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Abstract

The master equation is solved for a driven, one-electron cyclotron oscillator which

is anharmonic because of special relativity, and damped via synchrotron radiation

to thermal equilibrium with a reservoir. The quantum mechanical dressed states

of the anharmonic oscillator which emerge have many interesting properties. They

are never completely stable, and loss rates are related to their angular probability

distributions in phase-space. Perturbations from equilibrium exhibit partial revivals

which give a characteristic spreading time for the distributions. This calculation

is subject to experimental verification insofar as one electron in a Penning trap

is accurately described. In fact, the damping, drive, and noise parameters which

should allow 1 part in 109 cyclotron frequency measurements are identified.
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Chapter 1

Introduction

1.1 Overview

Anharmonic quantum oscillators are the simplest extensions of the well understood

harmonic oscillator and are useful models for nonlinear physical systems. The one-

electron cyclotron oscillator is the simplest of damped anharmonic oscillators, its

anharmonicity arising from special relativity [1], and its damping arising from syn-

chrotron radiation. Anharmonicity is known to cause collapse, revival, and other

interference phenomena for initially localized states [2–9]. In addition, dissipation

is known to play an important role in the destruction of quantum coherence and

the reproduction of classical behavior [3–5]. The final element needed to complete

the physical description of such nonlinear systems is a drive, generally expected to

produce stable excitations of a classical anharmonic oscillator.

In this work, the master equation is solved to investigate the quantum stability

and revival characteristics of an excited state of the one-electron oscillator when a

drive, anharmonicity, and damping to equilibrium with a thermal reservoir are all

included. Several unexpected features emerge including partial revivals of an initial
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harmonic coherent state in a driven system, and persistent loss from even a large

resonant excitation. The degree of instability in the excited state is shown to have

a strong dependence on angular spread of the dressed coherent state Q-function,

and is qualitatively interpreted in terms of classical phase-space stability diagrams.

Many of these unexpected effects are attributed to the uniquely quantum mechanical

one-electron cyclotron oscillator property of having large anharmonic shifts relative

to damping widths for the lowest energy levels.

This general quantum mechanical system is experimentally realizable as a single

trapped electron cyclotron oscillator [1]. Anharmonic shifts introduced by special

relativity are tiny compared to the cyclotron frequency but are clearly observed

and have a significant impact on precision measurements. Part-per-billion measure-

ments of the cyclotron frequency and the anomaly frequency (equal to the difference

between the spin and cyclotron frequencies) are needed for the next generation of

electron magnetic moment measurements. Comparisons of the experimentally de-

termined magnetic moment with theory provide the best test of QED. The most

recent experiments report a fractional accuracy of 4 parts in 109 [10, 11], cavity

shifts and damping widths within the hyperbolic Penning trap presenting a major

obstacle to improvements. A cylindrically shaped Penning trap cavity, with recently

characterized microwave resonances [12–14], should provide a clean environment for

magnetic moment measurements improved to 1 ppb or better. We present master

equation solutions of the electron cyclotron oscillator to find the damping, drive, and

noise parameters necessary for ppb frequency measurements. This should greatly

facilitate the experimenters’ task by directing the path of investigation through a

large parameter-space.
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magnetron
motion

axial
motion

cyclotron
motion

B

Figure 1.1: The three independent motions in an ideal Penning trap: the axial
oscillation parallel to the magnetic field, the slow E × B magnetron drift in the
plane perpendicular to the field, and the fast cyclotron motion (shown as a small
circle) in the same plane.

1.2 One Electron in a Penning Trap

The environment for the physical realization of this study is one electron in a Penning

trap. An ideal Penning trap is an electric quadrupole field superimposed on a

spatially homogeneous magnetic field. A charged particle bound in such a trap has

three independent oscillatory degrees of freedom: the slightly modified cyclotron

motion at ω′
c in the plane perpendicular to the magnetic field, the axial motion at

ωz parallel to the magnetic field, and the magnetron E× B drift motion at ωm, also

in the radial plane perpendicular to the magnetic field (see Fig. 1.1). For a trapped
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electron, the three oscillation frequencies are typically separated by factors of more

than a thousand,

ω′
c/2π ' 150GHz (1.1)

ωz/2π ' 60MHz (1.2)

ωm/2π ' 12kHz, (1.3)

being experimentally fixed by the trap magnetic field, the strength of the static trap

potential, and the trap size. A detailed description of these three motions may be

found in [15], but the basic features are highlighted here.

The axial oscillation is the only directly detected motion: The cyclotron fre-

quency is too fast, and the magnetron motion contains less information about the

electron. A typical axial detector, which also resistively damps the axial motion, is

a cold 4.2 K tuned circuit resonant with the axial frequency. Johnson noise from

the detection resistor couples to the cyclotron motion via special relativity, and

is the subject of Chapter 6. Cyclotron excitations are experimentally detected as

relativistic shifts in the axial frequency.

In this work we focus upon the cyclotron oscillator. We entirely ignore the

magnetron drift motion. This slow rotation is essentially decoupled from the others,

and can be experimentally cooled so its radius is very small. Other than the noise

coupling discussed in Chapter 6, we also ignore the axial motion, assuming an ideal

detector measures the cyclotron excitation. Most of the calculation, therefore, deals

with one free electron in a magnetic field and with cyclotron frequency ωc (which

must be interpreted as the modified ω′
c when applied to an electron in a Penning

trap).

In Chapter 2 the classical relativistic equation of motion for an electron in a
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magnetic field is derived and interpreted. Variables are chosen to facilitate compar-

isons with the quantum model introduced and discussed in Chapter 3. The quantum

treatment in Chapter 3 utilizes raising and lowering operators to explore features

of the undamped anharmonic oscillator with and without a drive. Dissipation via

coupling to a finite temperature reservoir is then introduced, using both a density

operator and a Monte Carlo wave-function approach. The two approaches are shown

analytically and computationally to agree. In addition, the choice of measurement

operators for the anharmonic oscillator is discussed in regard to the question of

whether the emitted photon frequency is resolvable or not. In Chapter 4, the solu-

tions to the master equation show persistent instability even when resonantly driven.

Partial revivals of an initially harmonic coherent state are seen, as the Q-function

evolves into a dressed coherent state of the anharmonic oscillator. Chapter 5 dis-

cusses implications for making part-per-billion cyclotron frequency measurements,

and Chapter 6 treats the effect of stochastic cyclotron frequency fluctuations, orig-

inating from coupled axial energy fluctuations or from a fluctuating driving force.
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Chapter 2

Classical Cyclotron Motion

This chapter is an introduction to the classical motion of a relativistic electron in

a Penning trap. It not only builds an essential framework for the ensuing quan-

tum mechanical analysis, but also provides insight into understanding some of the

unexpected phenomena we report in later chapters.

The classical relativistic motion for an electron of charge −e and rest mass m in

a uniform magnetic field B = Bẑ is governed by the Lorentz force

d(mγv)/dt = −(e/c)v × B− eEdrive + Fr, (2.1)

where v is the electron velocity and γ is the usual relativistic factor, γ = 1/

√
1 −

(
v
c

)2
.

The terms Edrive(t) and Fr are due to an external electric driving field and radiation

damping, respectively. The motion is in a circle [16] with angular frequency

ω =
eB

γmc
=

ωc

γ
, (2.2)

where we take the cyclotron frequency ωc to be the unshifted value which pertains

to low electron speeds. Special relativity makes the oscillator slightly anharmonic.
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An increase in cyclotron energy increases the relativistic factor γ and thus decreases

the resonant frequency. (Similarly, relativity couples axial noise to the cyclotron

frequency as discussed in Ch. 6.)

In free space, the motion would be brought to thermal equilibrium with the 4.2

K environment by synchrotron radiation at the spontaneous emission rate γc = γfs,

where

γfs =
4r0ω

2
c

3c
, (2.3)

r0 ' 2.8 × 10−13 cm is the classical electron radius, and c is the speed of light.

For a cyclotron frequency near 150 GHz, the free space damping time is γ−1
fs ' 90

ms. In a Penning trap cavity environment, the spontaneous emission rate γc can be

either enhanced or inhibited [17–19], by tuning the cyclotron frequency relative to

microwave resonances of the cavity.

We use the dipole approximation for the microwave driving force, valid because

the k · ρ term in the microwave driving field is
√

2Ec/mc2 ≤ 0.008, where 0.008

pertains to the maximum observed cyclotron excitation Ec = 16.2 eV [19]. As is

usually done, we write the field Edrive(t) as the sum of co-rotating and counter-

rotating components and neglect the non-resonant counter-rotating components.

Then the driving electric field is

Edrive(t) = E0 [x̂ cos(ωdt) + ŷ sin(ωdt)] . (2.4)
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2.1 Relativistic Motion

Combining the B-field term and the radiation damping term with Eq. 2.1 gives the

equation of motion found in [15],

d

dt
[γv(t))] = ωcẑ × v(t) − 1

2
γcv(t) − e

m
Edrive(t). (2.5)

Using similar notation to [15] with complex velocity v(t) = vx(t)+ivy(t) and rotating

frame γv(t) = u(t)eiωdt, the equation of motion can be written to second order in

|u|2/c2 as

u̇(t) + i

{
ωd − ωc

[
1 − 1

2

|u(t)|2
c2

]}
u(t) +

1

2
γcu(t) = − e

m
E0. (2.6)

However, to later compare with the raising and lowering operators of quantum

theory, we use related notation

α(t) =

√
m

2h̄ωc
γ (vx(t) − ivy(t)) =

√
m

2h̄ωc
γ v∗(t) (2.7)

α∗(t) =

√
m

2h̄ωc
γ (vx(t) + ivy(t)) =

√
m

2h̄ωc
γ v(t). (2.8)

We go to a rotating frame α(t) = ᾱ(t)e−iωdt. Notice the direction of rotation is

opposite the v → u rotation direction because α is proportional to v∗ rather than v.

Also notice a factor of γ is included in the definition of α rather than saving it for the

relationship between α and ᾱ (in order to simplify the rotating frame convention).

Then the equation of motion in the rotating frame is

˙̄α(t) − i

{
ωd − ωc

[
1 − |ᾱ(t)|2 h̄ωc

mc2

]}
ᾱ(t) +

1

2
γcᾱ(t) = −

√
(eE0)2

2mh̄ωc
. (2.9)
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The first order relativistic correction appears as a term proportional to |ᾱ|2 in the

square brackets.

The total energy of this classical anharmonic oscillator is given by the relativistic

expression E =
√

(mc2)2 + (pc)2 where p is the kinetic momentum

p = mγv, (2.10)

not too be confused with the canonical momentum P = p − (e/c)A which will be

used in the quantum Hamiltonian formulation. Expanded in terms of p2/m2c2, and

also written in terms of |ᾱ|2, the anharmonic cyclotron energy becomes

E = mc2 +
p2

2m
− 1

2mc2

(
p2

2m

)2

+ ... (2.11)

= mc2 + h̄ωc|ᾱ|2 − 1

2mc2

(
h̄ωc|ᾱ|2

)2
+ .... (2.12)

This relativistic expansion for energy will be the starting point for the quantum

Hamiltonian treatment of Ch. 3. In most discussion of cyclotron excitations, how-

ever, the harmonic term h̄ωc|ᾱ|2 or sometimes just |ᾱ|2 will be referred to as energy.

2.2 Steady State

The steady state of this anharmonic oscillator can be studied by taking ˙̄α(t) = 0.

It is convenient to characterize the drive strength by the maximum response ᾱmax

and the anharmonicity strength by the dimensionless parameter N , where

|ᾱmax|2 =

(
2

γc

)2
(eE0)

2

2mh̄ωc
(2.13)

N = −ωc

γc

|ᾱmax|2
(

h̄ωc

mc2

)
. (2.14)
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The steady state energy |ᾱss|2, as a function of drive frequency ωd, can be expressed

in terms of these parameters as a “tilted” Lorentzian,

∣∣∣∣ ᾱss

ᾱmax

∣∣∣∣2 =
1

1 + 4
[

ωd−ωc

γc
− N

∣∣∣ ᾱss

ᾱmax

∣∣∣2]2
. (2.15)

Fig. 2.1a shows a plot of such a resonance curve for a mild anharmonicity case

N = −10 (solid) and the harmonic case N = 0 (dashed). The harmonic curve is a

familiar Lorentzian response. The anharmonic curve demonstrates how the resonant

frequency of the oscillator shifts downward as the excitation energy increases. The

triple-valued region is responsible for hysteresis and bistability. The lower and upper

energy curves correspond to regions of stable motion, while the mid-energy section

between points A and B corresponds to a region of unstable motion. This is proven

by expanding the response ᾱ(t) about its steady state value and solving for the

time dependence of a small deviation from equilibrium. (See [15].) Along the stable

branches, the deviation damps to zero, while along the unstable branch it blows up.

The bistability leads to hysteresis if the drive frequency is swept through res-

onance. When swept from high frequencies to low, the drive excites the oscillator

along the upper stable curve, as indicated by the arrow. When the drive is swept

from low frequencies to high, however, the oscillator remains relatively unexcited on

the lower branch until the drive reaches the frequency for point A, at which point

the oscillator energy jumps up to the single valued portion of the response curve to

continue.

The first experimental observation of a relativistic electron cyclotron resonance

was reported by Gabrielse, Dehmelt and Kells [1]. A typical experimental curve

taken in the currently used hyperbolic trap is shown in Fig. 2.2. The illustrated

resonance has anharmonicity parameter N ' −105, which is so much larger in
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Figure 2.1: (a) Steady state squared amplitudes of both a harmonic (dashed) and
an anharmonic (solid) driven damped oscillator. (b) Steady state phase lag with
respect to a drive for the anharmonic oscillator shown in (a). The phase curve is
similar to that of a harmonic oscillator when plotted versus ωc − ωshift, where ωshift

is the amplitude dependent resonant frequency of Eq. 2.16. Points C and E are
the two stable solutions and D is the single unstable solution for the fixed drive
frequency to be used in Fig. 2.3.
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Figure 2.2: Observed single electron relativistic cyclotron excitation [19]. Excitation
energy is detected as a relativistic shift of the axial frequency. Arrows indicate
the sweep direction of a microwave drive. Hysteresis and bistability are observed.
Calculations will show that instability of the upper energy portion of the “stable”
branch is what limits the extent of the excitation (as opposed to microwave power).

magnitude than the N = −10 shown in Fig. 2.1a, that its width is too narrow to be

visible.

The other classical parameter that will be used in quantum comparisons is the

steady state response phase φss, defined by ᾱss = |ᾱss|eiφss. Momentarily going

back to the stationary frame expression for the response αss = |ᾱss|e−i(ωdt−φss) and

writing the driving field as Ex − iEy = E0e
−iωdt, reveals that φss is a phase lag of

the response with respect to the drive. It, too, is found by setting ˙̄α(t) = 0. When
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written in terms of the shifted cyclotron frequency

ωshift = ωc

[
1 − |ᾱss|2 h̄ωc

mc2

]
, (2.16)

the solution for the phase lag φss looks the same as for a driven damped harmonic

oscillator with ωshift = ωc, and is given by

φss = tan−1

(
ωd − ωshift

γc/2

)
. (2.17)

Fig. 2.1b shows a plot of the response phase in terms of the drive frequency. Far

above resonance the response lags the drive by 3π/2, while far below resonance it

lags by only π/2. When the drive is exactly resonant with the shifted cyclotron

frequency (ᾱss = ᾱmax), the response and the drive are π out of phase, as can be

seen by zeroing the curly bracket term in Eq. 2.9. This differs from the familiar

π/2 phase lag for a resonantly driven simple harmonic oscillator. The difference

arises merely from the fact that we are treating velocity oscillations as opposed to

the standard spatial oscillations.

2.3 Time Evolution

The steady state response is fully characterized by the amplitude and phase of ᾱss.

The time evolution of the system is most easily described in phase-space. If we plot

Re[ᾱ(t)] versus Im[ᾱ(t)] for a fixed drive, we see the trajectory that ᾱ(t) follows.

Remember these real and imaginary parts are proportional to vx and vy, so phase-

space trajectories can be visualized as actual cyclotron trajectories. (In the quantum

development of the next chapter, it will be shown that these real and imaginary parts

satisfy the same commutation relation as the commonly used phase-space variables
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q and pq, up to a constant.) Fig. 2.3a shows two such computed trajectories for a

drive frequency in the bistable region of the response curve. There are two stable

attractors to which ᾱ(t) damps, one excited state and one unexcited state near the

origin. These two attractors correspond to the steady state amplitudes and phases

labeled E and C in Fig. 2.1. The definition of stability assures that for an initial

excitation close to the high energy stable attractor, the oscillator will remain excited

by damping to that attractor. However, for displacements far from equilibrium, it

is not obvious into which attractor the oscillator will damp.

Fig. 2.3b illustrates the excited-state’s stable ‘bucket’, defined as those points

in phase-space which eventually damp to the excited attractor. The rest of phase-

space is then the unexcited-state’s stable ‘bucket’. The two stable attractors are

again labeled E and C. (Also shown is the unstable steady state solution, located

on a boundary between the 2 ‘buckets’, labeled D.) These pictures help us to

understand how large a fluctuation is necessary to de-excite a stable resonance. The

buckets shown, however, are for the still mild anharmonicity parameter N = −10.

The spiral structure gets even narrower (and therefore harder to calculate and depict

graphically) for stronger anharmonicity. This stable ‘bucket’ picture will be revisited

using a quantum mechanical model in Ch. 4, where we seek to reproduce the stability

for some classical limit while using the correct quantum model.
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Figure 2.3: Two classical phase-space trajectories in (a) and a map of the excited
state’s stable bucket in (b) for N = −10 and a drive frequency corresponding to the
steady state solutions C, D, and E of Fig. 2.1. Trajectories in (a) damp to either the
excited stable attractor E or the unexcited stable attractor C. Phase-space points
which damp to the excited attractor are shown in (b) (filled squares), along with
the stable and unstable solutions C, D, and E (filled circles).
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Chapter 3

Quantum Cyclotron Motion

In this chapter the cyclotron motion for an electron of charge −e in a magnetic field

B is described quantum mechanically. Raising and lowering operators analogous to

classical phase-space variables are defined, and a quantum Hamiltonian is derived.

First, features of the undamped anharmonic oscillator with and without a drive are

explored. Then, dissipation via coupling to a finite temperature reservoir is intro-

duced, using both a density operator and a Monte Carlo wave-function approach.

The two approaches are shown analytically and computationally to agree. In addi-

tion, the choice of measurement operators for the anharmonic oscillator is discussed

in regard to the question of whether the emitted photon frequency is resolvable or

not. This sets the stage for solutions to the master equation which will be presented

in Ch. 4.
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3.1 Undamped Quantum Hamiltonian

We begin with the 2-dimensional harmonic Hamiltonian taken from the first term

of the relativistic energy expansion of Eq. 2.11 (ignoring the rest mass term),

Hc =
p2

2m
=

p2
x + p2

y

2m
. (3.1)

The kinetic momentum components px and py are non-commuting and satisfy

[px, py] = −ih̄ωcm. (3.2)

The commutation relation is derived from the usual canonical commutation relations

[ρk, Pl] = ih̄δkl, where the canonical radial momentum P is given by P = p−(e/c)A,

the radial position is given by ρ , and the gauge is chosen so that A = (1/2)B× ρ .

The cyclotron Hamiltonian can be recast as a simple 1-dimensional oscillator

with canonically conjugate variables q and pq

Hc =
1

2
mω2

cq
2 +

pq
2

2m
(3.3)

if we take

q =
px

mωc
pq = −py. (3.4)

Then raising and lowering operators can be defined as usual,

a =

√
mωc

2h̄
q + i

√
1

2mh̄ωc

pq =

√
1

2mh̄ωc

(px − ipy) (3.5)

a† =

√
mωc

2h̄
q − i

√
1

2mh̄ωc
pq =

√
1

2mh̄ωc
(px + ipy). (3.6)

The commutation relation [q, pq] = ih̄ ensures that [a, a†] = 1, and the quantum
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harmonic cyclotron Hamiltonian is the familiar

Hc = h̄ωc(a
†a +

1

2
). (3.7)

Notice that Eqs. 3.5 and 3.6 satisfy equations which are the same as those for the

classical variables α and α∗ defined last chapter in Eqs. 2.7 and 2.8.

We digress to consider a complete Dirac treatment which includes relativistic

shifts of the cyclotron energy levels, and two spin states for the electron [15]. The

energy level structure shown is in Fig. 3.1, with a separate Landau ladder for each

value of the electron spin. The relativistic anharmonicity gives a diminishing spacing

between successive Laundau levels. The transition frequency between Landau level

n, ms and n + 1, ms is shifted from ωc by an amount proportional to the cyclotron

quantum number and also dependent on the spin state,

∆ωnms = −δ(n + 1 + ms). (3.8)

The anharmonicity parameter

δ = ωc
h̄ωc

mc2
(3.9)

gives the shift in transition frequency per Landau level. For a cyclotron frequency

near 150 GHz, the shift per level, δ/2π ' 180 Hz, is a ppb shift.

As can be seen from the energy level figure, the ms = 1
2
, n = 0 state is nearly

degenerate with the ms = −1
2
, n = 1 state. This is due to the spin precession

frequency ωs being nearly equal to the cyclotron frequency ωc, the slight inequality

being characterized by the g factor,

g

2
=

ωs

ωc
. (3.10)
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Figure 3.1: Energy levels of a spin 1
2

electron in a magnetic field. Anomaly tran-
sitions at the frequency ωa = ωs − ωc are labeled, where ωs is the electron spin
precession frequency. Successive cyclotron transitions are spaced by the anharmonic
1 ppb shift per level, δ.

The g factor is nearly equal to 2, and can be calculated using the theory of quantum

electrodynamics. The crucial measurements for determining g − 2 of the electron

experimentally to 1 ppb, are that of the cyclotron frequency ωc and the anomaly

frequency ωa. An anomaly transition is a simultaneous spin flip and cyclotron

transition. In previous g factor measurements, a magnetic bottle was introduced to

increase the coupling between the axial and cyclotron motions in order to enable

detection of changes in the cyclotron quantum number of 1, and thus immediate

detection of anomaly transitions. [10]. The bottle, however, broadened the cyclotron
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and anomaly lines which needed to be measured. Since the spin motion has a near

infinite lifetime, anomaly transitions can instead be detected after the fact by simply

measuring whether a spin flip has occurred. We investigate the possibility to use the

cyclotron ladder as a probe of the spin state, identifying spin flips as shifts in the

ground state cyclotron transition by δ (See Fig. 3.1). Thus, ppb cyclotron frequency

resolution is needed not only for the ωc measurement but also for spin flip detection

and the ωa measurement.

At 4.2 K, the electron probability is spread among the Landau levels for one of

the spin ladders shown, according to the Boltzmann thermal distribution

P (n) =
(
1 − e−h̄ωc/kT

)
e−nh̄ωc/kT , (3.11)

which places the electron in the ground state roughly 80% of the time. Observed

excitations similar to the one shown in Fig. 2.2, take the electron from the ground

state (n = 0) to an average energy as large as 16.2 eV (n = 26, 500) [19]. Initially this

seemed a natural system for investigating the transition from a quantum regime to a

classical one. As results of Ch. 4 indicate, however, the behavior of large excitations

diverges from the classical expectation. Still, since in a classical regime, we can

understand the effects of damping, noise, and temperature as fluctuations in the

response variable ᾱ away from the stable phase-space attractor, we introduced a

quantum model with the hope of reproducing classical behavior in some limit.

The final step in the Hamiltonian derivation, before including dissipation, is to

formulate a quantum mechanical characterization of the external microwave drive.

We use the same rotating wave drive field Edrive(t) as in Ch. 2, using a vector
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potential in the Coulomb gauge (Edrive = −1
c
∂Adrive/∂t),

Adrive(t) =
c

ωd
E0 [−x̂ sin(φd(t)) + ŷ cos(φd(t))] , (3.12)

and allowing the drive frequency ωd to change in time so that the drive phase φd(t)

is given by

φd(t) = φd(0) +
∫

ωd(t)dt. (3.13)

For simplicity, in the classical derivation of Ch. 2, the drive frequency ωd was fixed

and the initial phase φd(0) was taken to be zero.

The drive Hamiltonian is found by including this new vector potential in the

original cyclotron Hamiltonian

Hc =
p2

2m
. (3.14)

Since p = P + (e/c)Atrap + (e/c)Adrive, the driven kinetic momentum becomes

p → p + (e/c)Adrive. Equivalently, a drive Hamiltonian is added,

Hdrive =
e

mc
p · Adrive. (3.15)

(The Adrive
2 term is ignored since it is smaller than the p ·Adrive term by the factor

ΩR/(ωc

√
n), which is less than 10−9 for ΩR/δ ≈ 1). Eqs. 3.5 and 3.6 for the

cyclotron raising and lowering operators can then be inverted to give expressions for

the kinetic momentum components,

px =

√
mh̄ωc

2
(a + a†) (3.16)

py = i

√
mh̄ωc

2
(a − a†), (3.17)
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which combined with the expression for Adrive, give the drive Hamiltonian

Hdrive =
h̄ΩR

2

[
aei(φd(t)+π/2) + a†e−i(φd(t)+π/2)

]
. (3.18)

The drive power is now characterized as a Rabi frequency

ΩR =

√
2(eE0)2

mh̄ωc
. (3.19)

Table 3.1: Cyclotron Oscillator Experimental Parameters

system frequencies and rates
cyclotron frequency ωc 2π(150 GHz)
free space damping γfs 2π(2 Hz)
anharmonicity δ 2π(180 Hz)

temperature parameters
temperature T 4.2 K
average thermal excitation n̄ 0.21
Boltzmann ratio h̄ωc/kT 1.7

A summary of our system parameters is shown in Table 3.1. Notice the electron

cyclotron oscillator is unusual in that it has some characteristics of a weakly an-

harmonic system and some of a strongly anharmonic system. The anharmonicity is

weak insofar as the relativistic shifts are small compared to the cyclotron frequency

(δ/ωc ' 10−9). However, the anharmonicity is strong insofar as relativistic shifts

are large compared to the damping width (δ/γfs ' 100). This latter “strong” anhar-

monicity distinguishes our system from familiar mass-on-a-spring classical oscillators

which are always harmonic at low enough energies, in the sense that damping width

masks the smaller anharmonicity shift (natural linewidth γ � nδ). Our system

would not become harmonic till n ' 1
100

. In other words, the cyclotron oscillator is
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anharmonic throughout the quantum regime. A similar nonlinear quantum oscilla-

tor has been studied both experimentally and theoretically by Stroud [7–9,20]. His

characterization of Rydberg wave packets reveals similar revival and interference

properties [7–9] to what we find for the one-electron oscillator. While these wave

packets look very similar to the dressed coherent state probability distributions we

will present in Ch. 4, his system does differ slightly insofar as it does not include a

driving force, and dynamics considered occur in times short compared to damping.

3.2 Two State Model and Adiabatic Fast Passage

We now describe the excitation process which produces observed signals, such as

shown in Fig. 2.2, in a quantum mechanical language. An intuitive understanding

of the excitation process can be obtained by treating the anharmonic oscillator as

a series of two-state systems. The Landau levels are not harmonic, and successive

two-level spacings are separated from one another in frequency by the relativistic

factor δ.

A diagonal two-state Hamiltonian plus an off-diagonal drive Hamiltonian can be

diagonalized in a dressed state basis, the base appropriate for the driven system.

The ‘dressed’ eigenstates are in general a linear combination of the two ‘bare’ states,

and depend on drive frequency and power. For drive frequency far above or far below

resonance, the ‘dressed’ eigenstates are simply the ‘bare’ states. Slowly sweeping

the drive frequency through resonance transfers the population from the lower to

the upper ‘bare’ state and vice versa. This is known as adiabatic fast passage or

adiabatic passage. If the drive is swept nonadiabatically, the transition probability
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is given by the Landau-Zener formula [21]

P = 1 − e−2πΓLZ (3.20)

where

ΓLZ =
ΩRabi

2

4|dωd/dt| (3.21)

is the Landau-Zener parameter, and ΩRabi is the Rabi frequency for the two-state

system. The sweep can be shown to be adiabatic when ΓLZ � 1
4
.

The excitation process up the Landau ladder may be thought of as a series of two-

state transitions. Consider the electron cyclotron oscillator in its ground state. As

the drive is swept from high frequency to low, it first passes the n = 0 → 1 transition

frequency, and the electron moves to the n = 1 state. As the sweep continues, the

1 → 2 resonance is passed, causing a transition to n = 2, then the 2 → 3 resonance

is passed and so on. In this way, the cyclotron motion can be excited to high Landau

levels, just as in the classical picture. For a fixed sweep speed dωd/dt, the process

becomes more and more adiabatic because the Rabi frequency, Ωn, for the n → n+1

transition grows as
√

n times the 0 → 1 Rabi frequency,

Ωn = ΩR

√
n. (3.22)

With this model of the excitation process, we are able to conceive of a method

for measuring the ground state resonant frequency to the ppb precision desired. The

large observed excitation is a binary signal that indicates only whether an excitation

process was successful or not. The frequency resolution comes from knowledge of

the drive’s start frequency for a given sweep. Clearly if we sweep the frequency of a

weak drive downward, starting below the 0 → 1 resonant frequency, the drive never
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passes the first resonance, and the electron remains in the ground state. By plotting

probability of excitation versus start frequency, we see the probability change from

0 to 1 when the drive’s start frequency is near the ground state transition frequency.

The width and offset of such a probability resonance depend somewhat on drive

power, but we should be able to achieve 1 δ resolution for small Rabi frequencies

(ΩR/δ ≤ 1).

Computation results presented in the next chapter confirm the validity of the

simple adiabatic passage model, even for large Rabi frequencies ΩR/δ ≥ 1, for which

dressed two-state energy levels actually overlap. In addition, the computations

address the very important question of the role of spontaneous emission, which the

simple model cannot address.

3.3 Dissipation and the Master Equation

To introduce dissipation, we solve the master equation for the density operator,

quantum theory of damping for the anharmonic oscillator. In the next section we

describe an equally valid Monte Carlo wave-function approach, which yields the

same ensemble average behavior. The wave-function approach, however, can model

single experimental runs if appropriate measurement operators are chosen.

A series of papers have been written about quantum harmonic and anharmonic

oscillators with damping and/or amplification [3–5, 22–25]. Master equation meth-

ods have been used to describe the difference between quantum mechanical and

classical behavior [3–5]. Coherent states are often used to help conceptualize the

quantum behavior in terms of classical motion [3–5]. Quantum-coherence effects

do still emerge, but are found to be very sensitive to dissipation [3–5]. Even the

weakest damping is found to be sufficient to restore classical behavior [3–5]. We
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will see this destruction of coherence in our undriven damped system, but when the

drive is added, quantum effects remain.

Often the master equation is transformed into a C-number equation, by repre-

senting the density operator in a coherent state base. The density operator σ̄, in

such a coherent state base |α〉, is a joint probability distribution called a Q-function

Q(α, α∗) = 〈α|σ̄|α〉. (3.23)

The Q-function evolution equation for a damped, anharmonic oscillator has previ-

ously been solved analytically, but unfortunately, the time-dependent driven case

has not been solved. Since the drive is integral to our excitation process, we perform

a numerical analysis. We use the Q-functions as a pictorial language for visualiz-

ing the quantum probability distribution in a phase-space identical to the classical

phase-space discussed earlier.

We begin with the familiar harmonic oscillator Hamiltonian (Sec. 3.1), Hc =

h̄ωc(a
†a + 1

2
) Adding the relativistic corrections discussed earlier (ignoring spin)

yields the anharmonic Hamiltonian

Haho = Hc +
µ

h̄ωc
Hc

2 (3.24)

where µ = −δ/(2ωc). This Hamiltonian is the same form studied by Milburn [3, 5].

Eliminating the zero-point-energy does not change the quantum dynamics and

reduces the Hamiltonian to another commonly studied form [6, 22, 25]

Haho = h̄(ωc − δ

2
)a†a − 1

2
h̄δ(a†a)2. (3.25)

Since the harmonic oscillator n-levels are still eigenstates of Haho (Eq. 3.25), we can
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Figure 3.2: Landau levels for the anharmonic cyclotron Hamiltonian solved. The
first transition frequency ωc−δ differs from the true ground state transition frequency
by the ignored relativistic spin-dependent correction, −msδ, where ms = ±1/2.

easily find the energies of the first few levels and check the transition frequencies.

The ground state has been defined to have energy 0, while the first excited state

has energy h̄(ωc − δ/2− δ/2), thus the first transition frequency is ωc − δ. (See Fig.

3.2) This differs from the n = 0 → 1 transition frequencies shown in Fig. 3.1 only

by the ignored relativistic spin-dependent correction, −msδ.

Dissipation is introduced by coupling the system to a large reservoir of oscilla-

tors. For dissipation via synchrotron radiation, these oscillators are the modes of a
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radiation field

HR = h̄
∑
j

ωjb
†
jbj , (3.26)

and coupling to the reservoir is described by

V = h̄[a†∑
j

gjbj + a
∑
j

g∗
j b

†
j ]. (3.27)

The full system-reservoir Hamiltonian, including the drive term from Eq. 3.18, is

then

H = h̄(ωc − δ

2
)(a†a) − 1

2
h̄δ(a†a)2

+ h̄
∑
j

ωjb
†
jbj

+ h̄[a†∑
j

gjbj + a
∑
j

g∗
j b

†
j ]

+ h̄[vd(t)a
† + vd

∗(t)a]. (3.28)

where vd(t) = 1
2
ΩRe−i(φd(t)+π/2) and φd(t) = φd(0) +

∫
ωd(t)dt fully characterize the

drive.

At zero temperature, the reservoir oscillators are in their ground states. A spon-

taneous emission from the cyclotron system is accompanied by a brief excitation

of one reservoir oscillator. The standard Markoff approximation assumes that this

excited reservoir oscillator is not able to coherently re-excite the system. The reser-

voir is assumed to have too many degrees of freedom to maintain such coherence or

‘memory’. At nonzero temperature, the resonant reservoir oscillators have an aver-

age excitation n̄ determined by the Boltzmann thermal distribution. This average

excitation allows for stimulated emission and absorption in the cyclotron system but

again, the reservoir quickly re-thermalizes. A theoretical derivation of the master

28



equation for a driven harmonic oscillator damped to such a heat bath can be found

in Louisell [26, 27]. Adding the anharmonic piece of the Hamiltonian gives

∂σ

∂t
= −i(ωc − δ

2
− ∆R)[a†a, σ] + i

δ

2
[(a†a)2, σ]

+
γc

2
(2aσa† − a†aσ − σa†a)

+ γcn̄(a†σa + aσa† − a†aσ − σaa†)

− ivd(t)[a
†, σ] − ivd

∗(t)[a , σ], (3.29)

where σ is the Schrödinger picture reduced density operator (reservoir variables

traced over)

σ = TrR{ρ}, (3.30)

ρ is the Schrödinger picture global density operator (cyclotron plus reservoir), ∆R is

a radiative shift analogous to the Lamb shift in an atom, and γc is the same cavity

damping rate used in the classical equations. The first line includes the harmonic and

anharmonic contributions. The second line results from zero temperature damping.

The third line has the finite temperature damping contribution, and the fourth line

results from the microwave drive. The radiative shift, ∆R, has been shown to be

small and will be neglected for the rest of this work [15].

Clearly it would be advantageous to choose an interaction picture in which the

fast ωc oscillation is removed, but there are several reasonable choices for the un-

perturbed Hamiltonian H0. Choosing H0 as the entire Haho would eliminate the

first line of Eq. 3.29 in the new master equation. The nonlinearity in Haho, however,

would effectively lead to different rotating frame frequencies for each Landau level of

the oscillator. While we used this choice to check for numerical consistency, the bulk

of our work is done in a single frequency rotating frame. Still, the choice of rotation
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frequency is not obvious, as the frame will only cancel out the rotation of at most one

Landau level. Milburn chooses an unperturbed Hamiltonian of H0 = h̄(ωc − δ
2
)a†a

to zero the entire [a†a, σ] term in Eq. 3.29, but we choose the interaction picture

frame rotating at ωc by making the unperturbed Hamiltonian equal to

H0 = h̄ωca
†a. (3.31)

The new master equation for the interaction picture, reduced density operator σ̄ is

then

∂σ̄

∂t
= i

δ

2
[a†a, σ̄] + i

δ

2
[(a†a)2, σ̄]

+
γc

2
(2aσ̄a† − a†aσ̄ − σ̄a†a)

+ γcn̄(a†σ̄a + aσ̄a† − a†aσ̄ − σ̄aa†)

− ivd(t)[a
†e+iωct, σ̄] − ivd

∗(t)[ae−iωct, σ̄], (3.32)

where all operators other than σ̄ are still in the Schrödinger picture. This is the equa-

tion that has been solved analytically for the special cases of no drive [4, 5, 22, 25]

and no anharmonicity [23, 24]. We solve the fully anharmonic, driven case using

a Bulirsch-Stöer numerical integration method [28]. (Appendix A gives the energy

eigenbasis formulation of Eq. 3.32 used in the calculations and gives details on phase

conventions and finite basis effects). The calculation enables us to simulate exper-

imental frequency sweeps as well as less realizable but perhaps more illuminating

combinations of initial conditions and system parameters.
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3.4 Quantum Monte Carlo Dissipation

Instead of the master equation approach of Sec. 3.3, a Monte Carlo wave-function

(MCWF) technique is often used to model dissipative quantum mechanics in atomic

systems with a large number of momentum eigenstates, especially for laser cooling

and quantum optics [29]. The density operator method requires tracking an n × n

matrix Bloch equation, whereas a wave-function approach only requires evolving an

n-dimensional vector. For a large number of basis states, the MCWF approach can

save a considerable amount of integration time and/or make unwieldy calculations

more tractable. In addition, the MCWF approach helps visualize dissipation as

emission and absorption events and may provide a better picture of a single swept

cyclotron excitation. For these reasons, and because we wanted to apply the tech-

nique to a complex anharmonic oscillator system at nonzero temperature (at the

time, it had only been applied to two and three state systems at zero tempera-

ture [29]), we adapted the MCWF technique to this calculation. More recently, the

formalism has been developed for generalized system Hamiltonians [30–32].

The basic procedure is analogous to the first published two/three state procedure

[29]. We solve for the time dependent wave-function by numerically integrating

the Schrödinger equation with an effective Hamiltonian that includes an imaginary

component for loss. At the beginning of each time step, a random number chooses

whether an emission (or absorption) will occur. If so, the wave-function is collapsed

with the appropriate measurement operator. We demonstrate both analytically and

numerically that if many such trials are averaged together, the density operator

master equation results are recovered.
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The effective Hamiltonian is taken as

Heff = Haho + Hdrive − ih̄
γc

2
[(n̄ + 1)a†a + n̄aa†], (3.33)

where Haho is given in Eq. 3.25 and Hdrive is given in Eq. 3.18. The state vector is

expanded as

|Ψ(t)〉 =
∑
n

Cn(t)|n〉 (3.34)

and is initially normalized so that |Cn|2 = 1. Fig. 3.3 shows a schematic diagram

of emission and absorption between two Landau levels. In a small time interval dt,

the probabilities of emission dpn and of absorption dqn between levels n and n + 1,

as shown in the diagram, are given by

dpn(t) = γc(n + 1)dt|Cn+1(t)|2(n̄ + 1) (3.35)

dqn(t) = γc(n + 1)dt|Cn(t)|2n̄. (3.36)

The n̄ in the n̄ + 1 factor of dpn accounts for stimulated emission, whereas the 1

accounts for spontaneous emission. At the start of each time step, a random number

decides between three final states. An emission occurs with probability
∑

n dpn, an

absorption occurs with probability
∑

n dqn, and normal Schrödinger evolution via the

effective Hamiltonian Heff occurs with probability 1 −∑
n dpn −∑

n dqn. The time

step must be kept short so that the probability of a collapse event is small. It must

also be short compared to all other time-scales in the system ((
√

nΩR)−1and (nδ)−1).

The resulting state-vectors for the three cases are the superpositions

Emission : |Ψ(t)〉 →∑
n

√
γc(n + 1)dt(n̄ + 1)Cn+1(t)|n〉 (3.37)
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Figure 3.3: Emission and absorption between two Landau levels of the anharmonic
cyclotron oscillator. The rates for stimulated emission and absorption are propor-
tional to the thermal excitation n̄ of the reservoir, while the rate for spontaneous
emission is independent of n̄. Rates are given in the text.

Absorption : |Ψ(t)〉 →∑
n

√
γc(n + 1)dtn̄Cn(t)|n + 1〉 (3.38)

Evolution : |Ψ(t)〉 →∑
n

Cn(t + dt)|n〉 (3.39)

where Cn(t + dt) are the evolved wave function coefficients determined by the

Schrödinger equation. The measurement operators used are
√

γcdt(n̄ + 1) a for emis-

sion and
√

γcdt n̄ a† for absorption. Note that the “measurement” collapses a wave-

function into a superposition state rather than into a single n-level. At the end of

each time step, the state-vectors are normalized back to 1.
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The square of the norm of each of the three final wave-functions reflects the

probability of following that particular path. It is easily seen that the emission

wave-function has norm-squared
∑

n dpn and the absorption wave-function has norm-

squared
∑

n dqn. For small time steps, the Schrödinger evolved wave-function can

be approximated as |Ψ(t + dt)〉 =
(
1 − i

h̄
Heffdt

)
|Ψ(t)〉, and Heff has been carefully

chosen so that the norm-squared of this vector is 1−∑n dpn−∑n dqn. An observable

〈Ô〉 is averaged over an ensemble of N runs with

〈Ô〉ens(t) =
1

N

N∑
i=1

〈Ψi(t)|Ô|Ψi(t)〉. (3.40)

3.4.1 Analytical Agreement with the Master Equation

The Monte Carlo procedure outlined above reproduces the master equation of Sec.

3.3 with a derivation analogous to one used for the two-state MCWF procedure

in [29]. The density operator for a given trial σ(t + dt) = |Ψ(t + dt)〉〈Ψ(t + dt)| is

averaged over the three possible outcomes to make the appropriate mixed state, is

compared to σ(t), and is then ensemble averaged over many trials. The normalized

state vectors at time t + dt are similar to those given in Eqs. 3.37 - 3.39 but are

multiplied by normalization coefficients µ1, µ2, and µ3 respectively, where

µ1 =

(∑
n

dpn

)−1/2

(3.41)

µ2 =

(∑
n

dqn

)−1/2

(3.42)

µ3 =

(
1 −∑

n

dpn −∑
n

dqn

)−1/2

. (3.43)

Then the mixed state density operator for a given trial, σmix(t + dt), is given by
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the probability of each outcome times the density operator for that outcome

σmix(t + dt) =

(∑
n

dpn

)
µ1

2 γc(n̄ + 1)dt a {|Ψ(t)〉〈Ψ(t)|}a†

+

(∑
n

dqn

)
µ2

2 γcn̄dt a† {|Ψ(t)〉〈Ψ(t)|}a

+

(
1 −∑

n

dpn −∑
n

dqn

)
µ3

2 ×

(1 − i

h̄
Heffdt) {|Ψ(t)〉〈Ψ(t)|} (1 +

i

h̄
H†

effdt), (3.44)

where each of the outcome-states at time t+dt, prior to normalization, is taken as a

collapse operator or propagator times the initial state at time t. The normalization

coefficients cancel the probability factors. The bracketed terms are simply density

operators at time t for that trial. The expression then reduces to

σmix(t + dt) = γc(n̄ + 1)dt aσ(t)a†

+ γcn̄dt a†σ(t)a

+ σ(t) − i

h̄
dt(Heffσ(t) − σ(t)H†

eff). (3.45)

Finally, taking the ensemble average and the limit of small dt gives the master

equation for the averaged density operator 〈σ〉ens(t)

d〈σ〉ens

dt
= − i

h̄
(Heff〈σ〉ens − 〈σ〉ensH

†
eff)

+ γc(n̄ + 1)a〈σ〉ensa
† + γcn̄a†〈σ〉ensa (3.46)

=
i

h̄
[〈σ〉ens, Haho + Hdrive]

+
γc

2
(2a〈σ〉ensa

† − a†a〈σ〉ens − 〈σ〉ensa
†a)

+ γcn̄(a†〈σ〉ensa + a〈σ〉ensa
† − a†a〈σ〉ens − 〈σ〉ensaa†) (3.47)
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where Eq. 3.47 is found using the expression for Heff from Eq. 3.33. The ensemble

average master equation in Eq. 3.47 is equivalent to the Schrödinger picture equation

given in Eq. 3.29 (ignoring ∆R).

3.4.2 Choice of Measurement Operators

If we claim that the frequency of an emitted (or absorbed) photon can be resolved so

as to distinguish which quantum level has decayed (or absorbed), then the collapse

operators
√

γcdt(n̄ + 1) a and
√

γcdt n̄ a† need to be adjusted: The outcome-states

must be taken as individual n-levels rather than the superposition states given by

the simple collapse operators a and a†. This is perhaps necessary for the lowest levels

of the anharmonic cyclotron oscillator where the damping widths (γcn) are small

compared to the frequency shift from one transition to the next (δ). The new collapse

operators are
√

γcdt(n̄ + 1) a|nj〉〈nj| and
√

γcdt n̄ a†|nj〉〈nj|, where |nj〉〈nj| is the

projection operator for the Landau level corresponding to a frequency transition ωj.

Using these new collapse operators is equivalent to choosing a reservoir coupling

Hamiltonian

V = h̄
∑
j

a†|nj〉〈nj|gjbj + h̄
∑
j

a|nj〉〈nj |g∗
j b

†
j (3.48)

instead of the one chosen in Eq. 3.27 of the master equation derivation.

With these frequency resolvable collapse operators, the MCWF procedure repro-

duces the same master equation as the one given in Eq. 3.46 with one important

difference. The damping terms on the second line each have the diagonal density

operator 〈(∑n |n〉σnn〈n|)〉ens in place of the full density operator 〈σ〉ens. The equiv-

alence of these two master equations is established by showing that the off-diagonal

density operator elements in the terms γc(n̄ + 1)aσa† and γcn̄a†σa do not couple to

dσ/dt. This is argued by Cohen-Tannoudji [33] and labeled the secular approxima-
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tion. He shows that for a general master equation in a basis of energy eigenstates

dσij

dt
= −iωijσij +

∑
lm

Rijlmσlm, (3.49)

the coupling between σij and σlm is negligible if |ωij − ωlm| � Γ. In this condition,

ωij is the evolution frequency of σij in the absence of damping, and Γ gives the

order of magnitude of the coupling coefficients Rijlm. For the master equation terms

we are considering, the condition roughly reduces to δ � γcn, the same condition

used to decide that the frequency of the emitted or absorbed photon is resolvable.

Thus using the resolvable frequency collapse operators is equivalent to taking the

secular approximation and omitting the negligible off-diagonal couplings, but it is

not necessary. Such an approximation is useful for simplifying master equation

calculations, and for allowing larger time steps in MCWF calculations, but it raises

the difficult issue of how to make a transition from resolvable photon frequencies

to unresolvable ones as the cyclotron excitation grows. As long as the computer

power is available, we choose to solve the more general master equation of Eq. 3.46.

Future studies which investigate individual MCWF realizations for the one-electron

cyclotron oscillator, however, should explore the differences between the two sets of

measurement operators.

3.4.3 Numerical Agreement with the Master Equation

Fig. 3.4a shows how the agreement arises between the solution of the master equa-

tion and the quantum Monte Carlo approach. Plotted are undriven exponential

decays from n = 10 to final excitations of n = 1 for a 30-level anharmonic oscillator

coupled to a finite temperature reservoir with n̄ = 1. A solid curve shows the master

equation result and fits well to the expected exponential. Monte Carlo calculations
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Figure 3.4: Comparisons of the anharmonic oscillator Monte Carlo and master equa-
tion solutions for damped but undriven conditions in (a) and for undamped but
driven conditions in (b). (a) The master equation solution (solid) is the expected
exponential decay to 〈n〉 = 1 for this finite temperature reservoir (n̄ = 1) case.
Monte Carlo calculations for a single realization (dotted) and a 100 trial ensemble
average (dashed) approach the master equation solution. (b) Without damping, a
single realization of the Monte Carlo (crosses) reproduces the master equation so-
lution (line) for Rabi flopping in the presence of a drive (ΩR/δ = 1), and confirms
identical drive frequency, power, and phase conventions for the two codes.
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for a single realization (dotted) and a 100 trial ensemble average (dashed) approach

the master equation solution. (A 1000 realization ensemble average is nearly in-

distinguishable from the exponential shown.) Fig. 3.4b shows master equation and

wave-function Rabi flopping solutions for an undamped 10-level anharmonic oscil-

lator. A single trial of the MCWF code is sufficient for this undamped comparison.

The agreement assures that the Rabi frequency and phase conventions for the two

codes are identical.

An alternative implementation of the MCWF method using a delay function is

analytically shown to be identical to the method described above [31, 34]. Instead

of determining the probability of a jump at each time step and then renormalizing,

the effective Hamiltonian is evolved until its norm has decayed to an amplitude

determined by a single random number. At that point another random number is

generated to decide between the two collapse paths, and then the wave-function

is renormalized. This method is computationally faster for our system because

a Bulirsch-Stöer adaptive step-size routine can integrate quickly through the free

evolution time interval, and small steps need only be taken to zero in on the collapse

time. Another benefit of the delay function method is that fewer random numbers

need to be generated. Both implementations have been used, but future work should

make use of the faster delay function procedure. See Appendix A for details on the

Schrödinger equation evolution, drive phase conventions, and finite basis effects.

3.5 Classical Correspondence

The classical description was carefully formulated to allow comparisons with the

quantum description. In this section we find correspondences between the classical

response variable ᾱ(t) and quantum variables.
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Comparing the classical harmonic oscillator energy E = h̄ωc|ᾱ|2 (first term in Eq.

2.12 ignoring the rest mass), and the quantum harmonic oscillator energy 〈Hc〉 =

h̄ωc(〈a†a〉 + 1
2
) (Eq. 3.7), gives the classical-quantum energy correspondence

|ᾱ|2 = 〈n〉 +
1

2
. (3.50)

When 〈n〉 is large enough, the one-half can be ignored.

Next we relate the classical characterizations of drive strength and anharmonicity

|ᾱmax|2 =

(
2

γc

)2
(eE0)

2

2mh̄ωc
, N = −ωc

γc
|ᾱmax|2

(
h̄ωc

mc2

)
(3.51)

to the quantum characterizations

ΩR =

√
2(eE0)2

mh̄ωc
, δ = ωc

h̄ωc

mc2
. (3.52)

We rewrite the classical characterizations in terms of the quantum ones

|ᾱmax|2 =

(
ΩR

γc

)2

, N = − δ

γc
|ᾱmax|2, (3.53)

and remember the energy correspondence gives |ᾱmax|2 ' 〈nmax〉 for large nmax.

Notice how the maximum energy level is determined by a competition between

the drive (ΩR) and the damping (γc). In addition, the anharmonicity parameter

N is simply the ratio of the maximum relativistic shift −〈nmax〉δ, and the natural

linewidth γc.

Next we go back to the steady state equation for ᾱ (in the rotating frame) to

check that both pictures give the same equilibrium energy for a given drive frequency

ωd. Confirming this consistency is vital for setting quantum state energies equal to
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the equilibrium levels predicted by the classical equations. Rewriting the classical

steady state response of Eq. 2.15 in terms of quantum parameters, we find

|ᾱss|2
[(

γc

δ

)2

+ 4
(

ωd − ωc

δ
+ |ᾱss|2

)2
]

=
(

ΩR

δ

)2

. (3.54)

For small damping γc/δ � 1 and small Rabi frequency ΩR/δ � 1 the two stable

steady state response energies are |ᾱss|2 ' 0 and |ᾱss|2 ' (ωc −ωd)/δ. The classical

excited state energy then corresponds to an average quantum level 〈n〉 ' (ωc−δ)−ωd

δ
+

1
2
. This is where the one-half in the energy correspondence equation is necessary.

In this low damping, low drive regime, the quantum two-state model should be

valid, and the quantum model predicts an average n-level half way between the two

resonant levels. Referring back to Fig. 3.2, we find that the drive frequency ωd is

indeed resonant with the two levels n = (ωc−δ)−ωd

δ
and n = (ωc−δ)−ωd

δ
+ 1.

Finally, we would like to compare the classical rotating frame steady state phase

φss found in Eq. 2.17 to a quantum phase variable. We extract a phase parameter

from the quantum model by making an analogy to coherent states. We define a

c-number α(t) to be the expectation value of the lowering operator a

α(t) = 〈a〉 = Tr(σ(t)a) (3.55)

where σ is the Schrödinger picture reduced density operator. The classical (rotating

frame) steady state phase can then be compared to the phase of the c-number

ᾱ(t) = α(t)eiωdt during the quantum calculation. This serves mainly as a check for

factors of π or π/2 in drive phase conventions.
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Chapter 4

Master Equation Solutions, Loss,

and Revivals

Now that we have a method for evaluating the master equation, we need to explore

the nature of its solutions. This study leads to the discovery and/or confirmation of

some surprising phenomena for oscillators whose anharmonicity shift is larger than

the damping width at the lowest n-levels, and yet much smaller than the harmonic

level spacing. While a simple series of two-state adiabatic passages represents the ex-

citation process quite well, an unexpected amount of instability in the final excited

state is exhibited. This instability is quantitatively characterized by determining

the lifetime dependencies of resonantly driven excited states. The loss mechanism

is interpreted as differential rotation (due to “large” anharmonicity) of the imposed

quantum energy level distribution away from the stable phase-space attractor. Time

scales for spreading of the quantum distribution are probed by studying the evolu-

tion of perturbations of the equilibrium dressed coherent state of the anharmonic

oscillator. Classical correspondence to the quantum instability is confirmed using

a probability distribution of classical phase-space trajectories, and is contrasted to
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the behavior of familiar classical oscillators whose anharmonicity-to-damping ra-

tios are much smaller. Implications of these findings for ppb cyclotron frequency

measurements are discussed in the next two chapters.

Solutions to the master equation ensemble average behavior were complex enough

to require study before probing individual trials with the Monte Carlo technique.

Still, having two codes with two very different algorithms allowed for comparisons

to check for minus signs, factors of two, finite basis effects, and other such errors.

With damping set to zero, the two codes give identical results with only a sin-

gle run of the Monte Carlo code. With nonzero damping, however, many MCWF

trials needed to be averaged together. Since much of the work was done with a

basis of 50 Landau levels, and 100 − 1000 runs of the MCWF were need to achieve

good averaging statistics, the master equation approach was faster. Nevertheless,

the integration was time consuming because of the different frequency scales in the

problem. The rotating frame removes the fast GHz cyclotron rotation, but the an-

harmonicity makes each Landau level rotate 180 Hz faster than the level above it.

Many such cycles (δ/2πγfs ' 16) must be integrated per free space damping time.

Even when the damping is set to zero, for Rabi frequencies smaller than the anhar-

monic shift (ΩR/δ < 1), many rotation cycles must be integrated per Rabi-flopping

period. Most of the runs discussed lasted overnight on a 125 MHz Sun SparcSta-

tion20. Some took less time, and some took as long as a week on the faster 175

MHz DEC 3000 (Alpha).

Throughout this chapter, the free space damping rate, γfs, is distinguished from

the actual cyclotron damping rate, γc, since we have the ability to vary γc experi-

mentally by tuning the cyclotron frequency relative to Penning trap cavity modes.

We mention that the cavity quality factor is not large enough to allow a buildup

of radiated photons which can coherently interact with the cyclotron oscillator and
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violate the Markoff approximation. When the cyclotron frequency is resonant with

a typical cylindrical trap cavity mode, the lifetime for photons to remain in the

cavity is on the order of nanoseconds (Γ = ωmode/Q, for ωmode ≈ 2π(150 GHz)

and Q ≈ 1000), whereas the lifetime for synchrotron radiation is on the order of

ten milliseconds (γc/γfs ≈ 10) [14]. De-tuning the cyclotron frequency from such a

mode reduces both of these rates simultaneously, therefore, even when spontaneous

emission is inhibited, synchrotron radiated photons leave the cavity quickly over the

time-scale in which they are created.

4.1 Adiabatic Sweep from Ground State

First we investigate frequency sweeps such as those that produced the observed reso-

nance found in Fig. 2.2. Instead of sweeping the drive frequency until the excitation

falls to zero, we stop changing the drive frequency at the transition n = 30 → 31,

and then see if the excitation persists. We plot these adiabatic passages as response

energy versus time (rather than drive frequency) in order to investigate the stability

of the final excitations. The response curves thus rise to the right.

We begin with the case of no damping (γc=0) to verify the simple two-state

excitation model discussed in Sec. 3.2. Fig. 4.1 plots the average Landau excitation

as a function of time, with time scaled by the free space damping time, γ−1
fs ' 90

ms (even though this sweep does not include damping). The Rabi frequency is kept

small (ΩR/δ = 0.2) so the dressed eigenstates are well separated two-state systems.

The response grows as expected once the drive frequency reaches the first resonance,

and remains stably excited when the sweep is halted.

Fig. 4.2 shows the same sweep for 4 different Landau-Zener parameters. Recall a

larger Landau-Zener parameter means a slower sweep speed and ΓLZ � 1
4

is required
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Figure 4.1: Undamped (γc = 0), low power (ΩR/δ = 0.2), adiabatic (ΓLZ = 3) sweep
and hold. Drive frequency is swept from above the 1st resonant frequency down to
the 31st. Average Landau level is plotted as a function of time. The average n rises
and remains stable once the drive frequency stays fixed.
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Figure 4.2: Undamped, low power sweeps of Fig. 4.1, using 4 different Landau-Zener
parameters. Here the probability for the electron to be in a Landau level greater
than or equal to 25 is plotted as a function of time. Fast sweeps (small Landau-Zener
parameters) have lower probabilities of inducing excitations.

for adiabaticity. Here the probability for the electron to occupy n ≥ 25 is plotted

rather than average n in order to emphasize the ensemble nature of the problem and

to probe the likelihood of obtaining an excitation signal for each sweep speed. The

excitation probability drops off rapidly as the Landau-Zener parameter is reduced

below 1.

For the final undamped test, Fig. 4.3 shows an adiabatic passage for a much

larger Rabi frequency (ΩR/δ = 5). Notice the change in scale of the time axis since

the higher Rabi frequency enables a much faster adiabatic sweep. Even though the
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Figure 4.3: Undamped, high power, adiabatic sweep and hold, using the same con-
ditions as Fig. 4.1 but with a Rabi frequency of ΩR/δ = 5 rather than ΩR/δ = 0.2.

dressed two-state systems overlap at this power level, the sweep is successful and

the frequency hold is stable. We can not be too surprised that coherent excitations

are possible for overlapping dressed energy levels because we know that a Rabi fre-

quency greater than 3.5δ has successfully produced experimentally observed signals.

Unless one imagines that damping in the experiment somehow aids the coherent

excitation process, one would be led to believe that undamped sweeps with large

Rabi frequencies should certainly be successful. The lower limit ΩR/δ = 3.5 on ex-

perimental microwave power is obtained by knowing that we have seen a cyclotron

excitation as large as 〈n〉 = 26, 500 under twice free-space damping conditions [19].
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The Rabi frequency is arrived at using Eqs. 3.50 and 3.53, but is only a lower limit

since factors other than lack of power may have prevented the excitation process

from continuing. (In Sec. 4.4 we will argue that the Rabi frequency must actually

have been much larger).

Note the oscillations in the portion of Fig. 4.3 where the drive frequency in no

longer being swept. When the sweep is stopped, the electron is not necessarily in

a single dressed eigenstate and Rabi flopping results. The actual Rabi oscillations

are much faster than the oscillations shown, as they have not been sampled rapidly

enough to illustrate the higher frequencies.

We now proceed to investigate the effects of damping on the system. The ex-

perimentally relevant question to ask when adding damping is “can an adiabatic

passage excite the electron past the 25th level (minimum needed for our detection

model) under free space damping conditions with a Rabi frequency that is small

enough to achieve the ppb resolution desired?” Fig. 4.4a provides what first seems

to be a negative answer. It replots the successful ΩR/δ = 0.2 adiabatic passage

from Fig. 4.1, and the additional tiny bump shows that free space damping kills the

excitation. It was hoped and expected that raising the drive power would eliminate

damping loss. Indeed Fig. 4.4b shows a successful excitation with damping for a

ΩR/δ = 5 adiabatic passage, superimposed on the ΩR/δ = 5 sweep of Fig. 4.3. The

oscillations, however, obscure any small damping losses. Fig. 4.5 plots results of the

same ΩR/δ = 5 adiabatic passages in terms of the probability for n ≥ 25 instead of

〈n〉. With the oscillations no longer masking the effect, it is evident that the prob-

ability of seeing a signal slowly decays away. It is this unexpected loss which is the

subject of the next section. The decay could explain why the ΩR/δ = 0.2 adiabatic

passage was not even able to excite the electron, since that sweep extended over 100

damping times. This instability differs qualitatively from the classical case in which

48



time / γfs
-1

0 50 100 150 200

av
er

ag
e 

La
nd

au
 le

ve
l <

n>

0

5

10

15

20

25

30

35

time / γfs
-1

0.0 0.2 0.4 0.6 0.8 1.0

av
er

ag
e 

La
nd

au
 le

ve
l <

n>

0

5

10

15

20

25

30

35

no damping

 with damping

(a)

(b)

Figure 4.4: Damped versus undamped adiabatic sweep and holds, with a low power
(a) and a high power (b) drive. The undamped curves in each plot are identical
to those of Figs. 4.1 and 4.3. Damping (at the free space rate) destroys the low
power (ΩR/δ = 0.2) excitation in (a), but does not seem to hinder the high power
(ΩR/δ = 5) excitation process in (b).
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Figure 4.5: Damped versus undamped, high power (ΩR/δ = 5), adiabatic sweep and
hold, shown here as the probability for the electron to be in a Landau level greater
than or equal to 25. The system and sweep parameters used are identical to those
of Fig. 4.4b. Free space damping leads to decay of excitation probability from the
resonantly driven state.

a driven excitation is indefinitely stable unless some noise source knocks it out of

the stable phase-space bucket.

4.2 Loss from a “Classical” Excited State

As discussed in Sec. 2.2, a classical driven anharmonic oscillator has a stable equilib-

rium excitation. In this section we investigate the decay of excited state probability

found in sweeps such as Fig. 4.5 for the quantum oscillator. In an effort to identify
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the quantum mechanical origin of loss, we eliminate the complexity of such sweeps

and study the fate of a resonantly driven distribution initially in a coherent excited

state. Because we do not have an analytical expression for dressed coherent states

of the anharmonic oscillator, the electron is started in the closest approximation

to such distributions that we can easily manage, a coherent state of the harmonic

oscillator

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|n〉. (4.1)

The quantum distribution in phase-space is represented by an interaction picture

Q-function,

Q(α, α∗, t) = 〈α|σ̄(t)|α〉, (4.2)

where σ̄(t) is the interaction picture reduced density operator. Although a harmonic

oscillator coherent state distribution can be finely tuned to match the expected

(classical) steady state response amplitude and phase, it is not the exact solution to

the quantum anharmonic oscillator. Master equation solutions will show, however,

that this initial Q-function distribution does rapidly evolve into a characteristic

shape which we interpret as a dressed coherent state of the anharmonic oscillator.

In terms of the steady state ᾱss found in Sec. 2.2, the amplitude and phase for

the finely tuned α are

|α|2 = 〈n〉 = |ᾱss|2 − 1

2
(4.3)

φα = φss − φd(0) (4.4)

where the convention for the drive’s initial phase is φd(0) = π (see Appendix A).

The phase for α was actually varied to check that it was indeed the correct steady

state parameter and was confirmed (to within 10%) to minimize loss from the excited
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state. The drive and system parameters are mostly chosen so that the average steady

state n-level is much less than nmax and thus located on the right-most wing of the

classical resonance curve (see Fig. 2.1), but still in the triple-valued region for such

an anharmonic oscillator. Remember for these large detunings, the stable excited

state phase lag is near φss = 3π/2 whereas the unstable phase lag is near φss = π/2,

so the two are separated by 180◦. This phase difference is, however, smaller than

180◦ for the few runs taken with 100 times free-space damping (and thus smaller

nmax).

Fig. 4.6 shows a typical time series of Q-functions for the damped anharmonic

oscillator with a high power (ΩR/δ ' 22) drive. Q-functions are plotted in a Re[α]

versus Im[α] phase-space, with time increasing to the right and then on to the next

row, for a total of 5 damping times. Unless otherwise noted, free space damping

and zero temperature are assumed. The initial Gaussian coherent state distribution

(〈n〉 = 30), spreads out due to differential rotation rates of the various occupied

Landau levels. A steady state configuration is reached very quickly on this time

scale and continues to rotate only because the interaction picture is chosen to rotate

at frequency ωc rather than ωd. In the next section we take a closer look at the

early time development as this dressed coherent state configuration emerges. Since

the Rabi frequency for this run is very large (ΩR/δ ' 22), no reduction of excited

state probability is evident.

Fig. 4.7 shows a similar time series for a smaller Rabi frequency (ΩR/δ ' 5).

The central ring in the third snapshot shows early loss from the excited state. This

is analogous to the loss seen after one damping period in Fig. 4.5. Later time shots

show the ring damping to the origin, and still later ones show the loss peak at the

center continuing to grow. Comparing with the ΩR/δ ' 22 time series, it may seem

that there is no loss for high enough drive powers, but in fact there is still a very
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Figure 4.6: The Q-function for a very high Rabi frequency resonantly driven, ini-
tially harmonic coherent state excitation: It quickly settles into a dressed state of
the anharmonic oscillator, and then continues to rotate at the difference frequency
between the drive and the rotating frame, during this 5 damping-time series of
equally spaced intervals. Each Q-function Q(α, α∗, t) is plotted in a Re[α] versus
Im[α] phase-space. ΩR/δ ≈ 22, γc/γfs = 1, and initial 〈n〉 = 30.

53



Figure 4.7: A 5 damping-time series of resonantly driven Q-functions for a lower
Rabi frequency than that of Fig. 4.6. The Q-function quickly settles into a dressed
state configuration and continues to rotate, but a ring of probability lost from the
resonant excitation damps to the origin from where it continually grows with time.
ΩR/δ ≈ 5, γc/γfs = 1, and initial 〈n〉 = 30.
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slight loss not detectable in the resolution of these plots.

By developing a consistent cutoff scheme which uses the diagonal elements of the

density operator to separate the Landau level occupation into an ‘excited’ part and a

‘lost’ part, we can quantify the loss-rate (∆P (excited)/P (excited)) and study what

affects it. Fig. 4.8a shows a semi-logarithmic plot of this loss-rate as a function of

Rabi frequency for 4 different n-level excitations ranging from 30 to 90. As expected

the higher Rabi frequencies lead to dramatically less loss, but completely unexpected

is the increase in loss for higher n-levels. Intuition might suggest that higher energy

excitations should be more “classical” and therefore more stable, but the opposite

is found. The rest of this chapter seeks to explain this divergence from expected

classical behavior.

Fig. 4.8b shows loss-rates for the same series of runs plotted against an appar-

ently universal parameter ΩR/δ√
n

. All loss-rates from Fig. 4.8a are predicted by this

combined parameter. Smaller damping rates of 1
10

th
and 1

100

th
free-space damping

were also tested and fit on the same universal curve (notice the loss-rate is scaled to

the damping rate in these plots). Scatter in these plots is expected at the 2 − 10%

level due to imperfect cutoff schemes and loss-rate determinations, but the depen-

dences look convincingly clean over 6 orders of magnitude.

Fig. 4.8c, however, shows system parameter changes which violate the generality

of ΩR/δ√
n

. The “large” damping (γc/γfs = 100) loss-rate line represents runs for which

the damping is large enough so that the excitations are no longer on the wing of

the classical resonance curve (but still not large enough to mask anharmonicity

since γc ∼ δ). Under these conditions, the stable and unstable steady state phases

φss are no longer 3π/2 and π/2, but are instead closer than 180◦ from each other.

(Qualitatively, one might expect more loss when the unstable equilibrium, which

is on the border of the unstable ‘bucket’, is closer to the stable excited attractor.)
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Figure 4.8: Anharmonic oscillator loss-rates (scaled to damping rates), found by
measuring the decay of probability from a resonantly excited state, and plotted
against a variety of different variables in an effort to determine a universal loss-rate
parameter. (a) Loss-rate versus Rabi frequency for 4 different initial 〈n〉 levels, and

free space damping. Smaller damping rates of 1
10

th
and 1

100

th
free-space damping

were also tested and fall on the same curves. (b) All loss-rates from (a) plotted
against a pseudo-universal parameter. (c) Same as (b) but including a set of nonzero
temperature runs (T = 4.2 K) and a set of “large” damping runs (γc/γfs = 100). (d)
All loss-rates from (c) plotted against a universal parameter. The loss-rate is found
to be determined by the excited dressed state Q-function’s phasewidth (scaled by
the difference between the classical stable and unstable excited steady state phases,
which for most cases is just π). Linear regressions (lines) are also shown.
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The nonzero-temperature loss-rate line in Fig. 4.8c represents runs for which the

reservoir temperature is taken to be T = 4.2 K (all previous runs were for zero

temperature).

A hint for determining the true universal parameter can be obtained by looking at

the final Q-functions for the two evolution series shown in Figs. 4.6 and 4.7. The Q-

function with more loss is also much broader in angular spread. It makes some sense

that the further the distribution spreads away from the coordinates of the classical

stable attractor, the more likely it is for portions of the probability distribution

to fall to zero. Plotting loss-rate versus a scaled phasewidth parameter, measured

from the final Q-functions for the runs of Fig. 4.8c, indeed gives a true universal

curve characterizing loss-rates over 6 orders of magnitude for various n-levels, Rabi

frequencies, temperatures and damping rates. Fig. 4.8d shows such a universal

plot, combining all three of the loss-rate curves of Fig. 4.8c. The phasewidths must

be scaled by the difference between the classical stable and unstable excited-state

phases, as given by Eq. 2.17, in order to produce such a universal curve (only

necessary for the “large damping” runs which have phase differences other than

180◦). This scaling is qualitatively explained by attributing a higher loss-rate (for

the same angular distribution Q-function) to conditions where the unstable ‘bucket’

is closer to the stable excited attractor in phase-space. A phasewidth is measured

by taking a slice through a cutoff Q-function (calculated using only the n-levels

determined to be in the ‘excited’ state), at the n-level corresponding to the peak

probability, and fitting the slice to a Gaussian phase distribution. Care must be

taken to define the peak phase in the center of a 0 → 2π range. Also, while the

low-loss runs fit beautifully to Gaussians, the high-loss runs are more difficult. In

the next section this process is incorporated into the code to obtain phasewidth

information as a function of time, by automating the cutoff procedure and peak

57



phase determination, and by taking the standard deviation of the distribution rather

than fitting.

4.3 Phasewidth of the Dressed Coherent State

Insofar as the loss from an excited dressed state of the anharmonic oscillator is

determined by its phasewidth, the question naturally arises as to what determines

the steady state phasewidth. The phasewidth ∆Φ can be estimated in terms of the

quantum uncertainty ∆n, as the product of the mean differential rotation frequency

∆n δ and some spreading time Tspread to be determined,

∆Φ = (∆n δ)Tspread. (4.5)

The n-width scales roughly as the coherent state width
√

n. The spreading time

can be related to the oscillation period of a perturbation from the (dressed) steady

state equilibrium. Our convention of beginning with a harmonic oscillator coherent

state serves as this perturbation: The initial localized Gaussian Q-function is, in

effect, a phasewidth perturbation on the broad equilibrium distribution. We thus

investigate the short time evolution (which was omitted in the last section) from

the harmonic oscillator coherent state to the final steady state distribution. These

final distributions are the closest possible reproductions of the classical steady state

solutions and represent dressed coherent states of the anharmonic oscillator. They

are clearly dependent on drive parameters such as drive frequency (which determines

〈n〉) and Rabi frequency (shown to affect phasewidth) which is why we call them

dressed coherent states.

First we review the behavior of a Gaussian Q-function when no drive is present.
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Such an undriven system has been characterized by Milburn, but for δ � γc [3, 5].

Fig. 4.9 shows a progression in unequal time steps highlighting the important effects.

The times are given in anharmonicity periods 2π/δ. The second time shot at t = .03

shows the initial phase spreading due to differential rotation of the occupied n-levels.

Free space damping (γfs ' δ/100) is included, but the damping time is roughly 16

anharmonicity time periods and does not have a noticeable effect in this second

time shot. The spiral structure is instead an indication that the inner Landau levels

are rotating clockwise faster than the outer ones. The next picture at t = 0.1

shows coherent interference as the quantum probability distribution wraps around

on itself. At t = 2π/δ, a revival of the initial coherent state occurs. The revival is not

complete as indicated by the ring structure introduced by damping. The next revival

at t = 2 is even less complete, and by t = 20 the quantum coherence is completely

destroyed as the average n-level continues to damp exponentially. Revivals can be

easily understood in terms a series of differentially rotating particles if one imagines

a set of point particles starting at the same phase angle, but at different n-levels.

For example, four particles rotating at frequencies 2 Hz, 3 Hz, 4 Hz, and 5 Hz,

respectively, all come back to the same phase angle after one second.

In a driven system, the simple analogy to freely rotating particles fails because

Rabi flopping between the various n-levels results. Fig. 4.10 illustrates the effect

when such a drive is added. The harmonic coherent state spreads but then returns

to its initial configuration before having a chance to wrap around on itself. The time

series shows two revivals at δt/2π ' 0.05 and δt/2π ' 0.1 both short compared to

an anharmonicity period or a free space damping time. Damping is not included in

these runs, as it does not affect the results (as will be shown in Fig. 4.11c). The

average n-level (30) and Rabi frequency (ΩR = 4
√

nδ ' 22δ) chosen, however, do

affect the revival time and the completeness of revivals. Fig. 4.11 illustrates some
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Figure 4.9: Snapshots of time evolution for the Q-function starting in a harmonic
coherent state, under the influence of free space damping and without a drive. The
initial Gaussian distribution spreads due to anharmonic rotation, wraps around,
interferes with itself, and then returns to the initial distribution at the revival time
2π/δ. A portion of the revival is washed out into a ring due to the presence of
damping, even though the time elapsed has only been 0.06 damping times. The
next revival is even less complete, until eventually all quantum coherence is lost and
the ring structure damps to 0. Initial 〈n〉 = 30. Times are given in units of 2π/δ.
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Figure 4.10: The Q-function probability distribution of an initially harmonic coher-
ent state spreads and contracts on a very fast time scale as it evolves into a dressed
coherent state of the anharmonic oscillator. Revivals for this driven anharmonic
oscillator were not expected. Two revivals are seen during this time series of equally

spaced intervals, covering approximately 1
10

th
of a 2π/δ anharmonicity time. Dissi-

pation is not included, as free space damping does not have any effect on this short
time scale. Initial 〈n〉 = 30.
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of these effects.

Fig. 4.11a shows phasewidth oscillations as the initial distribution spreads and

contracts until it settles into a steady state. For a fixed initial Landau level (of 30)

these plots show that for higher Rabi frequencies, the phasewidth oscillates more

rapidly, revives more completely, and settles into a smaller final value. Fig. 4.11b

shows 〈n〉 oscillations for the same set of parameters. These oscillations have a

more complicated structure and were not investigated further. Fig. 4.11c verifies

that adding free space damping does not affect the observed phasewidth oscillations

(since the time scale is so short compared to a damping time). And finally, Fig.

4.11d shows phasewidth oscillations for various Rabi frequencies and n-levels chosen

according to the pseudo-universal loss-rate parameter (ΩR/δ)/
√

n = 2. Notice that

the oscillation frequencies are all different, but the equilibrium phasewidths are all

the same.

Two phasewidth-related time scales emerge from Fig. 4.11: the oscillation period

and the time for relaxation to equilibrium. It is the oscillation period which is needed

for the equilibrium phasewidth estimate, as it describes how long the distribution is

allowed to spread before contracting. The relaxation time is not investigated further

and together with the oscillation time would make the subject of an interesting

analytical study. Fig. 4.12 shows that the phasewidth oscillation time (scaled by

the time δ−1 in calculations) is inversely proportional to the parameter
√

Ωn/δ,

where Ωn = ΩR

√
n is the Rabi frequency for the nth two-state transition. The

spread time of interest then has dependence

Tspread ∝ 1√
ΩR

√
nδ

(4.6)
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Figure 4.11: Oscillations of the Q-function phasewidth in (a,c and d) and of the
average Landau level in (b) as an initially harmonic coherent state evolves into a
dressed coherent state of the anharmonic oscillator. (a) Phasewidth oscillates more
rapidly, revives more completely and settles into a smaller final value for larger
Rabi frequencies (initial 〈n〉 = 30). (b) Average n-level oscillations for the same
Rabi frequencies as (a) have a more complicated structure and were not investigated
further. (c) Free space damping has negligible effect on the phasewidth oscillations

of (a). (d) Phasewidth oscillations for 〈n〉 = 30, 50, 70, and 90, all with ΩR/δ√
n

= 2,
show different revival frequencies but settle into the same steady state phasewidth.
No damping is included in (a,b, or d).
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Figure 4.12: The dependence of Rabi frequency and initial 〈n〉 on the phasewidth
spreading time is found by plotting the time to the 1st peak for oscillations (such as
shown in Fig. 4.11a) versus the combined parameter which gives a linear relation-
ship. Calculated peak times plotted (circles) are scaled by δ−1 and the combined
parameter found is (Ωn/δ)−1/2 = (ΩR

√
n/δ)−1/2. Since the calculated times are

scaled by δ−1, the resulting spreading time is Tspread ∝ (ΩR

√
nδ)−1/2. A linear

regression (line) is also shown.
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and consequently the phasewidth estimate has dependence

(∆Φ)−2 ∝ ΩR/δ

∆n

√
n

∆n
. (4.7)

The universal loss-rate parameter was determined in Sec. 4.2 to be the in-

verse squared phasewidth (scaled by the difference between the stable and unstable

excited-state phases). Thus, the right hand side of Eq. 4.7 should be a good estimate

for loss-rate. Fig. 4.13 confirms that this calculated parameter is a good predictor

of the loss-rate for the same variety of n-levels, Rabi frequencies, temperatures and

damping rates represented in Fig. 4.8d, when scaled with the same phase-difference

method. Notice that the right hand side of Eq. 4.7 reduces to the pseudo-universal

loss-rate parameter found earlier ΩR/δ√
n

when the n-width is taken as the coherent

state width
√

n.

4.4 Implications of Quantum Instability and the

Classical Limit

We summarize the loss mechanism as follows. Quantum mechanics introduces a

spread of energy levels into the electron probability distribution, as described by

the Heisenberg uncertainty principle. Anharmonicity causes differential rotation of

the phases of these levels. The maximum spread of this phasewidth depends on

the time scale over which spreading occurs. This time scale, in turn, is limited for

higher Rabi frequencies, presumably because the n-levels are mixed more rapidly.

Spreading away from the stable attractor leads to loss.

The most surprising result is that higher energy excitations exhibit more loss.

In fact, for a particular Rabi frequency and damping rate, a driven excitation only
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Figure 4.13: Loss-rates for resonant excitations (from Fig. 4.8d) plotted versus the
calculated inverse-squared phasewidth given in Eq. 4.7. The calculated phasewidth
is scaled by the difference between the classical stable and unstable excited-state
phases given by equation Eq. 2.17. (This scaling is only necessary for the set of runs
using large damping, γc/γfs = 100, for which φst − φunst is not equal to π.) A linear
regression (line) is also shown.
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has a long enough lifetime to be considered stable for the low energy portion of the

corresponding classical response curve (see Fig. 2.1). If we use the pseudo-universal

loss-rate parameter of Sec. 4.2, we find the condition

ΩR/δ√
nmax

� 1 (4.8)

or equivalently,

Ωnmax � nmaxδ (4.9)

must be satisfied for stability of n-levels all the way up to nmax. Substituting in

nmax ' (ΩR/γc)
2, the stability condition becomes

δ � γc. (4.10)

In other words, the anharmonic shift (n δ) must be masked by the damping width

(γc) at the lowest Landau levels in order to reproduce a classical response curve.

Familiar classical oscillators and pendula always satisfy this condition. Perhaps

one would go so far as to say that this restriction is a requirement for classical

oscillators. As already mentioned, however, the one-electron cyclotron oscillator

is very anharmonic relative to damping and would never be considered classical

with that definition. It seems that the one-electron cyclotron oscillator’s “large”

anharmonicity exaggerates what are normally minute quantum fluctuations enough

to knock even a highly excited particle out of its stable phase space bucket.

The stability condition of Eq. 4.8 is necessary but not sufficient for average exci-

tations near n = nmax. The more stringent condition found is that the phasewidth

must be small compared to the difference between the stable and unstable steady

state phases. We thus use the approximate, but scaled, universal loss-rate parameter
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to get a more stringent stability condition

ΩR/δ√
nmax

� |φst − φunst|−2. (4.11)

The phase-difference, for n ≈ nmax, can be approximated as

|φst − φunst|2 = 4
nmax − n

n
, (4.12)

and the more stringent stability condition becomes

δ � γc(4
nmax − n

n
). (4.13)

The anharmonicity needs to be even smaller than γc to maintain stability all the way

up to nmax. Another way of viewing this condition is that the closer one expects n to

get to the top of the classical resonance curve at nmax, the smaller the anharmonicity-

to-damping ratio δ/γc needs to be. This analysis is somewhat speculative in that

most of the parameter space investigated was for n � nmax. Only the few runs

with γc/γfs = 100 investigated loss rates for n-levels closer to nmax. Still, it seems to

indicate that experimental observations of one-electron cyclotron excitations (such

as in Fig. 2.2) have been limited in extent by quantum instability rather than by

microwave power.

A correspondence check is performed by evolving a classical distribution of prob-

ability surrounding the stable phase-space attractor (equivalent to the Gaussian co-

herent state distribution for 〈n〉 = 50) and seeing whether some of the initial points

damp to the unexcited attractor at the origin. Indeed they do, as shown in Fig.

4.14. A snapshot of the initial distribution is plotted in crosses. After one damping

time, another snapshot (circles) shows that the distribution is split into an ‘excited’
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Figure 4.14: The evolution of a classical (Gaussian) distribution in phase-space
for a driven, free-space damped, anharmonic oscillator governed by the equation of
motion in Eq. 2.9 also exhibits loss. The initial distribution (crosses) separates into
two pieces (circles) after 1 damping time. In later snapshots (not shown), the ring of
circles continues to damp to smaller amplitude, while the crescent of circles continues
to damp to the stable excited state. Drive parameters chosen give a steady state
amplitude corresponding to the quantum 〈n〉 = 50. A Rabi frequency of ΩR/δ ≈ 3.5

is chosen from ΩR/δ√
n

= 0.5. See Fig. 4.15 for a picture of the excited-state’s stable
bucket.
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crescent and a ‘lost’ ring, just as in the master equation solutions. In later time

shots (not shown) the crescent continues to damp to the excited attractor, and the

ring continues to damp to the origin. Thus the typical n � 1 is still a possible

classical limit to the quantum system in the sense that the same loss behavior is

exhibited for identical initial distributions.

Finally, to picture how this phase spreading can lead to loss of probability in

the excited state, Fig. 4.15 shows a contour plot of a Q-function after one damping

time of evolution from a coherent state, for the high loss parameter ΩR/δ√
n

= 0.5

(taking n = 50), superimposed on a classical calculation of the excited-state’s stable

phase-space bucket. Note there is only enough resolution in the bucket sampling to

distinguish the first few inner spirals (which appear much darker than the rest of the

stable bucket simply because of the higher density of points). All other structures

such as the outer lying ovals are mere artifacts from insufficient resolution. The Q-

function contour clearly extends beyond the thick first spiral of the classical bucket.

It may not be obvious that phase spreading should cause more loss than radial

spreading, but it is clear that the first spiral gets much narrower at phases far from

that of the excited attractor (at 3π/2).
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Figure 4.15: Q-function contours (lines) of an unstable anharmonic oscillator after
evolving 1 damping time from an initial harmonic coherent state, under the same
drive and damping parameters used in Fig. 4.14. The contours reflect a similar
distribution to the evolved classical distribution shown in Fig. 4.14, consisting an
‘excited’ crescent and a ‘lost’ central ring. Contours are superimposed on a map of
the the classical phase-space excited-state bucket (finely spaced dots). The first few
(inner) spirals of the bucket are detectable, but the outer regions of the phase-space
map do not have enough resolution to resolve the spiral structure (oval structures
are artifacts). In addition, the inner spiral appears darker than the rest of the
stable bucket due to the higher density of phase-space points in this region. The
central region (blank, except for the Q-function ‘lost’ contours) all belongs to the
unexcited-state’s bucket. See Fig. 2.3 for a more resolved phase-space map with less
anharmonicity and a higher |ᾱss|2/|ᾱmax|2 ratio.
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Chapter 5

Possibilities for ppb Frequency

Measurements

5.1 Excitation and Detection

An understanding of loss and stability makes it possible to evaluate the feasibility

of 1 ppb measurements of the cyclotron frequency, required for the next generation

of electron magnetic moment measurements. As discussed in Sec. 3.1, the cyclotron

frequency, ωc, and the anomaly frequency, ωa = ωs−ωc, need be measured. Since an

anomaly transition is a simultaneous spin flip and cyclotron transition, and since the

spin motion has a near infinite lifetime, anomaly transitions can be detected after

the fact by simply measuring whether a spin flip has occured. We investigate the

possibility of using the cyclotron ladder as a probe of the spin state in the following

manner: Referring back to the cyclotron-spin energy level diagram shown in Fig.

3.1, one sees that a spin flip can be identified by detecting a one δ (1 ppb) shift in

the n = 0 → 1 cyclotron transition (ω0→1), between ωc − δ/2 and ωc − 3δ/2.

The cyclotron energy is experimentally detected as a shift in the axial fre-
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quency [1]. Without adding an inhomogeneous magnetic field, the coupling arises

only from special relativity and is quite small. Consequently, a transition of one cy-

clotron energy level causes an axial frequency shift which is too small to be detected

directly. We must therefore rely on detection of large cyclotron excitations above

some threshold to probe the n = 0 → 1 transition. Insofar as a 50 level cyclotron

excitation corresponds to an easily measurable 2 Hz axial shift, we choose n = 50

as a reasonable detection threshold for this study.

We consider two possible excitation methods which allow the detection of n ≥ 50

to reveal the n = 0 → 1 transition frequency. Both methods provide ω0→1 frequency

information by recording the excitation probability as a function of start frequency

for a microwave drive whose frequency is varied with time. The two excitation

processes considered are adiabatic passage (as introduced in Chs. 3 and 4) and

series of π-pulses. In this chapter we describe and highlight the advantages of each

technique, while in the next chapter we illustrate the effect of noise using adiabatic

passage.

Slowly sweeping the drive frequency results in a series of adiabatic two-state

passages. Consider an electron cyclotron oscillator in its ground state. As the

drive is swept from high frequency to low, it first passes the n = 0 → 1 transition

frequency, and the electron moves to the n = 1 state. As the sweep continues,

the 1 → 2 resonance is passed, causing a transition to n = 2 and so on. In this

way, the cyclotron motion can be excited to high Landau levels. The large observed

excitation is a binary signal that indicates only whether an excitation process was

successful or not. The frequency resolution comes from knowledge of the drive’s

start frequency for a given sweep. Clearly if we sweep the frequency of a weak

drive downward, starting below the 0 → 1 resonant frequency, the drive never

passes the first resonance, and the electron remains in the ground state. By plotting
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probability of excitation versus start frequency, we see the probability change from

0 to 1 when the drive’s start frequency is near ω0→1. The width and offset of

such a probability resonance depend somewhat on drive power, but for small Rabi

frequencies (ΩR/δ ≤ 1) we show that the desired ppb resolution can be achieved.

For small Rabi frequencies, spontaneous emission is a problem, and speed of

excitation and detection are of utmost importance. Sweep speed is described by

the chosen Rabi frequency ΩR and the Landau-Zener parameter ΓLZ (both for the

ground state transition),

dωd

dt
= − Ω2

R

4ΓLZ

, (5.1)

where ΓLZ � 1
4

is required for adiabaticity. The fixed-speed sweep becomes more and

more adiabatic as the two-state Rabi frequency grows with n-level (Ωn = ΩR

√
n).

An experimental way to speed the excitation process, while remaining in the adia-

batic regime, is to increase the sweep speed as the cyclotron energy grows, but in

this study, the simple fixed-speed case is examined.

The other excitation process considered is a series of π-pulses. A π-pulse for

a two-state system is an application of a resonant drive for the exact amount of

time necessary to transfer all the population from one state to the other. A series

of such pulses, with successive pulse frequencies decreased by δ and the nth pulse

duration decreased by the factor
√

n, can also produce a large cyclotron excitation.

Again, a resonance curve can be generated by starting the π-pulse sequences at

different frequencies surrounding the true ground state frequency, and determining

the excitation probability for each.

The adiabatic sweep may be easier to perform experimentally, but it is slower

than the π-pulse method for the smallest Rabi frequencies. The time needed per
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level of excitation for each of the two methods is

τsweep =
4ΓLZ

(ΩR/δ)2

1

δ
(5.2)

τpi =
π

(ΩR/δ)
√

n

1

δ
. (5.3)

Each π-pulse is faster than the corresponding two-state sweep when the condition

ΓLZ

ΩR/δ
>

π

4
(5.4)

is satisfied. Thus, for Rabi frequencies much less than δ, the π-pulse method is faster

than the adiabatic sweep. It will be shown, in fact, that the π-pulse method is most

useful for these lowest Rabi frequencies, since for higher power drives, multiple

resonance peaks get broadened together to reduce the frequency resolution.

The calculated frequency sweeps (and π-pulses) of this chapter all stop at the

resonant frequency ω54→55. Continuation of the sweeping or pulsing does not en-

hance the probability of exciting the electron past level n = 50, but it does allow

time for dissipation to destroy the excitation. Setting these parameters experimen-

tally will be an iterative process of refining the cyclotron frequency measurement

and readjusting the parameters. Fortunately, calculated excitation probabilities are

not very sensitive to these detection-threshold and frequency-stop parameters.

5.2 Predicted Cyclotron Resonance Curves

The desired 1 ppb frequency resolution can only be achieved with a sufficiently small

Rabi frequency. Fig. 5.1a demonstrates the frequency resolution. For several Rabi

frequencies, the probability to excite above n = 50 by adiabatic passage is plotted
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versus the starting frequency of the drive. While the smaller Rabi frequencies pro-

vide better frequency resolution, they also impose longer duration adiabatic passage

times during which damping can play a role. The lowest Rabi frequency curves,

therefore, have very small probabilities for excitation above n = 50.

The π-pulse excitation process is faster and thus allows less spontaneous emis-

sion. Excitations above n = 50 are therefore more likely (Fig. 5.1b). The frequency

scale of Fig. 5.1b is extended due to the more complicated resonance structure, how-

ever, these curves indicate the possibility of ppb resolution as well. For small Rabi

frequency (see ΩR/δ = 0.2) a multiple peak structure emerges. This structure arises

because beginning the pulse sequence one δ above the first transition frequency re-

sults in the second pulse being resonant (although the duration is slightly off) and

so on. For higher Rabi frequencies, these multiple peaks overlap and the resonances

become much broader than the corresponding adiabatic passage resonances. Thus

the π-pulse method is really most useful for the lowest Rabi frequencies (and the

highest resolution).

The resonance curves shown in Fig. 5.1 were all calculated with zero temperature.

Including a 4.2 K temperature and a Boltzmann distribution of initial occupied

Landau levels did not appreciably alter the shapes, but did slightly reduce excitation

probabilities.

The resonance curves shown in Fig. 5.1 were also produced assuming that an

instantaneous detection of the cyclotron excitation is possible. While fast “in-the-

dark” axial frequency detection methods have been demonstrated [18,19] a simpler

approach may be possible. Fig. 5.2a shows the adiabatic resonance curves of Fig.

5.1a with a power increase to ΩR/δ = 21 at the end of the sweep. This strong

drive decreases the loss-rate to less than 0.001γc (see Fig. 4.8) so there is ample

time for axial frequency detection. The power increase does not appreciably alter
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Figure 5.1: Probability of exciting above n = 50 by adiabatic passage (ΓLZ = 1)
in (a), and by a series of π-pulses in (b), for 4 different drive strengths. Excitation
probabilities are calculated with zero temperature, weak drive (ΩR/δ ≤ 1), and
inhibited spontaneous emission (γc/γfs = 0.1). Part-per-billion cyclotron frequency
resolution and accuracy are attainable for these small Rabi frequencies.
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Figure 5.2: Same resonance curves as in Fig. 5.1, but with an increase of the Rabi
frequency to ΩR/δ = 21 upon completion of the excitation process.
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the frequency resolution of the resonance curves, so a 1 ppb resolution cyclotron

frequency measurement should be possible and detectable. A similar check on pulsed

excitations (Fig. 5.2b) shows that the first resonant peaks of Fig. 5.1b maintain their

high resolution as well.

It has been suggested to try sensing the n = 0 → 1 transition frequency with a

single resonant low-power π-pulse, followed by a higher-power adiabatic detection

sweep. A weak ‘sense’ pulse would probe the n = 0 → 1 transition with high

resolution, and the higher power adiabatic sweep would quickly detect whether the

transition was made. In this way, the entire process would be completed in much

less than a spontaneous emission time. This technique relies on the ability of the

high power adiabatic sweep to transfer the electron from the n = 1 state back to the

ground state and subsequently not induce a large detectable excitation, if the sense

pulse was effective. Very strong adiabatic passage drives (ΩR/δ � 1), however, were

just as effective at inducing large excitations from n = 1 as from n = 0. Thus, this

technique is only viable for adiabatic detection drives whose Rabi frequencies are

on the order of or less than δ, but then hope of easily beating spontaneous emission

must be disregarded. There is still an advantage to being able to ‘sense’ with a very

weak driving force and then ‘detect’ with a ΩR/δ ∼ 1 adiabatic fast passage, and

that is having the ability to obtain the resolution determined by the sense pulse in

the amount of time determined by the detection sweep.

Since the low Rabi frequency excitation probabilities are very sensitive to dissi-

pation, a separate study was performed to characterize maximum excitation prob-

ability as a function of Rabi frequency for different damping rates. The stability

condition ΩR/δ√
n

� 1 can not be met for these small Rabi frequencies, which is why a

portion of the excitation is lost. Still, the loss-rate is proportional to the cyclotron

damping rate, so inhibiting spontaneous emission in the Penning trap cavity reduces
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the amount of loss for these slow excitations. An inhibited rate of γc/γfs = 0.3 in a

Penning trap has been experimentally measured [17], while the rate of γc/γfs = 0.1

used in Figs. 5.1 and 5.2 should be attainable as well.

Figs. 5.3a and 5.3b show the probabilities for adiabatic sweeps from above

resonance to excite the electron past n = 50 using three representative synchrotron

radiation rates: γc/γfs = 0.1, 0.3, and 1. For adiabatic conditions (Fig. 5.3), lower

damping rates and higher drive powers clearly result in less loss during the excitation

process. In 5.3a an adiabatic Landau-Zener parameter of 1 is taken whereas in

5.3b a less adiabatic Landau-Zener parameter of 0.25 is used. Both ΓLZ choices

are reported in order to illustrate those cases where it is advantageous to give up

adiabaticity in favor of beating spontaneous emission (ΩR/δ = 0.6, γc/γfs = 0.1

for example). Such plots help quantify the expected dependencies and should be

useful for experimentally choosing favorable sets of sweep, damping, and drive power

parameters.

Similar maximum probability curves for the π-pulse method are shown in Fig.

5.4. The higher probabilities achieved reflect the faster nature of this method in

the presence of damping. Start-frequencies for these pulse sequences are chosen to

correspond to the ground state transition peaks of Fig. 5.1b.

In summary, ppb cyclotron frequency resolution and accuracy should be possi-

ble by starting excitation π-pulses or adiabatic passages at different frequencies and

measuring the probability of excitation for each. Small Rabi frequencies are needed

for the highest resolution, but the slower sweep speed requirement allows sponta-

neous emission more time to destroy the signal. Damping should thus be minimized

as much as is experimentally possible. Resonance curves are not compromised by

including a 4.2 K black-body temperature, or by increasing the Rabi frequency at

the end of a sweep to make the excitation persist for detection.
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Figure 5.3: Probability of exciting above n = 50 by adiabatic passage (ΓLZ = 1)
in (a), and by less adiabatic sweeps (ΓLZ = 0.25) in (b) for 3 different synchrotron
radiation rates and as a function of Rabi frequency. Lower damping rates and faster
sweep speeds increase the likelihood of obtaining an excitation.
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Figure 5.4: Probability of exciting above n = 50 versus Rabi Frequency as in Fig. 5.3
but for π-pulse excitation sequences. Again, lower damping rates and the shorter
durations of high power pulse sequences increase the likelihood of obtaining an
excitation. Start-frequencies for these pulse series are chosen to correspond to the
ground state transition peaks of Fig. 5.1b.
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Chapter 6

Stochastic Fluctuations in the

Cyclotron Frequency

So far we have analyzed a driven one-electron cyclotron oscillator, including rel-

ativistic anharmonicity, and synchrotron radiation damping to equilibrium with a

black-body background. The experimentally realizable system differs most notably

in that special relativity also couples the energy in the electron’s axial motion to the

cyclotron frequency. This coupling produces “noise” on the cyclotron frequency (or

equivalently “noise” on the drive frequency). Phase-noise on the microwave driving

field has similar consequences. We turn now to consider the influence of axial noise.

First, we express the cyclotron frequency shift as a function of axial amplitude.

Next, we generate axial amplitude noise (the subject of Sec. 6.1). Finally, in Sec.

6.2, we illustrate the effect of such noise on cyclotron resonance curves and adiabatic

sweeps.

The relativistically shifted resonant cyclotron frequency discussed in Ch. 2 is

ω =
eB

γmc
=

ωc

γ
, (6.1)
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where γ = 1/

√
1 −

(
v
c

)2
is the usual relativistic factor. Solving the Dirac equation

[15] gives the 1st order correction to the resonant cyclotron frequency, due to the

axial energy Ez,

∆ω

ωc
= − Ez

2mc2
. (6.2)

where ∆ω is the relativistic shift ∆ω = ω − ωc. The axial oscillation is brought

to thermal equilibrium with a 4.2 K detection circuit through resistive damping

at a typical rate of γ−1
z = 30 ms. At this temperature, the average axial Landau

excitation is nz ' 1000, and the motion can be treated as a classical harmonic

oscillator, with response amplitude z ∼ eiωzt and energy

Ez =
1

2
mω2

zz
2 +

1

2
mż2 = mω2

z |z|2. (6.3)

We scale the axial amplitude squared dependence to its time average, given by the

equipartition theorem

1

2
mω2

z〈z2〉 =
1

2
kTz, (6.4)

where the axial temperature Tz is differentiated from the cavity temperature T . The

cyclotron frequency shift is then

∆ω = −1

2

kTz

h̄ωc

|z|2
〈z2〉δ, (6.5)

where δ = ωc(h̄ωc/mc2) is the anharmonic shift per energy level.

As the axial response z fluctuates due to Johnson noise from the resistive detec-

tor, the cyclotron n = 0 → 1 transition frequency fluctuates as well. The first order

effect of such frequency noise is to convolve the predicted resonance curves found in

Ch. 5 with a Boltzmann exponential distribution of expected cyclotron frequency
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shifts. At 4.2 K, however, the average shift 〈∆ω〉 ' −1
3
δ is close enough to the one δ

spacing to suggest a significant impact on both adiabatic passage and π-pulse exci-

tations. The effect may be particularly important if axial temperatures higher than

4.2 K are imposed by a hot detector. In this chapter we show how to represent the

thermal noise as a stochastically changing cyclotron frequency, and then give one

example of its effect on adiabatic fast passages and possible ppb cyclotron frequency

measurements.

6.1 Axial Motion Driven by Noise

The axial equation of motion is that of a simple harmonic oscillator

z̈ + γzż + ω2
zz = n(t) (6.6)

where n(t) is Gaussian white noise whose amplitude must be adjusted so that the

axial response satisfies the equipartition theorem. In the end, the generated response

amplitudes can be scaled by a ratio of the actual rms amplitude to the generated

rms amplitude, so the original size of the noise drive is unimportant. The fast 60

MHz oscillation is removed by going to the oscillating frame z = z̄eiωzt where z̄ is

assumed to be slowly varying. The equation of motion for z̄ is then

¨̄z + ˙̄z(2iωz + γz) + z̄(iωzγz) = n(t)eiωzt. (6.7)

For slowly varying z̄, |¨̄z| � | ˙̄zωz| and | ˙̄zγz| � |z̄ωzγz|, the equation of motion

becomes

˙̄z +
γz

2
z̄ =

n(t)eiωzt

2iωz

. (6.8)
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Since white noise has equal power density at all frequencies, the right hand side of

Eq. 6.8 is just another arbitrary white noise source n2(t) (or alternatively can be

thought of as 60 MHz white noise mixed down to the low resonant frequencies of

z̄), and the oscillating frame equation of motion reduces to

˙̄z +
γz

2
z̄ = n2(t). (6.9)

Thus, as intuition suggests, the axial response is just that of white noise filtered

with a time constant RC = 2τz = 2/γz.

Eq. 6.9 is solved to generate a time series of axial energies which can be used in

the adiabatic cyclotron sweep computation. At each of 300 equally spaced intervals

per time 2τz, the noise driving amplitude is changed randomly to fit a Gaussian pro-

file. Fig. 6.1 shows plots which characterize this noise drive and the axial response.

A time series of random drive amplitudes spanning 10 2τz times is shown in (a). The

Fourier transform (squared) of this time series, in (b), illustrates the flat white-noise

energy spectral density out to a frequency determined by the minimum time step.

Fig. 6.1c shows the “filtered” energy spectral density of the axial response to such

a drive, and for comparison, Fig. 6.1d shows the energy spectral density of a pure

exponential decay (no noise drive). All angular frequency axes in Fig. 6.1 are scaled

by γz/2. The axial response time series used to produce the spectral densities of

(c) and (d) are extended to span 1000 and 100 2τz times, respectively, in order to

achieve high enough resolution for the figures.

These spectral densities provide an intuitive explanation of how the axial oscil-

lator filters the broad-band Johnson noise. The broad-band noise in (b) is filtered

to a narrow bandwidth of γz in (c). From this observation, we are assured that

the choice of step-size for the Johnson noise becomes irrelevant once the step-size
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Figure 6.1: (a) A time series of Gaussian white noise amplitudes spanning 10 2τz

times. (b) The Fourier transform (squared) of this time series. (c) A Fourier trans-
form (squared) “filtered” axial response to a similar noise series (spanning 1000
2τz times). (d) Another Fourier transform (squared) axial response, but undriven.
When no noise drive is included, the exponential time response has a Lorentzian en-
ergy spectral density. All plots show 3000 points, and all noise drives are represented
by 300 random amplitudes per time 2τz.
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is much smaller than an axial damping time. Smaller steps serve to increase the

bandwidth of the driving noise, but since the axial oscillator filters it anyhow, this

is unnecessary. We generate 300 points per 2τz so that the unfiltered white noise

source extends well into the outer wings of the “filtered” Lorentzian tail. (The “fil-

tered” Lorentzian spectral shape can be derived by Fourier transforming Eq. 6.9.

The undriven spectral density in (d) confirms this expected shape by fitting well to

a Lorentzian with half-width γz/2.)

Fig. 6.2 shows additional properties of the computed axial energies. Fig. 6.2a

shows a running average of energies for an extended time series spanning 100,000 τz

times. The final value is used to scale the data set of response energies. Finally, a

histogram of energies generated from another extended run spanning 2000 τz times

is shown in Fig. 6.2b. The expected Boltzmann exponential shape emerges.

6.2 Adiabatic Passage with Noise: An Example

The fluctuating axial amplitude makes the effective cyclotron resonant frequency

vary stochastically in time because of the relativistic coupling in Eq. 6.5. The

noise is characterized by the axial temperature Tz (which gives the magnitude of

the frequency shift), and the axial damping time τz (which gives the time-scale or

bandwidth of the noise). These two parameters are varied to determine the cyclotron

oscillator’s sensitivity to them. Phase-noise in the microwave driving field can also

be understood insofar as it can be described by these two parameters.

Noise effects in this section are illustrated using one representative set of adia-

batic sweep parameters which we have shown should allow for 1 ppb resolution of

the cyclotron frequency: ΩR/δ = 1, γc/γfs = 0.1, and ΓLZ = 1. The time dependent

cyclotron frequency is easily incorporated into the master equation calculation, but
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Figure 6.2: (a) Running average of axial amplitude squared, driven by noise. (b)
Histogram of 3000 noise driven axial amplitudes squared, sampled over 1000 2τz

times. For both, 300 drive noise points are generated per 2τz time.
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now repeated trials must be averaged. A set of 10 such trials, in Fig. 6.3a, shows

that the noise typically decreases and delays the probability to excite the cyclotron

oscillator above n = 50. Plotted are excitation probabilities as a function of time

for adiabatic frequency sweeps starting far above resonance. The top curve is an

adiabatic passage without noise, taken from the last chapter. The other curves are

adiabatic passages for ten different sets of stochastic axial noise using Tz = 4.2 K

and τz = 30 ms.

Not surprisingly, the cyclotron excitation is affected less when the noise is more

heavily filtered by increasing the axial damping time. Fig. 6.3b illustrates this

with a set of excitations which use a slower axial damping time of τz = 300 ms.

Fortunately the axial damping time can be experimentally adjusted by de-tuning

the axial frequency from the detection circuit. This does make detection more

difficult, but it should be possible to de-tune the axial oscillator during the sensitive

adiabatic cyclotron sweep and then re-tune it for detection after the Rabi frequency

has been increased for stability.

Fig. 6.4 explores the dependence of the cyclotron excitation probability on tem-

perature as well as further exploring the dependence on axial damping time. Each

point represents the final excitation probability averaged together for ten trials such

as those shown in Fig. 6.3. The same ten sets of noise data are used for each point

in Fig. 6.4. “Error” bars extend plus or minus one standard deviation of the mean

or σ/
√

10. With only ten samples, we caution that the “error” bars are not very

reliable. Still, the dependences are clear.

The temperature sensitivity is probed by fixing the axial damping time at τz = 30

ms and varying Tz. Fig. 6.4a demonstrates that cooling the axial temperature to 1

K would eliminate the effect of axial noise for these sweep parameters. Electrons

have recently been trapped in a dilution refrigerator cooled Penning trap at 50 mK
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Figure 6.3: Probability of exciting above n = 50 by adiabatic passage starting far
above resonance, without noise (labeled) and with 10 different sets of axial noise
coupled to the cyclotron frequency. For a 4.2 K axial temperature (both), a faster
axial damping time of τz = 30 ms (a) has a more detrimental effect on the excitation
than a slower axial damping time of τz = 300 ms (b). Spontaneous emission rate is
γc/γfs = 0.1.
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Figure 6.4: Probability of exciting above n = 50 by adiabatic passage, with a
a stochastically changing cyclotron frequency, as a function of axial temperature
(for τz = 30 ms) in (a), and as a function of axial damping time (for Tz = 4.2
K) in (b). Each point represents an average of 10 noisy sweeps such as found in
Fig. 6.3. “Error” bars extend plus or minus one standard deviation of this mean
(points without error bars have standard deviations smaller than the point size).
Spontaneous emission rate is γc/γfs = 0.1.
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[35]. It should alternatively be possible to cool the axial temperature at least 1000

times below the traditional 4.2 K environment using cavity sideband cooling [13],

after decoupling the axial motion from the detection circuit. For operation at 4.2

K, however, Fig. 6.4b demonstrates that narrowing the noise bandwidth can also

reduce its influence. The adiabatic passage excitation probability is not significantly

reduced for axial damping times slower than 100 ms.

As a final check of the axial noise’s influence under typical Tz = 4.2 K, τz = 30

ms conditions, an entire resonance curve is generated by starting adiabatic sweeps

at different frequencies. Fig. 6.5 shows a comparison of this resonance curve with

the noise-free case from last chapter. Again, each of the noise affected excitation

probabilities are an average of ten trials. New noise sequences are used for each start

frequency, in an effort to simulate the constantly changing axial energy that would

be encountered in an experimental measurement. The computed resonance is still

encouraging for obtaining ppb frequency measurements. The maximum probability

is reduced by 20% and the midpoint of the transition is shifted an amount consistent

with the expected −1
3
δ. Remember, however, that this resonance curve represents

a sweep with ΩR/δ = 1. A 20% reduction in excitation probability may be more

detrimental for the lower Rabi frequencies.

In summary, the noise analysis shows that it is extremely beneficial to cool and/or

reduce the bandwidth of the axial noise, even if only slightly. Without cooling

below 4.2 K or increasing the axial time constant above τz = 30 ms, however, 1 ppb

cyclotron frequency resolution should still be possible.
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Figure 6.5: Probability of exciting above n = 50 by adiabatic passage, as a function
of start frequency (as in Fig. 5.1a), both with and without 4.2 K, 30 ms, axial noise
(as labeled). Rabi frequency is ΩR/δ = 1, Landau-Zener parameter is ΓLZ = 1, and
damping rate is γc/γfs = 0.1.
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Chapter 7

Conclusions and Future

The one-electron relativistic cyclotron oscillator is a rich quantum mechanical system

useful for modeling a certain class of nonlinear oscillators. Solving the master equa-

tion, with a driving force incorporated, completes the mission of describing physical

nonlinear oscillators, begun by those such as Milburn [3–5, 22–25]. Interesting loss

and revival features are quite different when a drive is present, and the stability of

resonantly driven excitations are characterized. The master equation calculation is

complemented by a Monte Carlo wave-function calculation, the method being gen-

eralized from the published two/three state procedure [29]. The equivalence of the

2 methods is shown both analytically and numerically. Future work can, therefore,

probe the nature of individual trials.

Q-functions for dressed coherent states of the anharmonic oscillator are calcu-

lated. Perturbations to these states exhibit revivals in the absence of a drive and

partial revivals in the presence of a drive. Phasewidth oscillations are seen at a

frequency determined by the n-level Rabi frequency Ωn = ΩR

√
n and the anhar-

monicity δ. Higher Rabi frequencies allow less spreading time and result in more

stable excitations as described below.
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The scaled phasewidth squared is shown to be a universal parameter which

characterizes loss from a dressed excited state. Most surprising is the failure of

the notion that cyclotron excitation above a certain “classical” level remains stably

excited. For a large excitation, quantum uncertainty introduces a large spread in

energy levels, each of which rotate at a different frequency. Differential rotation

leads to angular spreading away from the stable phase-space attractor, and loss oc-

curs at a rate proportional to (but most often quite different from) the cyclotron

damping rate. Although the classical model is generally thought to predict sta-

bility for driven excitations, a distribution of phase-space points corresponding to

the quantum distribution is also shown to be classically unstable for such a large

anharmonicity-to-damping ratio oscillator. More work is thus warranted to quantify

the unstable effect of angular spreading in the classical phase-space ‘bucket’ picture.

Implications for ppb cyclotron frequency measurements are as follows. Small

Rabi frequencies are needed for high resolution, and the resulting large loss-rates

require that the excitation be accomplished in a time much shorter than the radia-

tive damping time. Although this is expected from simple arguments, our explicit

calculation provides the quantitative information required to walk the narrow path

between 1 ppb frequency resolution (suggesting a weak driving force) and the need

to beat spontaneous emission (suggesting a strong driving force).

Inhibiting the cyclotron damping rate by a factor of ten from the free space rate

makes it easier to beat spontaneous emission and successfully excite the electron.

Such inhibition has been observed using resonant trap cavities [17], and now can

be controlled in a cylindrical Penning trap [12–14]. While detuning the cyclotron

frequency away from all cavity modes will inhibit radiation, it may make the task of

getting microwave power into the Penning trap cavity more difficult. However, the

microwave drive may also have more power than was previously thought, if the cur-
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rently observed cyclotron excitations are being limited by the quantum fluctuation

loss model rather than lack of drive power.

In addition to decreasing the synchrotron damping rate, minimizing the length of

the excitation process also enhances the probability of a weak driving force success-

fully exciting the electron. Two of the many possible excitation schemes, adiabatic

passages and π-pulse sequences, have been incorporated into the master equation to

optimize the compromise between speed of excitation and cyclotron frequency reso-

lution. Predicted resonance curves for a series of Rabi frequencies exhibit shifts less

than 1 ppb. Although a small Rabi frequency is required during the early stages of

excitation, increasing the power after the electron reaches the typical n = 50 thresh-

old does not compromise the resonance curve. This raises the question of how early

during the excitation process the Rabi frequency can be increased. Time varying

drive strengths and/or sweep speeds would certainly be another way to minimize

the excitation time and are worth investigating further.

Stochastic fluctuation of the cyclotron frequency, due to thermal excitations of

the axial motion, has for the first time been included in adiabatic passage calcu-

lations. This effective “noise” is Johnson noise, filtered by the electron’s damped

axial motion. The amplitude of stochastic cyclotron frequency fluctuations is thus

determined by the axial temperature, and the bandwidth by the axial damping rate.

Adiabatic passage excitations are hindered by such noise at the temperatures (4.2

K) and damping times (30 ms) most often encountered experimentally. Quantita-

tive knowledge of these sensitivities will enable experimenters to vary either or both

of these axial parameters into a less destructive region. The cyclotron frequency

fluctuation would, for example, be negligibly small for the 50 mK electrons recently

observed [35].

The relativistic cyclotron oscillator is a useful system for the study of quantum
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dissipation. Although the discovered quantum coherence and revival effects are too

fast to be detected experimentally, they are found to have a large impact on the

stability of an excitation. The oscillator differs from ordinary, classical anharmonic

oscillators in its large anharmonicity-to-damping ratio, and thus exhibits behavior

different from the intuitive classical expectation. Now that the ensemble average

behavior is understood, the Monte Carlo wave-function calculation developed should

be used to explore the effects of spontaneous emission and/or noise on individual

realizations. If the measurement operators are chosen correctly, this may give a

better picture of what happens during a single experimental frequency sweep. Fu-

ture work should also include an analytical study of the revival time-scales, as the

empirical dependencies uncovered may have simple explanations in a dressed state

basis. In addition, a better classical understanding of the phase-space ‘bucket’ spi-

ral structure is needed to provide more insight into the quantum mechanical phase

spreading loss mechanism.

This rich quantum mechanical system has already been realized as a single

trapped electron in a Penning trap [1, 18, 19]. The current study, along with re-

cent experimental work characterizing the cylindrical Penning trap cavity [12, 14]

and developing axial “in-the-dark” detection techniques [18, 19] sets the stage for

ppb cyclotron frequency measurements and the next generation of g − 2 measure-

ments to test QED. Currently, the electron magnetic moment is measured to a

fractional accuracy of 4 parts in 109 [10]. The master equation solutions will aid

experimenters in choosing system and drive parameters which allow 1 ppb cyclotron

frequency resolution and accuracy.

Solution of the master equation for the damped anharmonic oscillator reveals sev-

eral unexpected features of oscillators whose anharmonic shifts are large compared

to damping widths for the lowest n-levels, but still tiny compared to harmonic level
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spacings. It is likely that behavior similar to that presented here may express itself

in other quantum oscillators with anharmonicity in this regime. Our study can pro-

vide new insight into the detailed physics behind maintaining stable excitations in

these driven, damped nonlinear oscillators.
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Appendix A

Conventions and Detailed

Evolution Equations

This chapter is intended for those who are interested in the exact conventions and

equations used for the various computer codes, particularly those who will be con-

tinuing the theoretical work. In total, four separate codes were used to solve the

time dependent anharmonic oscillator equations: two classical and two quantum

mechanical. The classical codes have nearly identical algorithms, and differ mostly

in the ease with which they calculate phase-space maps versus phase-space trajecto-

ries versus evolution of probability distributions. The two will be distinguished by

the computer languages in which they were written: C for probability distribution

evolution and maps, Fortran for trajectories and more easily extracted maps. (I am

indebted to Adam Lupu-Sax for generously supplying the C code.) The quantum

codes each use one of the two approaches discussed in the text: the master equation

solution or the MCWF technique.

All four codes, with separate histories spanning 5 years, miraculously use the

same drive phase convention φd(0) = π. The classical theory discussed in the main
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text assumes φd(0) = 0, so all phase-space trajectories and maps shown, as well

as the superimposed Q-function contour of Fig. 4.15, have been rotated by 180◦

from the actual output data. In addition, the classical C code and the master

equation code both output phase space points (or Q-functions) in terms of the real

and imaginary parts of ᾱ (or α). The classical Fortran code, however, uses the

velocity variables ux and uy, so the sign of the uy variable must be switched to

match phase-space plots of the other two codes and the theory of Sec. 2.1, since

ux =
√

2h̄ωc/m Re[ᾱ] and uy = −
√

2h̄ωc/mIm[ᾱ] (from Eq. 2.7). Finally, both

quantum codes and the classical C code scale time by δ−1, but the classical Fortran

code scales time by (γc/2)−1.

Similarities and differences between conventions in the two quantum codes are

summarized as follows. First, the Hamiltonians are defined slightly differently. The

master equation method uses the same Hamiltonian Haho as in Eq. 3.25,

Haho = h̄(ωc − δ

2
)a†a − 1

2
h̄δ(a†a)2. (A.1)

but the MCWF code originated as a simple wave-function Schrödinger evolution

which was simplified so that the n = 0 → 1 transition frequency was called ωc rather

than the ωc − δ described in the text (see Fig. 3.2). Thus the MCWF anharmonic

Hamiltonian is actually

Haho = h̄(ωc +
δ

2
)a†a − 1

2
h̄δ(a†a)2. (A.2)

Second, different drive offsets are defined in the two codes: the MCWF code defines

ε(t) = ωc − ωd(t) = ω0→1 − ωd(t) whereas the master equation code defines ε(t) =

ωd(t) − ωc = ωd(t) − ω0→1 − δ.
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The energy eigenbasis formulation of the master equation, as defined in Eq. 3.32

for the density operator in a frame rotating at ωc is

dσ̄kl

dt
=

{
κ̃kl +

iδ

2
[k(k + 1) − l(l + 1)]

}
σ̄kl

+
√

(k + 1)(l + 1)(n̄ + 1)γc σ̄k+1,l+1 +
√

kln̄ γc σ̄k−1,l−1

+
ΩR

2
eiλ[

√
lσ̄k,l−1 −

√
k + 1σ̄k+1,l]

+
ΩR

2
e−iλ[

√
kσ̄k−1,l −

√
l + 1σ̄k,l+1], (A.3)

where λ =
∫ t
0 ε(t′)dt′ =

∫ t
0{ωd(t

′) − ω0→1 − δ}dt′, and κ̃kl describes the finite basis

effects in terms of the minimum and maximum n-levels min and max and in terms

of δ̄ab defined below,

κ̃kl = −γc

2

{
(kδ̄k,min + lδ̄l,min)(n̄ + 1) + [(k + 1)δ̄k,max + (l + 1)δ̄l,max]n̄

}
(A.4)

δ̄ab =




0 if a = b

1 if a 6= b
. (A.5)

Some checks were performed in an interaction picture which takes the unper-

turbed Hamiltonian as H0 = Haho of Eq. A.1, rather than as H0 = h̄ωca
†a defined

in the text. We informally refer to the original as the “rotating frame” and the later

as the “interaction picture”. In this language, the “interaction picture” corresponds

to a different rotating frame for each Landau level. The density operator elements

σ̃kl in this new “interaction picture” are related to the “rotating frame” density

operator elements σ̄kl by

σ̃kl = σ̄kle
−i[(k(k+1)−l(l+1)] δ

2
t (A.6)

This completes the energy eigenbasis formulation of the master equation.
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The MCWF evolution consists of two processes: the standard Schrödinger evo-

lution, and the collapse. Schrödinger evolution is controlled by the effective Hamil-

tonian Heff = Haho + Hdrive − ih̄γc

2
[(n̄ + 1)a†a + n̄aa†], where Haho is defined by Eq.

A.2, and Hdrive is define as in the main text. The state vector is written as

|Ψ(t)〉 =
max∑

n=min

Cn(t)|n〉 =
max∑

n=min

Dn(t)e−iωnt|n〉, (A.7)

where ωn = (ωc + δ
2
)n − 1

2
δn2 is defined by

Haho|n〉 = h̄ωn|n〉. (A.8)

Then the Schrödinger equation ih̄(∂/∂t)|Ψ(t)〉 = Heff |Ψ(t)〉 gives the equation of

motion for the wave-function coefficients

Ḋn =
ΩR

2

{
Dn−1

√
ne−iδ(n−1)t+iλ − Dn+1

√
n + 1eiδnt−iλ

}

− γc

2
(n̄ + 1) Dn n δ̄n,min − γc

2
n̄ Dn (n + 1) δ̄n,max (A.9)

where λ =
∫ t
0 ε(t′)dt′ =

∫ t
0{ω0→1 − ωd(t

′)}dt′.

The coefficients after a collapse, but before renormalization, as determined by

the measurement operators
√

γcdt(n̄ + 1) a and
√

γcdt n̄ a†, are

Emission : Dn(t + dt) =
√

γc(n̄ + 1)dtDn+1(t)
√

n + 1 eiδnt δ̄n,max (A.10)

Absorption : Dn(t + dt) =
√

γcn̄dtDn−1(t)
√

n e−iδ(n−1)t δ̄n,min (A.11)

up to an overall phase. The collapse probability for each path is given by the sum

of these new wave-function coefficients squared. This completes the wave-function

evolution formulation.
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