counteract the small drift due to a leakage resistance that slowly discharged

the capacitor. For the parameters (ε+ − ε)/2π = 50 Hz and ε+/2π = 100 Hz, the flip rate

decreased by approximately a factor of 5 with the removal of the power supply, indicating

this source of noise is quite significant.

5.6 Measurement of Flip Rates from Sources of Noise

Eq. 5.4 assumes all the noise is thermal, but since a significant source of noise comes from

the power supply, an extra term must be added and the flip rate becomes

W = C1exp

(
0.86md2ω

3/2
z

k|λ6|1/2

(ε+ − ε)0.89

ε0.39
+

[
1

T + (1/4kR)(I2/∆ν)A2

])
(5.19)
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where 1/4kR = (6.07 ± 0.61)×1016 (K Hz/V2) scales the total DC noise (I) to a temper-

ature, and C1 is a constant about which little is theoretically known. The extra term in

the denominator has several interesting implications for the results in section 5.4. First,

since there is a term that depends on A2 ∝ √
ε+ − ε, there is no longer a simple depen-

dence of flip rate on detuning which may explain why the data was so insensitive to the

exponent of (ε+ − ε) in the fits shown in Fig. 5.3. Second, I2 actually varies by 50% due

to changes in the bin time, T , which varies with (ε+ − ε) and ε+, so measurement of the

actual contribution of this term will be fairly inaccurate. Finally, the effective temperature

now consists of two parts, white noise from the inductive amplifier and narrow band DC

noise mixed up to ωz. Each component may be extracted from the fits described in next

section, but combining the two into a single effective temperature may only be valid for a

fixed drive strength (ε+) and detuning (ε+ − ε).

5.7 Measurement of the Strength of the Noise Sources

One way to measure the strengths of the noise sources is to observe the effect of externally

added noise. For all measurements in this section, the detuning, ε+ − ε, and the drive, ε+,

are kept constant as the noise is changed. In order to observe the flip rate change over a

wide range with the application of noise, the choice of detuning and drive strength place

the exponential argument of the theoretical flip rate, W , outside the region where Eq. 5.3

is valid. Therefore, the flip rate depends on the noise sources as

1
lnW − lnC1

= f(T +X + Text) (5.20)

f = −
√

2πε0.39
+

20.17(K/
√

Hz)(ε+ − ε)0.89
(5.21)

where X is the DC noise scaled by ∆ν so it may be thought of as a temperature. The

external noise was calibrated from independent measurements of the external noise with an

uncertainty of 36%. The constant, C1, is the coefficient of the exponent of Eq. 5.19 which
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Figure 5.10: Inverse flip rate versus temperature of externally applied noise. The constant,
lnC1, is determined from fits in Fig. 5.3. The parameters, ε+/2π = 300 Hz and (ε+ −
ε)/2π = 450 Hz, are outside the region where lnW ∝ (ε+ − ε)3/2/ε+ so a numerical value
of the exponential argument is used.

we know little about theoretically, but can be obtained from the fits in Fig. 5.3. From

Fig. 5.10 we may extract a T +X = (70.0 ± 3.8) K. For this particular drive strength and

detuning (ε+/2π = 300 Hz, (ε+−ε)/2π = 450 Hz), T+X may be thought of as the effective

temperature. Using T+X and assuming T = 6.1 K from the measurement of the inductive

amplifier, we derive a value for the total DC noise of I2/∆ν = 3.0 ± 0.9× 10−13(V2/Hz).

This measurement of the noise is a factor of 8 larger than our estimate, assuming a

bandwidth of 300 Hz.
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Chapter 6

Stochastic Behavior of Many

Electrons

The last chapter describes the stochastic behavior of a single parametric oscillator. Near a

cavity mode, small numbers of electrons display similar phase switching behavior, acting

like a rigid oscillator. Nevertheless, we observed that Coulomb interactions of a cloud

affects the flip rate. This chapter will present the data for 2, 3 and 4 electrons and

examine the differences and similarities to 1 electron.

6.1 Measured Flip Rates for 2, 3 and 4 Electrons

Flip rate measurements were made for 2, 3, and 4 electrons in the same manner as for

1 electron. The results show quite a number of similarities and some differences. First,

the overall flip rate decreases exponentially with number, as seen in Fig. 6.1. Flip rates

for more than 4 electrons could not be measured because the amount of time needed to

measure a statistically significant number of flips (more than 4 hours per measurement)

is so large that drift in the axial frequency greatly increases the error. The exponential

dependence of flip rate on detuning (ε+− ε) is also seen for more than one electron as seen

in Figs. 6.2 and 6.3, but Fig. 6.4 shows that the slopes of the fit lnW = a+ b(ε+ − ε) are
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Figure 6.1: Flip rates versus number of electrons for ε+/2π ≈ 100Hz and (ε+− ε)/2π ≈ 40
Hz (circles), ε+/2π ≈ 60Hz and (ε+ − ε)/2π ≈ 20 Hz (triangles), ε+/2π ≈ 300 Hz and
(ε+ − ε)/2π ≈ 50 Hz (squares)

different, especially for 3 electrons (see Fig. 5.4). Fig. 6.5 shows the increase in flip rate

with the application of external white noise. These measurements clearly show that there

is a difference in flip rates for different numbers of electrons even though the measured

amplitudes are the same as for rigid motion. This raises the fundamental question, what

is the difference in dynamics between a cloud of N electrons and a cloud of M electrons if

each cloud is oscillating with the same phase and amplitude? The next section describes

two possible answers to this question.
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Figure 6.2: Flip rates of 2 electrons versus detuning (ε+ − ε)/2π for (a) ε+/2π = 29.11
Hz, (b) ε+/2π = 91.78 Hz and (c) ε+/2π = 297.35 Hz
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Figure 6.3: Flip rates of 3 electrons versus detuning (ε+− ε)/2π for (a) ε+/2π = 94.20 Hz,
(b) ε+/2π = 304.39 Hz and (c) ε+/2π = 534.54 Hz. These ε+ represent the measurable
range and should not be compared to the range in Fig. 6.2
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Figure 6.4: Coefficients from the fit of lnW = a + b(ε+ − ε) for 1 (circles), 2 (triangles)
and 3 (squares) electrons versus 1/ε+

6.2 Differences between 1, 2, and 3 electrons

6.2.1 Axial Damping and Flip Rates

One answer to the question put forth in the last section is that increasing the damping

rate would better cool the center-of-mass. The axial damping rate of the center-of-mass

increases linearly with the number of electrons, but the damping rate can be changed by

detuning the axial frequency from the center frequency of the amplifier noise resonance (see

Fig. 2.11 for the linear dependence of damping rate and location on the noise resonance

peak). Fig. 6.6 shows flip rate measurements made for 2 and 3 electrons with a normal

damping rate and a damping rate lowered to the damping rate for a single electron. There

appears to be no change in a or b for a lower damping rate. This would be expected from

the flip rate theory described in Appendix A. The flip rate is given as W ∝ exp(−S/D)

94



Text (K)

0 20 40 60 80 100

1/
(ln

 W
 -

 ln
 C

1)
 (

1/
f)

-300

-250

-200

-150

-100

-50

0

Figure 6.5: Flip rates adjusted by (1/f) = 8.05(ε+ − ε)0.89/ε0.39
+ versus temperature of

externally added white noise for 1 (circles), 2 (triangles) and 3 (squares) electrons. For 1
electron, ε+/2π = 300 Hz and (ε+ − ε)/2π = 450 Hz. For 2 electrons ε+/2π = 88 Hz and
(ε+ − ε)/2π = 100 Hz. For 3 electrons ε+/2π = 110 Hz and (ε+ − ε)/2π = 50 Hz. The fact
that the slopes of these plots are not all 1 indicates that either the theory is not completely
correct or the calibration of the external noise power changed between measurements.

where S is the activation energy and depends on 1/γz (Appendix A gives the dependence

S ≈ 2Gh/hT and Eq. 3.7 gives hT ∝ γz), and D is the thermal noise and also depends on

1/γz .

6.2.2 Effective Temperature and Flip Rates

Another parameter that might change with number of electrons is the effective temperature

of the noise affecting the flip rates. It is often useful to identify each degree of freedom of

the system with a temperature. It is assumed that when tuned near a cavity mode, the

cyclotron temperature is 4.2 K. It was shown in section 5.7 that the effective flip rate for
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Figure 6.6: (a) Linear coefficients from the fit of lnW = a + b(ε+ − ε) versus 1/ε+ for 2
electrons with full axial damping (black) and half axial damping(grey). (b) same as (a)
for 3 electrons with full axial damping (black) and one third axial damping (grey).
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Figure 6.7: Linear coefficient of fit of lnW = a + b(ε+ − ε)0.89 plotted versus 1/ε+. The
solid line is the fit of b = c/ε0.39

+ , giving a T + X̄ = 12.9 ± 6.4 K

a single electron depends on two noise terms

W = C1exp

(
0.86md2ω

3/2
z

k|λ6|1/2

(ε+ − ε)0.89

ε0.39
+

[
1

T + (1/4kR)(I2/∆ν)A2

])
(6.1)

The effective temperature is much larger than 4.2 K due to 1/f noise from the Fluke 732A

power supply. For more than 1 electron, the axial temperature may cool by transferring

energy to the cyclotron reservoir via the internal motions. The final temperature depends

on the efficiency of the energy transfer, which must depend on the number of Coulomb

interactions. Therefore, more electrons have a lower effective axial temperature than fewer

electrons. Due to the nonlinear nature of the noise described in Chapt. 5, it is difficult to

describe a relation between effective temperature and number of electrons. However, an

analysis of the flip rate versus added noise of 2 and 3 electrons in Fig. 6.5 using Eqs. 5.20

and 5.21 gives lower effective temperatures for 2 and 3 electrons (see Table 6.1).
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N ε+/2π (Hz) (ε+ − ε)/2π (Hz) T+X (K)
1 300 450 70.9 ± 3.8
2 88 100 54.7 ± 1.1
3 110 50 16.7 ± 1.0

Table 6.1: Effective temperatures extracted from measurements of 1, 2 and 3 electrons
with external noise. The three measurements are not easily compared because the effective
temperature probably depends inversely on detuning and drive strength. However, since
the temperature for 2 and 3 electrons is lower than 1 even for smaller ε+ and ε+ − ε, we
conclude the temperature really is decreasing for more electrons.
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Figure 6.8: Histogram of phase residence times of 2 electrons for (a) ε+/2π = 92 Hz,
(ε+ − ε)/2π = 30 Hz and (b) ε+/2π = 56 Hz, (ε+ − ε)/2π = 20 Hz.

Three electrons appears to mostly damp the DC noise from the Fluke 732 power supply.

Assuming X is small means that the flip rate can be fit to the form lnW = a+b(ε+−ε)0.89

as described in section 5.2, and the linear coefficients, b, fit to the form b = c/ε0.39
+ where c

is proportional to temperature. These fits give an average temperature, T+X̄ = 12.9±6.4

which is consistent with the temperature of 3 electrons measured previously.

6.3 Distribution of Phase Residence Times

Fig. 5.7 shows that for 1 electron the distribution is exponential. This is also true

for 3 electrons (see Fig. 6.9), but for 2 electrons there were more flips at short times
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Figure 6.9: Histogram of phase residence times of 3 electrons for (a) ε+/2π = 304 Hz,
(ε+ − ε)/2π = 20 Hz and (b) ε+/2π = 533 Hz, (ε+ − ε)/2π = 50 Hz.

than expected (see Fig. 6.8). Tan and Gabrielse [7] also observed a nonexponential

distribution of phase residence times for many electrons. The dynamics that produces the

extra flips are still unknown, but it may be related to the level of internal motions. The

earlier observations were made with a cloud that was not completely synchronized so the

internal motions were significant. Because 2 electrons do not efficiently transfer energy

to the cyclotron motion, internal motions may not be completely damped. Statistically

significant measurements could not be made for more than 3 electrons in this thesis, but

with this hypothesis, one would expect an exponential distribution for larger numbers of

electrons at the rigid limit.

6.4 Cyclotron Damping and Flip Rates

As the cyclotron frequency is detuned from a mode frequency, the cyclotron damping rate

decreases which would lead to a higher axial temperature. We observe that for many

electrons (15 in Fig. 6.10), the flip rate increases with detuning as the synchronization

decreases. Fig. 6.10 shows that the amplitude and the logarithm of the mean phase

residence time (1/ lnW ) serve as equally good measures of the degree of synchronization.
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Figure 6.10: Parametric amplitudes and flip rates across a cavity mode. As the mode
detuning increases, the center of the lineshape collapses so that the measured amplitude
(a) decreases to zero far from the mode. (b) The mean phase residence time (τ = 1/W )
also decreases with mode detuning so that either the amplitude or the log τ are good
measures of the mode cooling power.
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Chapter 7

Conclusion

We used a Penning trap with a good cylindrical microwave cavity to probe the syn-

chronization of electrons in the trap. When the cyclotron frequency is tuned near an

electromagnetic cavity mode, the cyclotron motion easily damps the internal motions of

a cloud of electrons, the axial motions synchronize, and a large center-of-mass amplitude

is observed. When the level of noise in the experiment is low enough, the parametri-

cally excited center-of-mass amplitude is that expected for a rigid ball of charge. This

synchronized behavior has been observed for 2 to 1000 electrons.

Stochastic phase switching has been observed for 1 electron. This behavior was orig-

inally expected for more than one electron and was thought to be related to the internal

motions of a cloud of electrons. The observations in this work confirm that stochastic

phase switching is a phenomenon of a rigid oscillator in the presence of noise, where the

flip rate primarily depends on the level of noise relative to the amplitude of oscillation.

This experiment has stimulated a theory that describes the flip rate in terms of parameters

of the parametric excitation and agrees well with observations.

Although the theory assumes the noise present in the system is white, some of the

noise in this system is comprised of narrowband noise arising from a solid state power

supply. This leads to an effective axial temperature for one electron that is significantly

higher than the 4.2 K trap and detection circuit.
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Similar phase switching behavior has been observed for 2, 3, and 4 electrons with sig-

nificantly lower flip rates for more electrons. Dependence of the flip rate on drive strength

and noise were also different, especially for 3 and 4 electrons. Although the increased

damping for larger numbers of electrons was considered as the cause of these differences,

it was ruled out when observations of 2 and 3 electrons with lower damping rates pro-

duced no change in the flip rate. Rather, we conclude the cause of these differences from

1 electron is the effective temperature. More electrons have a lower effective temperature

due to shunting the noise through the Coulomb interactions to the cyclotron motion which

then damps to the 4.2 K cavity.

There is still further work to do on both synchronization and stochastic behavior of

many electrons. As the cyclotron frequency is swept past a cavity mode frequency by

changing the magnetic field, the axial amplitude produces a lineshape that is asymmetric

and displays hysteresis, especially for large numbers of electrons. This may be related to

the dynamics of the cloud as it approaches synchronization. A similar area to be explored

is the lineshape of the parametric resonance when the cloud is partially synchronized which

also displays transient behavior.

The primary topic of interest for stochastic behavior is understanding the noise and

how it is damped by many electrons. More theoretical work needs to be done to better

understand the effects of narrowband noise, but it is probably preferable to remove it

from the experiment. Phase flips have also been observed for partial synchronization, but

the flip rates as a function of various parameters have not been studied in depth. One

clue to the difference between phase switching behavior for rigid and non rigid systems

may be the distribution of phase residence times. The histograms created for one electron

show the expected exponential distribution, but earlier work on partially synchronized

clouds produced histograms with extra flips at short times [7]. This distribution was also

observed for 2 electrons (but not for 3), indicating perhaps that the internal mode of the

pair was not fully damped. Numerical simulations of 2 electrons may produce some insight

that can be extended to many more particles.
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Appendix A

Derivation of Phase Flip Rates of

a Parametric Oscillator

A.1 Fluctuational Phase Flip Transition Rates

The expression for the rate of phase flips stated in Chapter 5 has been derived by Maloney,

Silverstein, et. al. [13]. They begin with the equation of motion for a parametrically driven

anharmonic oscillator in the presence of noise

Z̈ + γZŻ + ω2
ZZ + λ4ω

2
ZZ

3 + λ6ω
2
ZZ

5 + hω2
Z cos(ωdt)Z = Cξ(t) (A.1)

and solve A.1 in terms of slowly varying variables

Z(t) =

√
2ωdγz

3|λ4|ω2
z

[q1 cosωzt− q2 sinωzt] (A.2)

Ż(t) = −
√

ω3
dγz

6|λ4|ω2
z

[q1 sinωzt+ q2 cosωzt] (A.3)

Using a standard averaging procedure by which Eq. A.2 and A.3 are scaled by τ = 2t/γz

and inserted into Eq. A.1, and fast oscillating terms are neglected, they obtain first order
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equations of motion for q1 and q2

q̇1 = −q1 +
∂g

∂q2
+ ξ1(2τ/γz) (A.4)

q̇2 = −q2 − ∂g

∂q1
+ ξ2(2τ/γz) (A.5)

where ξ1,2(2τ/γz) is the noise and

g(q1, q2) =
1
2
(q21 + q22)

[
2ε
γz

− 1
2
(q21 + q22)

|λ4|
λ4

− ρhT

3h
(q21 + q22)

2
]

+
1
2
h

ht
(z2

2 − q21) (A.6)

where the parameter ρ = 5λ6h/9λ2
4 determines the relative effect of the anharmonic terms.

This theory assumes that the noise in the system, ξ(t), is white near the axial frequency

with a correlation function

< ξi(2τ/γz)ξi(2τ ′/γz) > ≈ Dδ(τ − τ ′) (A.7)

where D is the noise intensity. If the noise is thermal, D = 3|λ4|kT/8md2ωzγz where m

is the mass and d is the trap constant.

The flip rate is proportional to exp(−Sn/D), where Sn (n = Ψ,Ψ+π) is the activation

energy for escape from one of the basins of attraction and is given by the minimum of

the action. They solve for the activation energy in the limit that the drive strength is

strong enough that the dissipation in Eqs. A.4 and A.5 are small. Eqs. A.4 and A.5 in

the absence of noise (ξ1,2 = 0) and dissipation (q1, q2 = 0) describe conservative motion

with g(q1, q2) as the Hamiltonian. The activation energy can be approximated as

SΨ,Ψ+π ≈ 2GΨ,Ψ+πh/hT (A.8)
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where GΨ,Ψ+π are the maxima of the energy surface defined by the Hamiltonian g(q1, q2)

GΨ,Ψ+π =
[1 − 4ρ(1 − ε

ε+
)]3/2 + 6ρ(1 − ε

ε+
) − 1

24ρ2
. (A.9)

If the trap is tuned to make |C4| < 10−5 then |C4| � |C6|A2, and the flip rate can be

approximated as

GΨ,Ψ+π =
1
3
(−ρ)−1/2

(
1 − ε

ε+

)3/2

, (A.10)

the flip rate can be approximated as

W ∝ exp

(
−16md2ω

3/2
z (ε+ − ε)3/2

3
√

5kT |λ6|1/2ε+

)
(A.11)

If the trap is severely detuned so |C4| � |C6|A2, −ρ(1 − ε/ε+)s very small then Eq. A.9

becomes

GΨ,Ψ+π =
1
4
(1 − ε

ε+
)2, (A.12)

and the flip rate is approximately

W ∝ exp

(
−3ωz(ε+ − ε)2

8|λ4|kTε+

)
. (A.13)

Eqs. A.11 and A.13 is only valid for values (ε+ − ε)/ε+ � 1. This condition is not usually

met experimentally, so a numerically generated value of SΨ,Ψ+π must be used as shown in

Fig. A.1. We fit this numerically generated data to gives

SΨ,Ψ+π ≈ h

hT

.24(ε+ − ε)0.89

(−ρ)1/2ε0.89
+

. (A.14)

Therefore, the flip rate for our experimental parameters is approximately

W ∝ exp


20.17 K√

Hz
(ε+ − ε)0.89

√
2πε0.39

+ T


 . (A.15)

Eqs. A.11, A.13 and A.15 imply that the flip rate depends on drive strength, detuning
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Figure A.1: Activation energy verses relative detuning. The solid line is numerical form
from which Eq. A.14 is derived. The dotted line is the approximation from which Eq.
A.9 is derived. It is clear the approximation is only valid for (ε+ − ε)/ε+ near zero.

from the edge of the parametric resonance, and the effective temperature of the system.

A.2 Conditions of Validity of Phase Flip Rates

Equations A.11, A.13 and A.15 are only valid if the approach to equilibrium in phase

space is underdamped. The damping condition is derived in a paper by Tseng, et. al. [12]

by starting with the equations of motion

dA

dt
= −γz

2
A

[
1 − h

hT
sin 2Ψ

]
(A.16)

dΨ
dt

= −ε+
1
4
hωz cos(2Ψ) +

3
8
λ4ωzA

2 +
5
16
λ6ωzA

4 (A.17)
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or in terms of the in-phase and quadrature variables AI = A cos(Ψ) and AQ = A sin(Ψ),

d

dt
AI =

[
ε+

1
4
hωz − 3

8
λ4ωzA

2 − 5
16
λ6ωzA

4
]
AQ − γz

2
AI (A.18)

d

dt
Aq = −

[
ε− 1

4
hωz − 3

8
λ4ωzA

2 − 5
16
λ6ωzA

4
]
AI − γz

2
AQ (A.19)

where A2 = A2
I + A2

Q. Near the steady state, the amplitude variables can be expanded

about equilibrium to obtain linear differential equations for deviations from the steady

state. These deviations from the steady state are assumed to have the time dependence

et/τ1,2 where τ1,2 are found to be

τ−1
1 =

γz

2
+

√√√√(γz

2

)2

± 4

(
∂A2±
∂ε

)−1

|ε±|A2± (A.20)

τ−1
2 =

γz

2
−
√√√√(γz

2

)2

± 4

(
∂A2±
∂ε

)−1

|ε±|A2±, (A.21)

where ∂A2±/∂ε is taken from

5λ6ωz

16
A4

± +
3λ4ωz

8
A2

± + ε± − ε = 0. (A.22)

If the approach to equilibrium is underdamped, τ1,2 have an imaginary part which requires

(
γz

2

)2

± 4

(
∂A2±
∂ε

)−1

|ε±|A2
± < 0. (A.23)

In all the experiments performed in this thesis, λ6 < 0 and λ4 is small, so A+ is always

the appropriate solution. For the case that λ4 is very small, Eq. A.23 becomes

(ε+ − ε)ε+ >
N2γ2

z

32
(A.24)

(ε+ − ε)ε+
4π2

> N26.125 (A.25)
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where γz/2π has been measured to be 14 Hz. This requirement is always met in these

experiments.
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Appendix B

Dynamics of 2 and 3 Electrons

B.1 Equilibrium Positions of 2 Electrons

Since the flip rate appears to depend intimately on the nature of the Coulomb interac-

tions, it is interesting to examine in detail the relative positions of the electrons in the

Penning trap. It is possible to do this analytically for two electrons, following a procedure

described by Baumann and Nonnenmacher [41], by writing the equations of motion ne-

glecting damping and anharmonicity in terms of the center-of-mass (X) and relative (x)

coordinates

ẍ = −2qω2
z(x − 3zêz) + ωc(ẋ × êz) +

2q2

4πmεo
x
|x|3 (B.1)

Ẍ = ω2
z(X− 3Zêz) + ωc(Ẋ × êz) (B.2)

Note that only Eq. B.1 contains the Coulomb term. We define Q2 = (2q2/4πεom) and

rewrite Eq.(B.1) in cylindrical coordinates



ar

aφ

az


 =

ωz

2




r

φ

2z


− ωc



vφ

vr

0


+

Q2

(r2o + z2
o)3/2




r

φ

z


 (B.3)
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Rescaling time as τ = tκ where κ = ω2
c/4 − ω2

z/2, and defining the scaled coordinates

ζ =
(
Q2/κ2

)3/2
z and ρ =

(
Q2/κ2

)3/2
r, we can write the axial and radial equations of

motion as

ζ̈ + λ2ζ =
ζ

(ρ2 + ζ2)3/2
(B.4)

ρ̈+ ρ =
ρ

(ρ2 + ζ2)3/2
+
ν2

ρ3
(B.5)

where λ2 = ω2
z/κ

2, ν2 = l̃z/κ
2, and l̃z = ρ2(φ̇− ωc/2).

The Lagrangian for this system is

L =
1
2
(ρ̇+ ζ̇) − U(ρ, ζ) (B.6)

U(ρ, ζ) =
1
2
(ρ2 + λ2ζ2) +

ν2

2ρ2
+

1√
ρ2 + ζ2

(B.7)

Solving with dU/dρ = 0 and dU/dz = 0 gives the minima at

ρo =
√
ν

(1 − λ2)3/2
(B.8)

ζo = 0 when λ > λc,√
λ−4/3 − ν

(1−λ2)1/2 when λ < λc.
(B.9)

Here, λc satisfies the equation
√

1 − λ2
c = νλ

4/3
c . When ζ0 = 0 (large angular momentum),

the particles lie in the same x-y plane and move in circular paths separated by 2ρo. When

ζ > 0 (small angular momentum), the particles move out of the plane and into a dumbbell

configuration with the centers of the orbits separated by 2ρo radially and 2ζ0 axially. For

2 electrons, λ2 = 5.68 × 10−7 is much smaller than ν2 = 8.03 × 10−4, so λc ≈ 1 > λ.

Therefore the electrons are always in the dumbbell configuration. The radial separation is

2.12 × 10−6 cm which is about 700 times smaller than the axial separation of 1.52 × 10−3

cm. The positions of three electrons in a trap cannot be solved analytically, and requires

much CPU time to solve numerically covering all time scales.
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B.2 Transfer of Energy between Axial and Cyclotron Mo-

tions

O’Neil and Hjorth [42,43] have developed a theory for plasmas with a single sign of charge

that describes the transfer of energy of from one degree of freedom to another that have

two different effective temperatures. They assume the plasma is strongly magnetized and

weakly correlated, which means the cyclotron radius is smaller than both the minimum

separation of two particles and the classical distance of closest approach, b̄ = 2e2/T

where e is the charge and T is the temperature. They observe that the total cyclotron

kinetic energy is an adiabatic invariant because the collision time is much longer than the

oscillation period of the cyclotron motion. However, the adiabatic invariant is not strictly

conserved as each collision produces exponentially small exchange of energy between the

axial and cyclotron motions which acts cumulatively to equilibrate the axial and cyclotron

temperatures. In the case of this experiment, because the cyclotron damping is so strong

when the plasma is completely synchronized, we assume the cyclotron temperature remains

at 4.2 K and the axial temperature is lowered by energy transfer.

The energy transfer in the plasma is dominated by well separated binary collisions of

close radial approach which may be modeled as a Boltzmann-like collision operator. The

rate of change in the cyclotron temperature, Tc, is given by [43]

dTc

dt
= (Tz − Tc)nb̄2v̄zI(ε̄) (B.10)

where n is the density, v̄z is the average axial velocity and ε̄ = v̄z/ωcb̄. Since ε̄ is small,

I(ε̄) is given by

I(ε̄) ≈ (0.47)ε̄1/5 exp
[−(2.05)

ε̄2/5

]
. (B.11)

Eq. B.10 implies the rate of energy transfer is proportional to the density, which is

presumably proportional to the number of electrons. Thus more electrons transfer energy

from the axial motion to the cyclotron motion more efficiently and a lower effective axial
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temperature is reached than with fewer electrons.
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