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Abstract

Stochastic motions of parametrically-pumped electron oscillators synchronize
abruptly when the pump strength is increased through a sharp threshold and in-
ternal motions are radiatively cooled via coupling to a mode of a cold, microwave
cavity. The collective motion is characterized by an instability which is approx-
imated by a rigid model. Hysteresis is observed when either pump frequency or
pump strength is swept. Time translation invariance requires that any coherent
response be phase bistable, with the two degenerate phase states differing only
in phase by 180 degrees. The collective behavior in this system is self-organized
insofar as the choice between these bistable phase states is determined by internal
motions. Parametrically-pumped electron oscillators are only partially synchro-
nized, with a coherent component which is observed to be very sensitive to ra-
diative cooling of the internal motions, providing a new technique for probing the
- standing-wave modes of a Penning trap cavity, sn situ at 4K, without a microwave
drive. Measured resonant frequencies of a specially designed cylindrical Penning
trap agree very well with the eigenfrequencies of an ideal microwave cavity, typi-
cally to a percent or better. This cylindrical trap is of such higﬁ quality that one
isolated electron in its cavity is observed with good signal-to-noise. For the first
time, cavity modes of a Penning trap are clearly observed and identified with famil-
iar field configurations. Among over 100 observed modes are some which are suited
for cyclotron excitations, rapid change of cyclotron damping, sideband cooling of
an electron to very low (mK) temperatures and directly driven spin flips. The
extraordinary control over a wide range of parameters in this well-characterized
system opens the way to a new generation of electron magnetic-moment measure-
ments and other radiative studies, as well as experiments on collective behaviors

and fluctuation phenomena.
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Chapter 1

Introduction

Isolated elementary particles and ions in eleciromagnetic traps have made pos-
sible a growing variety of experiments, ranging from the most stringent tests
of renormalized QED with the measured electron magnetic moment [88] and
tests of CPT in the proton/antiproton system [36], to trapping large numbers
of cryogenic positrons and anti-protons for synthesis of anti-hydrogen, to studies
of pure electron plasmas [61,68] and spatially ordered structures in laser-cooled,
trapped ions [21,95,47,40,16]. This work presents the first study of recently dis-
covered [78,79] self-organized {65] collective behaviors in a system of cavity-cooled,
parametrically-pumped electron oscillators which are isolated in a new cylindrical

Penning trap cavity.

1.1 Cooperative Phenomena

Centuries ago, Huygens observed that pendula of two clocks on a wall tend to
synchronize [81]. More recent efforts to characterize large dynamical systems have
generated increased interest in larger systems of coupled oscillators. Extensive
studies of cooperative behavior in the laser, for example, revealed strong similarity
in this nonequilibrium system to critical phenomena in a ferromagnet, developing
concepts and techniques analogous to those of phase transition theory. [42,17]
Also, arrays of Josephson junction oscillators synchronize when they produce hlgh
&equency microwaves, being coupled via a common load of passive circuit elements



[43,60). Large systems of well-characterized, coupied oscillators are difficuit to
realize under good control in the laboratory and no unified theoretical approach
has yet emerged for collective behavior far from thermal equilibrium. Nonetheless,
an increasing number of works studying a few simple systems of coupled limit cycle
oscillators are revealing recognizable cooperative phenomena such as oscillator
synchronization, “clustering” and “attractor crowding” [91,25]. Examples include
Van der Pol oscillators [96] and an “active rotator” model [58] which are studied
using various techniques: solutions of coupled differential equations [96,66,62],
coupled iterative maps [74,91,25], generalized mean field approaches [58], as well
as renormalization-group analysis [15].

Parametrically-pumped electron oscillators are far from thermal equilibrium
insofar as they are strongly driven and they continuously dissipate energy. A
unique feature is that the oscillators synchronize to produce an observable, coher-
ent motion of their center-of-mass (CM) at half the frequency of the pump. Time
translation symmetry requires that any such response be bistable in phase relative
to a subharmonic of the parametric pump. The collective motion is self-organized
insofar as the choice between the bistable phases depends upon the interngl mo-
tions of the electrons (not upon the external pumping field) and characteristically
requires sufficient energy dissipation [65]. Transitions between the bistable phase
states depend upon the internal energy of the oscillators (relative to their CM),
reminiscent of a two state system coupled to a thermal bath. This energy is varied
by tuning the radiative dissipation to the cold microwave cavity formed by elec-
trodes of a specially designed, cylindrical Penning trap. The collective motion is
characterized by an instability which is well approximated by a rigid model, with
hysteresis occurring when either pump frequency or pump strength is swept back
and forth through a region of instability. Partial synchronization is manifested by
interesting effects, such as the broadening of fluctuation spectra, saturation of the
coherent component as pump power is increased above a threshold, slow relaxation
to steady level in pulsed excitation, etc..

Likely applications of the newly developed techniques include a thousand-fold

4



reduction in the axial temperature of a trapped elementary particle, radiative
cooling of cryogenic electron plasmas and internal motions of molecular ions at
adjustable rates, and a new generation of measurements of the electron magnetic
moment which are no longer limited by cavity frequency shifts or by damping
linewidths.

1.2 Eliminating Cavity Shifts

Although the observed nonlinear dynamics and collective behaviors in
parametrically-pumped electron oscillators are of interest in themselves, the de-
velopment of a high quality cylindrical Penning ﬁ__'&p which has made this study
possible was originally motivated by the goal of starting a new generation of elec-
tron magnetic moment measurements in well-characterized radiation fields. The
discovery of synchronized motions in parametrically-pumped oscillators has al-
lowed us, for the first time, to clearly observe and identify microwave standing
wave modes in a trap cavity, greatly accelerating progress towards this goal.

Measurements of the anomalous magnetic moment of the electron a provide the
most stringent test of quantum electrodyné.mics (QED) [52]). This theory predicts
corrections to the simplest Dirac theory due to the interaction of an electron with
the fluctuating radiation modes of the electromagnetic vacuum. It relates ¢ to an
asymptotic series in powers of the fine structure constant a,

a=ai(2)+6 (3)2 +Cs (3)3 +Ci (3)4 I (L1)

1r % 3 x

Over four decades, measurements of a [14,88,89} and a were greatly improved,
as were QED calculations [52,53] of the expansion coefficients C;. The highest
accuracy measurements [88,89] of a employ a single electron in a Penning trap [10)
to obtain an accuracy Aa/a < 4 x 10~°. This unrivaled comparison of & measured
and calculated property of an elementary particle, reveals an agreement Aafa <
4 x 10~® which would have astounded those who were struggling to formulate
renormalized QED.



A few years ago, experimental progress in measuring the anomalous magnetic
moment @ was seriously interrupted. The electromagnetic vacuum in which the
electron was located was discovered to be significantly modified by the metal elec-
trodes of the Penning trap {32]. Electron cyclotron motion around a vertical
magnetic field B = 6 Tesla is at frequency

eB
we = —— = 27 (164 GHz). (1.2)
Cyclotron motion in free space would would damp via synchrotron radiation at a
rate
4e?w? - _
Te=3—= (0.1 sec)™. (1.3)

Instead, the decay of cyclotron energy [32] for a single electron in the trap was
shown to be decidedly less by a factor of 3, the first observation of inhibited
spontaneous emission within a microwave cavity {22]. Corresponding cavity shifts
of measured frequencies, calculated [8,9,12] but not yet observed, were estimated
to be the largest experimental uncertainty [88,89] based upon the calculations.
To complicate this serious problem, so little was known about the radiation field
within trap cavities that the uncertainty estimate is itself rather suspect. Also,
the traditional hyperbolic elecirode geometries do not allow easy calculation [12]
or even a ready classification of the standing-wave fields in cavity radiation modes.
Even if mode eigenfrequencies were known, the field configuration and hence the
coupling of a centered electron to any particular cavity mode (if any) would not
be known.

Although the importance of cavity shifts for measurements of the electron mag-
netic moment was demonstrated only recently, the basic notion that the couplings
of two oscillators can shift both the damping rate and oscillation frequency of the
oscillations (Fig. 1.1) is certainly very familiar. (The electron cyclotron motion
and an electromagnetic cavity mode are the coupled oscillators here.) Long ago,
for example, it was memtibned that the spontaneous emission of an atom placed
in a cavity could be inhibited [70]. Further discussions of cavity-induced modifica-
tions to atom damping rates came later [55], with clear realization of the problems

Fal



Damping Rate
/7,

Freq. Shift

6§ = 2(w -0,)/T,

Detuning

Figure 1.1: Characteristic dependence of an oscillator’s damping rate v in (a)
and frequency shift Aw in (b), as a function of its detuning § from the resonant
frequency of a coupled cavity mode (or LCr circuit).

that the frequency shifts would present for precise measurements of resonance fre-
quencies [54]. In fact, soon after the observation of inhibited spontaneous emission
in a trap cavity, similar effects were observed with Rydberg atoms traveling be-
tween parallel conducting plates {48] and in another Penning trap [88,89]. Related
studies with Rydberg atoms continue [44,46]. Some additional evidence for the
presence of cavity modes in a hyperbolic trap has also been observed [87] but re-
mains difficult to interpret since signal-to-noise was poor, no Lorentzian lineshapes



were established and no information about the standing wave field configurations
(and hence the coupling to a trapped electron) could be deduced.

The new experiments made possible by the synchronized motions of parametrically-
pumped electron oscillators in a high quality cylindrical trap and described here
show how to change the cavity-modified vacuum from a serious interruption into an
advantage. The well-characterized, standing wave fields of the cylindrical trap cav-
ity revives interest in cavity-shifts of an electron’s spin precession frequency. Theo-
retical studies first suggested that the cavity modified vacuum could be responsible
for shifts large enough to be observable {26]. Brown and Boulware [4] contradicted
the initial claim. Many other theoretical papers were written [27,5,76,56,80,57,2].
The latest work seems to support the contradiction of the initial claims, even
though opposing conclusions have never been resoived as completely as might be
desired. The theoretical studies share the common difficulty of making a calcula-
ble model (eg. ‘a spin near a conducting plate or plates) which is also a reasonable
approximation to an electron in a trap cavity. It remains to theoretically study the
resonant interaction of a spin with one of the high Q modes of the cylindrical trap
cavity which couple most strongly to a spin. If it is experimentally demonstrated
that cavity shifts of the cyclotron frequency are well understood, cavity shifts of
the spin frequency could then be investigated experimentally as well.



Chapter 2

Electron Oscillators in a
Cylindrical Cavity

This study of the collective behavior of parametrically pumped electron oscilla-
tors is made possible by a cylindrical Penning trap (Fig. 2.1) which is constructed
to be the best possible approximation to an ideal microwave cavity. As we shall
see, trapped electrons can be used to clearly observe the radiation modes of the
cylindrical trap cavity. The observed resonance frequencies correspond extremely
well to the familiar eigenfrequencies vp,q, of an ideal cylinder (Fig. 2.2). We can
thus classify and identify the electromagnetic standing vt;a.ve fields in a familiar
way as either transverse magnetic or transverse electric modes. With some ef-
fort, sections of the cavity walls are made to be the electrodes of a Penning trap.
Trapped electrons are thereby localized within well-characterized standing wave
fields and the interaction of the electrons with the surrounding radiation field is
under precise control.

The familiar eigenfrequencies for a cylindrical microwave cavity of height 22,
and radius py (Fig. 2.2) are given by {49]

O Vnp = c\} (%)2 + (%)2 (2.1)

where ¢ is the speed of light. For transverse magnetic modes T Myyp, the Xmn
is the nth zero of the mth order Bessel function J,,(z) and p = 0,1,2,... . For

9



transverse electric modes TE,,,.,, the Xmn is the nth zero of the Bessel function
derivative J; (z) and p = 1,2,.... In both cases, m =0,1,...and n = 1,2,.... The
electromagnetic fields for each of the standing wave modes are simple analytic
functions [49]. Great care was taken to make a cylindrical trap cavity which
closely approximates an ideal cylindrical microwave cavity. This makes it possible
to thoroughly analyze the interaction of particular cavity radiation modes with a
single electron localized in the trap cavity (summarized in Sec. 4.4).
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Figure 2.1: Orthogonalized cylindrical trap cavity (to scale with zy = 0.3838(6) cm
and pp = 0.4559(6) cm at 4 K). A spatially uniform magnetic field (AB/B < 10-8
over zo/10) is along the vertical axis. Choke flanges (1\/4 at 164 GHz) are incor-
porated to minimize losses.

10



Figure 2.2: Ideal cylindrical cavity.

Of particular interest are the standing wave modes which couple to electron
cyclotron motion which is perpendicular to the axis of the cylinder and typically
near to it. Such coupling requires an electric field perpendicular to the cylinder
axis. This is provided by either TE,,, or TM,,, standing wave modes, provided
that the electron is not localized in an axial standing wave minimum. To illustrate,
the transverse electric fields of T Ernp modes near the symmetry axis of the cavity
are simple sine and cosine functions of the z-coordinate (relative to the center
of the cavity). The quantum number p indicates the number of standing wave
maxima (anti-nodes) which fit between the two endcaps. For modes with odd p,
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TE 4, Field near z-axis

Figure 2.3: Representation of the transverse electric field for T'E;,,, modes: (a) in
the midplane for odd p and (b) along the z-axis for even p.

components of the transverse electric field,

E, = E, cos (ﬂ) et (2.2)

220
have a maximum in the midplane as illustrated in Fig. 2.3a. These odd p modes,
with their electric field maxima near the trap center, couple strongly to electron
cyclotron motion at the center of the trap. These modes are thus particularly
suited for driving a centered cyclotron oscillator with an external microwave source.
They provide efficient damping of electron cyclotron motion, as well, but also cause
associated frequency shifts, as we shall see. For the related modes with p even,
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the electric field vanishes in the midplane (Fig. 2.3b)

E, = E,sin (;—Z) et | (2.3)
The even p modes thus do not couple to the eyclotron motion of an electron at
the center of the cavity. However, spatially displacing the electron from node to
antinode provides a way to rapidly couple and uncouple the electron and cavity,
turning the cyclotron damping from on to off. Moreover, the spatial gradients near
the nodes are suited for sideband cooling thermal motions of the electron along
the cavity axis.

Anywhere from 1 to more than 10° electrons can be localized within the
cylindrical microwave cavity when the cavity walls are split to allow them to also
serve as the electrodes of a Penning trap. A strong magnetic field confines the elec-
trons radially, producing cyclotron oscillations. For precision experiments with the
cyclotron motion, the magnetic field is required to be very uniform spatially and
very stable in time [33]. This is provided by a specially designed superconducting
solenoid system (Appendix A). In addition, an electrostatic restoring force along
the z-axis (parallel to the magnetic field) keeps the electrons oscillating near the
midplane of the cavity. Oscillations of the electrons along the magnetic field gen-
erate an observable current in a detection circuit connected to the trap electrodes.

Isolated electrons are confined in an ultra-high vacuum cavity attained by
enclosing the trap in an evacuated envelope which is cryopumped because the
envelope is kept at 4 K via thermal contact with a LHe bath. (A Long storage
time limit, 7 > 3.4 months, of ~ 10° anti-protons in an open-access cylindrical
trap used at CERN indicates that the vacuum in a eryopumped trap cavity can
be better than § x 10~17 Torr. [36]) A field emission point is used to load electrons
into the cavity. Electrons are stripped from the background gas by the ~ 1keV
electron beam from the field emission point entering along the trap axis through
a 25 pm hole. (The field emission current strikes an electrode surface, removing
adsorbed atoms into the cavity.) These secondary electrons are trapped as they
dissipate energy via radiation into the cavity and via Joule heating of a detection
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resistor. A good vacuum is restored after the field emission current is turned off.
One electron has been continuously confined and studied in the cylindrical trap
depicied in Fig. 2.1 for over two months before being ejected deliberately. (A 10-
month confinement of one electron has been demonstrated in a hyperbolic trap.

[31])

2.1 Sweeping the Cyclotron Frequency

In free space, the cyclotron oscillation of an electron decays due to synchrotron
radiation. A microwave cavity formed by the metallic trap electrodes modifies the
electromagnetic vacuum coupled to the electron oscillator, enhancing or suppress-
ing radiation depending on the proximity of standing wave eigenfrequencies to the
cyclotron oscillation frequency. Isolated electrons in a Penning trap cavity are well
suited for radiative studies since the cyclotron frequency

27 v, = % (2.4)

is readily changed using the precisely controlled magnetic field. The coherent
motions of parametrically-pumped electron oscillators studied here provide a new
way to observe these cavity radiation modes by sweeping the magnetic field so
that the electron oscillators are brought into resonance with the cavity modes. A
magnetic field which is varying linearly in time is desirable.

Precise control of the cyclotron frequency is facilitated by the properties of
a superconducting solenoid which provides the magnetic field. The current J(z)

in a superconducting solenoid of inductance L changes at a rate given by

% _ % (2.5)
when a voltage source V is connected in series with the solenoid, accordiﬁg to Fara-
day’s law. A model circuit is shown in Fig. 2.4 with a pure inductor representing
a superconducting solenoid. Shunt resistor R has the combined resistance of a

superconductive switch (present only when the switch is open) and a protection
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Figure 2.4: Model circuit for ramping the magnetic field in a superconducting
solenoid.

resistor. The ideal voltage source must supply a current I(t) given by

v
I=2+J@), (2.6)

where integration of Eq.(2.5) gives

Hﬂ:ﬂm+%L @.7)

Thus, electrons localized at the center of the solenoid experience a magnetic field
varying linearly in time

V

B.(t) = ¢ (J(0) + 7t) (28)

where the coefficient g is calculable from the geometry and winding characteristics

of the solenocid (Appendix A). Experimentally, the net current output I of the

power supply is more readily monitored than the solenoid current J. The field

B,(t) can be determined from the current supplied by the voltage source provided

the “offset” current V/R drawn by resistor R is taken into account. It is convenient

to introduce a time constant 7, defined by

Vv Vv
"}"i = ETD (2'9)
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Figure 2.5: Simplified circuit representation of a Nalorac superconducting solenoid
system, connected to a highly-regulated power supply.

so that the magnetic field is given by
14
B,(t) = ¢ [I0) + £(t-7)], (2.10)

in terms of measurable quantities. Alternatively, the cyclotron frequency is related

to the current by

velt) = i"}-‘ [1(0) + %(t - 1'.,)] | (2.11)

where the conversion factor Av./Al is measured using a precision frequency syn-

thesizer to drive a cyclotron resonance at a known current I(0) with V = 0.

To attain high spatial homogeneity, some commercial superconductive mag-
nets are constructed with circuits of more than one solenoid (Appendix A). Qur
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Paramoter | Valwe | Unt

r 0.37 (7) Q

Ly 1.55 (2) Q

Li+ L, +2M 214 (2) H
Av /AT 4.1854 (2) GHz/A

To 101 (1) s

S -4.1 (1) —

Table 2.1: Measured properties of a traditional Nalorac superconductive magnet
(JOB43). '

| Parameter | Value Unit

L+ L, +2M 207 (2) H
Av,/ AT 4.1388(2) | GHz/A

To 102 (3) 8

S -156(6) —

Table 2.2: Measured properties of a new Nalorac superconductive magnet re-
designed to be self-shielding (JOB51).

studies employed superconductive magnets (constructed by Nalorac Cryogenics
Corp.) consisting of two solenoids to provide the high magnetic field. With ap-
propriate generalization described below, the results for the simple solenoid also
apply to a system with two solenoids. Fig. 2.5 shows a simplified circuit represen-
tation of a Nalorac superconductive magnet. To ramp the current in one solenoid,
a small segment of the superconducting wire (a superconductive switch) can be
turned normal (with a heater) if a matching current is provided by an external
source. A highly-regulated power supply (model E70B by Nalorac) provides the
matching current, monitors the charging voltage V across the system by remote
sensing and maintains this voltage at a desired value. The net current output I of
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Figure 2.6: Measured current I{t) versus time (dots) as the field in a supercon-
ducting solenoid system is ramped, and a linear fit (line).

the power supply is monitored on the return line using a precision resistor (0.001
§2). The monitored current is digitized and stored in a computer to record the
current continuously. As an example, Fig. 2.6 plots the return Line current I ver-
sus time as the solenoid is discharged at a rate of V/L = 1.0mA/s. Measurement
of the offset constant 7, involves observation of a high-Q cavity mode for various
charging rates V and will be discussed in Chapter 4. Measured characteristics for
the superconductive magnets employed in our study are summarized in Table 2.1
and Table 2.2. Other characteristics calculated for these systems are tabulated in
Appendix A.
In more detail, electrons localized near the center of & two-solenoid system
(Fig. 2.5) experience
B.(t) = g1 1 + 922 , (2.12)

which is a sum of contributions from current J; in solenocid L, with coefficient ¢,
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and from current J; in solenoid L, with coefficient g,. Shortly after the heaters are
activated, the currents J; and J; maintain a small difference proportional to the
applied voltage V. When the currents in the two sections are equal (which occurs
when V' = 0), we have

B.(t)=gh =g/ , (2.13)

where ¢ = g1 + g2. Relaxing within ~ 3s after a voltage V is applied across
the system, the currents J; and J, vary at the same constant rate V/L, where
L = Ly + Ly + 2M is the net inductance of the system with twé solenoids (L; and
L) having mutual inductance M. The offset current drawn by resistors r; and r,
(Fig. 2.4b) is characterized by the time constant

r, = 1 (gl(Ll + M) + gLz + M))

g 1 r2

With these generalized definitions, Eq. (2.10) and Eq. (2.11) hold for two-solenoid

systems. The case of a simple solenocid corresponds to Ly = M = g, = 0.

(2.14)

2.2 Cylindrical Penning Trap

One electron experiments, in fact, require that the axial restoring force be
nearly linear, as would be obtained from & high quality electrostatic quadrupole
potential when appropriate voltages are applied to the trap electrodes. This results
in harmonic oscillations of the trapped particle at well defined and precisely mea-
surable frequencies, independent of small amplitude variations. For more trapped
electrons, it is also convenient to use an electrostatic potential which can be pre-
cisely controlled and which is primarily an electrostatic quadrupole. In more detail,
the desired electrostatic quadrupole potential can be written as

22— p?f2

V=h—pp

n1+¢y, (2.15)

where V; is the the potential applied to the electrodes, d is an appropriate trap
dimension (defined presently), and C; is 2 dimensionless constant which can be
calculated from the electrode geometry. The axial dimension z is the distance from
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the center of the trap along the magnetic field direction, p is the corresponding
radial coordinate. A trapped particle of charge ¢ and mass m oscillates harmon-
ically in this potential, along the magnetic field direction, at axial frequency w,
given by
2 Vo
= =11 . .
wi= L0040y (2.16)

Typically the axial oscillation frequency is monitored precisely, with small shifts
in this frequency used to derive information about the cyclotron and spin motions
- of the isolated electron.

Traditionally, such a potential was produced using Penning traps with
metal electrodes painstakingly shaped along the hyperbolic contours which are
the equipotentials of the desired electrostatic quadrupole. The microwave proper-
ties of a hyperbolic cavity, however, are not well understood. Our goal is to use the
cylindrical trap cavity for controlling the radiation field. Hence, to approximate an
ideal cylindrical cavity, the trap cavity in Fig. 2.1 was precisely constructed with
small slits (0.013 cm) that incorporate choke flanges (A/4 at 164 GHz). Although
this cylindrical geometry is a much better way to understand and control the radi-
ation field configurations in the trap cavity, it is a much less straightforward way
to produce the high quality electrostatic quadrupole potential.

The trap cavity has its symmetry axis coincident with the vertical axis 2 parallel
to a 6-T magnetic field from a superconducting solenoid. Small slits perpendicular
to the magnetic field divide the oxygen-free high-conductivity copper cavity walls
into two end-cap electrodes (at z, above and below the trap center), a ring elec-
trode (with radius p,), and two compensation ring electrodes (with height Az.).
A judicious choice of the ratio po/zp yields a crucial orthogonaliza.tioh property
[30]. Leading deviations which are unavoidably added to the desired electrostatic
quadrupole potential in Eq. (2.15)

1,1 3
AV = CVog (z4—3z2p2+§p4)

1 1 8 15 4.2 15 2 4 5 6)
4= Vo— —_—— + — —_—_ 217
206 od“ (z 2zp BZP 16P ( )
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can be tuned (by adjusting potentials on the compensation electrodes [82]), with
negligible change in the strength of the desired electrostatic quadrupole. More
specifically, Cy can be tuned over the range

107° < |Cy] < 107, (2.18)
while Cs remains relatively constant at the large value [30]
Com =101, (2.19)

Potentials on the trap electrodes are tuned to make the oscillation more harmonic,
thus improving the observed signal-to-noise to the point that a resonant signal from
just one trapped electron can be easily observed.

2.3 Observing A One Electron Oscillator

Once the potential is tuned, the motions of an isolated electron in a cylindrical
trap are the same as in a hyperbolic trap. In the absence of damping, the ex-
act equations of motions for one electron in a pure electrostatic quadrupole and

uniform magnetic field are given by [10]

F4+wiz = 0, (2.20)
oo 1o
P—We X p— wap = 0, (2.21)

where §{t) = £(t) £+y(2) § and a dot denotes the time derivative. The three famil-
iar motions [10] include a cyclotron orbit around magnetic-field lines (at frequency
w, /2% < 170 GHz), a harmonic axial oscillation along the magnetic field direction
z (at frequency w,/2r = 63 MHz) and a circular magnetron motion (at a much
lower 12 kHz frequency) which is not important for the cavity electrodynamics.
These harmonic motions are illustrated in Fig. 2.7. Cyclotron motion is damped
because of its coupling to the radiation modes of a trap cavity. Axial oscillation
is damped by a detection circuit connected to the electrodes. Fig. 2.8 shows a
forced resonance of the damped axial motion for a single trapped electron, with
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a linewidth which is less than 4 Hz. With this signal-to-noise ratio, a shift in the
axial resonance frequency of 1 Hz out of 64 MHz is easily résolved, a resolution
which is comparable with that obtained in hyperbolic traps [88,84,10]. Such high
accuracy is needed in precision tests of fundamental physics, high-resolution mass
spectroscopy, studies of single elementary particles and radiative studies. Specific
examples which illustrate the sensitivity involved include the measurements of the
anomalous magnetic moments (g —2) of the electron and positron [88,84], the pro-
ton/electron mass ratio [85}, observation of relativistic hysteresis and bistability

Figure 2.7: Motions of one electron confined in a Penning trap formed from a pure
electrostatic quadrupole and a uniform magnetic field. “Guiding center” of fast
cyclotron motion (at w,) oscillates along trap axis (at w.) and slowly drifts around
the trap center (at w,,).
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Figure 2.8: Driven axial resonance of one electron in a cylindrical Penning trap. [77)

of a single electron [31], and inhibition of spontaneous emission [32).

2.3.1 Minimizing Anharmonicity

Potentials +1V; on the flat endplates and —1V, on the center ring produce
the electrostatic restoring force. Nonlinearity in restoring force causes amplitude-
dependent frequency shifts and linewidth broadening in the resulting anharmonic
particle oscillations. A potential V, on the pair of compensation rings (Fig.2.9)
must be adjusted [82] to minimize deviations from the electric quadrupole potential
and thus make the axial restoring force as linear as possible. The height of these
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electrodes

Az.[z, =02 (2.22)

is sufficient to avoid an unacceptable sensitivity to the mechanical tolerances. A
corresponding choice of radius [30]

Po]zo = 1.186 (2.23)

was calculated to minimize the undesired frequency shifts which have been men-
tioned. We find it convenient to specify the size of the trap with a characteristic
dimension d = 0.355 cm where d is defined by

=3 (2 + 30) (2.24)
and z, = 0.3838(6) cm. Gaps between the electrodes (so different potentials can
be applied to different electrodes) were made as small as practicable at 0.013 cm.
The gaps were not expected to have major consequences [34].

For any axially symmetric trap, the electric potential near the trap center may
be written as a series expansion given by
2 =1p2 1 & ry\k

V)=V, (—2—2 - ) 3%, 3 o (%) Pa(cont) (2.25)

=l
tven

where d is the characteristic length for this trap and the sum is over even n
because of symmetry under reflections, z —+ —2z. The first term on the right is the
desired electric quadrupole potential in cylindrical coordinates (p,z). The second
term represents undesired additions in an imperfect trap, expanded in spherical
coordinates (r,f) and Legendre polynomials P;. The expansion coefficients are
linear in the compensation potential V;

Co=C + Dk-gi (2.26)

with C{ and D; exactly calculable (30} ﬁsing standard techniques [50] for perfectly
aligned and cleaned conducting electrodes. The expansion converges rapidly for
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particles near the center of the trap where (r/d) < 10~%, so we only consider lowest
order coefficients C; and C, (Co having no observable consequences for particles
confined in the traps).

The compensation potential V, is tuned to make C; = 0, thereby eliminating
the leading deviation from a quadrupole potential. This occurs when V,/V, =

-C9/D, from Eq. {2.26). In practice, we tune V, while monitoring the coherent

Zc
}
|
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|
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-
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Figure 2.9: Simplified diagram of orthogonalized cylindrical trap. For the trap
used, Az./z, = 0.2, and p,/z, = 1.186, z, = 0.3838(6) cin . The z-axis is aligned
with a spatially uniform magnetic field.
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response of a single trapped electron whose oscillatory axial motion along the
magnetic field axis is being driven. For the trapping potential in this experiment
(Vo = 10.193 V') we must tune V; = 3.574 V to get a symmetric resonance lineshape
as shown in Fig. 2.8 and Fig. 2.10b. Thus, we get an experimental value of
V./V, = =0.350(1) in good agreement with calculated value V,/V, = ~0.34(2), the
uncertainty being due to the estimated mechanical tolerance of 8 x 10~%cm in the
dimensions and due to thermal contractions when the apparatus is submerged in
- liquid helium. The good agreement verifies the calculated value of Dy = —0.066(1).
Detuning V. to either side of this optimal value produces the characteristic skewed
lineshape of an anharmonic oscillator. This is illustrated in Fig. 2.10a and Fig.
2.10c where V., is +20mV and ~20mV from the optimum, respectively. Since the
compensation voltage must be tuned to within 1 mV of the optimal value to avoid
an observable skewing of the resonance hneshape (e.g., Fig. 2.10), we use the
calculated value of D, to conclude that we are able to tune |C,] < 10~% in this
trap.

2.3.2 Orthogonalized Electrodes

The adjustments to minimize deviations from the electrostatic quadrupole are
generally attended by very inconvenient shifts in the resonant frequency of oscil-
lation when the particles are driven along the magnetic field axis. In general, the
axial resonance frequency w, will be shifted when V. is changed since

Vo e
wi=1 [1 +CP 4+ D, (%)] (2.27)

md?
for the oscillation of a particle with charge ¢ and mass m. Ideal electrode propor-
tions would make D)y = 0 so adjustments in the compensation potential leaves w,
unchanged. A compensated Penning trap whose dimensions are selected to ma.i:e
D, = 0 is said to be “orthogonalized.” Differentiating Eq. (2.27) and neglecting
the small C{” ~ 0.1 we get

D, =~ (éﬂvz) / (%—%ﬁ—) . (2.28)

26




Using Eq.(2.28), we measure D; & 2 x 10-° for this cylindrical trap, which is
substantially smaller in magnitude than D, = —5 x 10~ for the first generation
hyperbolic traps used in so many precision experiments [88,31). Fig. 2.10 illus-
trates how little w, shifts when a substantial adjustment of V, to either side of
the optimal tuning point, where the anharmonic distortions are clearly visible.
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Figure 2.10: Driven axial resonance for one electron in the orthogonalized cylin-
drical trap. The middle curve (b) is the symmetric lineshape for a well-tuned trap
(C4 = 0). The characteristic lineshapes for an anharmonic oscillator are obtained
when the potential V. is adjusted so that C4; > 0 in (a) and C, < 0 in (c). [77)
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Comparable changes in the original hyperbolic traps would be accompanied by a -
frequency shift of about 500 linewidths.

A measure of the quality of an orthogonalized trap is how little the axial
frequency w, changes for a given change in C,. To quantify this a quality factor

+p = D2/ Da (2.29)

has been defined [28,30] with 4p = O representing a perfectly orthogonalized trap.
Using the measured value of D, and the calculated value of D; we obtained 4D =
3x 107 which is a substantial improvement over vp = 0.56 for the first generation
hyperbolic traps.

2.3.3 Displacing the Axial Position

The potential within the trap when 1V, and —1V, are applied to the upper
and lower endcaps, with all the other electrodes grounded, is important for damp-
ing, driving and shifting the center of oscillation for the axial motion of trapped
particles [29]. Near the center

k
V() = -VA S (;) P4 (cosf) (2.30)

nxl
odd

with ¢; = 0.784 and ¢3 = 0.320 calculated [30]. The product ¢;c3 can be easily
measured [10] from the resulting frequency shift given by

B _z(d)‘ﬁ(vﬂ) , Ay

We obtained cic3 = 0.26(1) which agrees with the calculated value. (These val-
ues for the cylindrical trap depicted in Fig. 2.1 provide neither advantages nor
disadvantages relative to the hyperbolic traps.)

In chapter 4, rapid electronic control of electron-cavity interaction is demon-
strated by shifting the axial positions of trapped electrons in a standing wave of
the cavity. With the potential of Eq. (2.30), electrons near the trap center are
shifted along the z-axis by

z,=% 2! (ﬁ)d. (2.32)



For the trap of Fig. 2.1 (C; = 0.128 and d = 3550pm), a trapping potential of
Ve = 10.2 Volis yields

= (121"—“:'1) Va. (2.33)

Thus, appljring Va = 4.55 Volts should shift electrons from anti-node to node {or
wce-versa) of a standing wave with 550 ,um quarter-wavelength a.long the z-axis
(such as TEm-;) ‘
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Figure 2.11: Detection of 7 electron oscillators loaded into a cylindrical Penning
trap cavity sequentially.

2.4 Counting Electron Oscillators

Electrons confined in the trap cavity can be counted in non-destructive ways.
This allows collective behavior to be studied in a wide range of electron numbers,
ranging from small dynamical systems with as few as two electrons to “microplas-
mas” with as many as 10° electrons. Fig. 2.11 shows a signal changing in discrete
increments as 7 electrons are loaded in sequence into the cavity. The signal is de-
rived from the induced current through a resistor when the electrons are forced at
a frequency wy fixed at a large detuning below the resonance frequency w,. Forced



axial CM motion of N electrons (each of mass m and charge q) satisfies

d? d 2 _ . aVa .
m|=z + N‘y,a + (W)l z2(8) = & ¥ sin{wyt + ¢) (2.34)

where 7, is the damping for one electron and V; is the drive strength. A commercial
lock-in amplifier is used for phase-sensitive detection of the driven response, with
the in-phase component of the signal given by

(N:/2)"
S1=aVy— 2.35
T N2+ A (235)
and the quadrature component of the signal given by -
(N7:./2) Aw
So = aV, 2.36
T a2 ¥ B (230

where Aw = w; — w,. For large detuning (JAw| >> N47,), the quadrature com-
ponent is proportional to the number of particles and thus generates the step
structure shown in Fig. 2.11 as a low field emission current slowly loads electrons
into the cavity. The number of particles in a large system is more readily deter-
mined from the linewidth of the forced resonance. Fig. 2.12 shows the in-phase
(a) and quadrature (b) signals as the drive frequency is swept through resonance.
Comparison of the linewidth from either component with that of a single electron
(Fig. 2.8) indicates that N = 10°. For systems so large that the CM motion
couples strongly to the detection circuit, the number of particles can be deter-
mined from the Fourier spectrum of the noise-driven coupled system, as discussed
in Appendix B.

2.5 Detection and Damping of Axial Motion

An electron near the center of the cavity executes simple harmonic motion along
the magnetic field. Axial oscillation.plays an important role in many experiments
because a shift in its resonanoe.frequency can be used to observe the states of the
other motions. To detect the axial motion, an inductor is connected to one endcap
and AC grounded with the remaining electrodes. The voltage across the inductor
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is monitored. The resonance frequency of the resulting tank circuit (formed by
trap electrodes and the coil) is typically tuned to the oscillation frequency of the
axial motion. Under this condition, the capacitive reactance of the electrodes is
cancelled by the inductive reactance of the coil and the tuned circuit is effectively
a resistor R. The current induced through the resistor R by axial motion produces

In-phase Signal

Quadrature Signal
0

63.66 63.68
Axial Freq. (MHz)

Figure 2.12: Driven resonance for an electron cloud observed using phase-sensitve
detection, with in-phase component in (a) and quadrature component in (b).



a voltage given by [73,29]
V(t) = — [%] H)R. (2.37)

The induced RF current (V/R « z) dissipates energy in the resistor and thus
damps the axial motion as indicated earlier in Eq. (2.34). A resonant force is
applied using RF fields to. excite the damped oscillator. The observed voltage
across the resistor is monitored with a dual-gate, GaAs MOSFET pre-amplifier |
which is submerged in LHe to minimize thermal noise. After further amplification,
various electronics are used to extract amplitude and phase information about the

electron motions from the processed signal.

2.5.1 Interaction with a Tuned Circuit

Interaction of the electron axial oscillator with an LCr circuit allows the axial
oscillation to be observed and the damping rate to be precisely controlled. Axial
oscillation z(¢) induces a current in an LCr circuit formed by a helical resonator
(with inductance L) connected across an endcap and ring electrodes of the trap
(with effective capacitance C). The oscillating current Q(¢) in the tuned circuit,
in turn, produces an RF electric field which acts back on the electron. This
electromechanical system is represented in Fig. 2.13 and the coupling between the
two oscillators is described by the interaction potential

Vint = 2 2(t) Q(2). (2.38)

The dimensionless coupling constant « has value « = 1 for a capacitor with infinite
parallel plates (separated by 2z,). (For our actual trap electrodes x = ¢; = 0.784
has been calculated [30).) The equations of motion are

&

L| g + T + G @ + [

o ]z(t) =0 (2.39)

m [F + (w,)zl «(t) + [—2-2—5] Q) = Ft)  (2.40)
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Figure 2.13: Electromechanical representation of a harmonically-bound electron
coupled to a tuned circuit.

The resonance frequencies of the tuned circuit and electron oscillator are wys and
w;, respectively, when the interaction is turned off. The right hand side of Eq.(2.39)
is set to zero since we are neglecting the Johnson noise (Appendix ‘B) due to the
resistor. This coupled system also serves as a simple model for electron-cavity
interaction (Chapter 4).

The tuned circuit, as indicated by Eq. (2.39), is a damped, harmonic oscillator
which is driven by the electron oscillation. The oscillating current }(t) in the
helical resonator damps out at a rate I'ys = r/L. Observed signal is derived from

the voltage across the inductor
Vi =LOQ) . (2.41)
When w, = wy, this voltage is given by Eq. (2.37) in terms of the the effective
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paralle] resistance

L
R= . (2.42)

We will often find it convenient to use this simplification.



2.5.2 Signal Amplification

The signal generated by driven electrons is generally very weak. For example,

the response from a single electron dissipates only 10-2° Watt of power in the

tuned circuit. To provide enough power to drive the low input impedance of the

i, IVl 55
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LHe bath

g— -— cooled by
1

Figure 2.14: A dualgate MOSFET pre-amplifier monitors induced voltage across

tuned circuit.
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amplifier chain, a dué.lgate gallium arsenide MOSFET circuit (Fig. 2.14) serves
as a pre-amplifier for the weak induced voltage across the helical resonator. This
FET pre-amplifier is cooled by thermal contact with a LHe bath to reduce thermal
noise. The size of signal and time scale of interest span many orders of magnitude
in our study of collective behavior, requiring some important modifications (Fig.
2.15) which have been made to optimize an otherwise traditional electrical set-up
{18,93,94,87]. Wideband amplifiers increase the signal from the FET pre-amplifier
by a gain of 34 dB. This signal is mixed down to an intermediate frequency (5
MHz), passed through a crystal filter (6 kHz bandpass centered at 5 MHz) and
amplified further with a gain of 40 dB. The amplified signal at this frequency can
be further processed in various ways using, for example, a storage oscilloscope, a
loék-in amplifier and square-law circuits. A splitter sends the signal simultaneously

to these devices.

2.5.3 Phase-sensitive Detection

A lock-in amplifier converts the IF signal (5 MHz) into a DC output whichis a
function of the relative phase between the local oscillator and the forced response
[10]

'V (T./2)? cos ¢ + (T, /2) bwy sin ¢
! (6wa)? + (T./2)?

The relative phase ¢ is varied with the phase-shifter in the lock-in amplifier. This
phase-sensitive signal Sp (output A in Fig. 2.15) also depends on the damping
rate I'; = N+,, on the drive strength V; and on the detuning éw, between the drive
frequency and the electron oscillator frequency. Fig.. 2.12a shows the absorptive
signal (¢ = 0), and Fig. 2.12b shows the dispersive signal (¢ = 90°) for N =
10® electrons, obtained by sweeping the drive frequency. The full width at half
maximum of the Lorentzian lineshape gives the axial damping rate I',, which is
used to determine the number of electrons, as already shown.

Sp= (2.43)

As we have mentioned, the resonant response to parametric excitation can

have one of two steady-state phases which differ by 180° . Since Sp — —Sp when
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$ — ¢ * 7, a transition between the phase-bistable states of a parametrically-
driven electron can be detected. However, the shortest integration time constant
available in our commercial lock-in amplifiers is 10 ms. Hence, to observe the
fastest transitions which occur in parametrically-pumped electrons, we bypass this

lock-in amplifier, mix the signal with a local oscillator to produce “baseband”

wer| Lockdn |—toe 3 Output Al
Q Amplifier > Output A2

S Mz Sml

\
Output C

cooled by LHe bath

Figure 2.15: Schematic diagram of electrical set-up for processing observed signal.
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output and use a storage scope {output B in Fig. 2.15).

2.5.4 Center-of-mass Energy Detection

In some experiments, the amplitude or energy in the axial CM motion is of
interest. To measure energy in the CM motion, the response signal is squared and
a low-pass filter removes the AC component to obtain a baseband signal which is
proportional to the squared amplitude (or energy) of the CM motion (output C
in Fig. 2.15). We use a multiplier chip (Analog Devices AD532K) designed for

precision instruments to implement

(2.44)

where V;,, and V,,; are given in Volts. The accuracy is better than 10% for output
in the range of 9 mV to 14V and is better than 5% for output in the range of 25 mV
to 10 V. Traditionally, passive diode square-law circuits have been used for this
purpose but with narrower operating voltage range (typically 10 times narrower).
Unlike the typically weak stochastic signal which these passive diode circuits have
been constructed to observe, the coherent response of parametrically-pumped elec-
trons can vary by many orders of magnitude. The better performance of the IC
squarer is very useful in establishing the lineshapes of cavity mode resonances
which are clearly observed using the coherent motions of parametrically-pumped
electron oscillators. )

2.6 Forced Excitation

To excite the axial motion which is damped by 1';he tuned circuit, a sinusoidal
force F(t) = F, sin(wt + ¢) can be applied using precision frequency synthesizers.
If the rate of energy exchange between the two coupled oscillators is much slower
than the rate of resistive dissipation in the tuned circuit (weak-coupling regime),
then the differential equation for the axial motion, Eq.(2.40), can be simplified
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into one describing a forced, damped, harmonic oscillator

d
+ T

& + (@] 2(t) = F, sinfwt+9) , (2.45)

di?

with a damping rate v,. The resonance frequency w. of the oscillator is shifted
(w; — @, ) due to interaction with the tuned circuit. The shift Aw = &, ~w, does
not exceed one fourth of the maximum linewidth, but must be taken into account
to be within range of parametric resonance. Helical resonators using silver-coated
or superconducting wire have high quality factor at LHe temperature (Q > 600),
allowing a further simplification of the damping and frequency shift due to the

tuned circuit

Y = e iig (2.46)
- 1 é
W, —w,; = 5 Yzo m . (2.47)

These forms are illustrated in Fig. 1.1. The detuning 4 is defined by 6§ = 2w, —
wpy)/Tar. The maximum damping rate, given by [18,93]

Tao [220] = (2.48)

with effective paralle] resistance R = L/rC, is obtained when electron and helical
resonator are tuned to the same frequency (§ = 0). Damping can be reduced by
adjusting the detuning §. Control of resistive damping is important for studying
parametrically-pumped electron oscillators. Interestingly enough, the electrome-
chanical system of Fig. 2.13 also provides a model for understanding electron-
cavity coupling. The frequency shift, which is maximum at § = +1, has serious
implications for some precision experiments (Sec. 4:4).

The description given above for one electron also applies to a system of N
electrons provided z(t) — Z(t) to represent the axial center-of-mass (CM) coor-
dinate; m — Nm, the total mass; and ¢ — Ny, the total charge of the cloud.
The damping rate for the axial CM motion is proportional to N

T, =Nn, (2.49)
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Figure 2.16: Lorentzian form fits well to measured damping width of driven res-

onance versus oscillation frequency v, near the resonance frequency v of tuned
circuit.

where -, is (30 ms)~? at maximum for one electror‘L. The damping width can be
measured from the FWHM width of the Lorentzian lineshape (Fig. 2.12) of the in-
phase ﬁgna.l from a phase-sensitive detector, as already mentioned. Fig. 2.16 plots
the measured resonance linewidth as a function of detuning from the tuned circuit
for N = 800 electrons. Variation of observed linewidths with detuning é fits well to
a Lorentzian lineshape, as expected from Eq. (2.46). Quality factor of the helical
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resonator measured from Fig. 2.16 is in good agreement with that obtained from
Johnson-noise-driven resonance of the tuned circuit (Appendix B). As already
shown, Eq. (2.49) allows N to be determined by comparison with the driven
resonance linewidth for one electron .. For large number of electrons (N > 103),
the axial frequency must be sufficiently detuned from the LCr frequency in order
for Eq. (2.49) and for weak-coupling approximations to be valid. #When coupling
between the tuned circuit and a very large number of electrons is too strong, the
noise-driven Fourier spectrum of the resonantly coupled system can be used to
measure N (discussed in Appendix B).

Forced excitation, Eq. (2.45), can be accomplished by applying a single RF
electric field near to resonance with the electron axial frequency. This method is
not used in practice because a direct, resonant drive will saturate the high-gain
chain of amplifiers used to observe the small signal of driven electrons (V ~ 20nV
for one electron). To avoid stray coupling (such as capacitive coupling) between
the drive and detection electrodes with a resonant RF field, two RF fields of lower
frequencies are used to drive the elecirons. We briefly summarize the essential
features since the mechanism has been treated in detail elsewhere [10]. The spring
constant of the axial oscillator is modulated at a fixed frequency w; which is much
lower than the resonant frequency @, (shifted by tuned circﬁit). Another frequency
synthesizer drives the electron at a frequency wy which can be varied, so that

F, sin{fwat +¢)=m -%2—2— + I‘,% + (@:)* (1 + € cos(wrt))] 2(t) , (2.50)

where € < 1 is the ratio of the modulation amplitude to the static trapping

potential. An observable response is obtained by sweeping the drive frequency wy
so that )

wi = (@, —w) + Swy (2.51)

where w, is a drive detuning from resonance. The effective force produced in this
manner is the same as the direct drive in Eq.(2.45), with the exception that the
effective force is smaller in amplitude by a factor 5/2. The “modulation index” 8
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is given by [10] i
€@,
B = 5;1'- . (2.52)

2.7 Parametric Excitation

Throughout this study, the cooperative phenomena of interest are observed
when trapped electrons are pumped parametrically at a frequency wqs & 2w, which
is approximately twice the axial oscillation frequency. To accomplish this, the
otherwise static potential in Eq. (2.15) is modulated using a precision frequency
synthesizer. The resulting axial restoring force has a spring “constant” with a

small periodic component, i.e.,

mw? — mw? [1 + kcos(wst))] . (2.53)

Figure 2.17: Simplified diagram showing detection electronics used in observing
parametrically-pumped electron oscillators (modeled as massive, charged balls at-
tached to springs).
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Both the strength of the parametric drive, h, and its frequency wy are varied as
pa.ff of these studies. A simplified model which gives the impbrtant features of
the system under study is presented in Fig. 2.17. A trapped electron is modeled
as a ball of charge q and mass m suspended from an axial spring whose spring
constant has just been discussed. The trap electrodes are involved in the detection
of the axial motion of the center of mass of the trapped electrons in a way that
can be represeﬁted by the parallel plates in the figure. We observe the current
~ induced through the resistor R connected across the parallel plates. (For simplic-
ity, the axial oscillation frequency is tuned to the resonant frequency of the LCr
circuitf so that it can be effectively replaced by a resistor R.) Power dissipated
in the resistor is responsible for the axial damping which has been mentioned.
The voltage across resistor R (proportional to the velocity of the CM motion) is
amplified and electronically processed to give the CM energy (output 1 in Fig.
2.17) and the phase of the CM motion (output 2 in Fig. 2.17) relative to the para-
metric pump. Because the pump is at twice the response frequency, any coherent
(steady-state) response of the electron cloud (not previously observed) must have
either of bistable phases that differ by 180°. Transitions between these phase-
bistable siates can be observed via output 2 in Fig. 2.17. This simplified picture
omits several features that are important. First, the perpendicular motions of the
electrons are important, with the fast cyclotron motions of the electrons about
the strong magnetic field radiating into the surrounding microwave cavity to cool
the system. Inter-particle Coulomb repulsion couples the oscillators and is crucial
for collective motions. Further, energy exchange occurs between the axial and
perpendicular motions. _

Instead of applying an RF potential (a.t wq = 20,) between the ring electrode
and both endcaps to produce the desired modulation

Vo — V(t) = V,[1 + k cos(wqt)], (2.54)

it is experimentally convenient to apply the RF drive between one endcap and
the ring electrode. The resulting RF field at the trap center has a symmetric and
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anti-symmetric component. Only the symmetric field contributes significantly to
parametric excitation, with effective modulation strength which is smaller by 6
dB. The anti-symmetric component, in principle [59], can produce parameiric
resonance if the tra.pbing potential has a cubic anharmonicity of the form

AV = %.:3 (f;)an (2.55)
where V4 < 107V, is a very small imbalance in the applied trapping potential.
The relative modulation strength of the anti-symmetric component compared to
the symmetric component is given by

honti 1 13 d\* (VA)

== —] [=]}. 2.56
= ey () (7 (2:56)
The coefficients ¢,¢3, and C; have been measured (mentioned earlier). In practice,
this ratio is negligibly smali (~ 10~*) and hence only the symmetric modulation

of the trapping potential contributes to parametric resonance.

2.8 Summary

Electrons isolated in a cylindrical cavity provide a new system for radiative
experiments with standing wave modes having well-known field configurations.
Anywhere from one to over 10° electron oscillators can be confined in a cylindri-
cal Penning trap which is constructed to be the best approximation to an ideal
microwave cavity. The electrons can be displaced along trap axis to probe the
standing wave patterns. The cyclotron frequency is readily varied to selectively
couple with a cavity mode of interest. A cylindrical Penning trap thus allows
precise control of electron-cavity interaction (Chapter 4). On the other hand, it
requires a large correction potential ¥, to minimize deviations from a pure elec-
tric quadrupole (which insures harmonic axial oscillation at well-defined frequency
needed for precise experiments with one electron). Traditionally, necessary correc-
tions are reduced by employing trap electrodes shaped along hyperbolic contours,
but residual anharmonicity is unavoidable due to imperfections and misalignments
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as well as holes and slits. Analysié [28,29] of the electrostatic properties of hyper-
bolic traps suggested that the need for hyperbolic electrodes may not be as strong
as had been assumed. Fortunately, the electrostatic properties for cylindrical traps
can be calculated analytically, greatly facilitating the design of an “orthogonalized”
set of cylindrical electrodes [30] which allows large adjustments to be made to re-
store a high quality electric quadrupole. Cylindrical electrodes can be machined to
higher accuracy in less time. We have now demonstrated that the simpler, cylin-
drical traps can be utilized even for the precise measurements with one electron
(already mentioned), with the added advantages of a well-characterized microwave
cavity. {77] A single electron has been observed with a signal-to-noise ratio which
compares favorably with that obtained in hyperbolic traps [88,84,10]. Parametric
excitation of isolated electron oscillators in such a well characterized environment

is ideal for studying collective behaviors, cavity electrodynamics, and fluctuation

phenomena.



Chapter 3

Parametric Resonance

Emergence of long-term temporal order in a system of parametrically-pumped
electron oscillators may be regarded as a dissipative structure [65] (whose coherent
behaviors can only be maintained with sufficient flow of energy). Familiar dissipa-
tive structures include the Rayleigh-Benard instability in convection cells and the
laser instability [17]. For example, it is well-known that the laser behaves like an
ordinary lamp if the pump is weak, and hence the output is low and incoherent.
But when the pump power exceeds a threshold, the power and coherence time of
the laser output increase by many orders of magnitude.

Parametric excitation, except in an experiment with one electron [92), has
been used to increase the disordered internal motions of stared ions or electrons
[18,93]. In the new regime which is studied here, parametrically-pumped electron
oscillators respond stochastically at a low level until the electrons are cooled via
radiation into the microwave cavity whereupon strong coherent oscillations are
observed. Cooling by the LCr circuit does not suffice. However, electron-electron
collisions transfer some internal energy to the cyclotron motions of the electrons.
This energy is removed by coupling the cyclotron oscillators to a resonant mode
of the cold, cylindrical cavity (Chapter 4). Throughout this chapter, radiative
cooling of the electron oscillators has been maximized by tuning the cyclotron
frequency into resonance with the eigenfrequency of a cavity mode, such as TEys.
Later chapfers will discuss what happens when the electrons are not resonantly
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cooled by the microwave cavity.

3.1 Transition to Coherent Oscillations

B3
= b _
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Figure 3.1: Observation of abrupt transition from weak, disordered motions to
large, coherent CM oscillation at a pump strength threshold (a). Measured thresh-
old varies linearly with damping rate (b) and with the number of electrons (c).
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Figure 3.2: Parametric resonance with characteristic exponential growth of har-
monic oscillation (dashed line). Periodic variation results as anharmonicity arrests
growth (dotted line) but damping causes relaxation to steady state (solid line).

Cooled electrons switch abruptly from independent, stochastic motions to a
highly synchronized motion with a greatly increased center-of-mass (CM) ampli-
tude (Fig. 3.1a) as the strength of the parametric pump at wy = 2w, i# increased
by less than 0.5 dB across the threshold A = hy. The amplitude of the CM motion
increases by orders of magnitude and this motion is phase coherent with the sub-
harmonic of the drive at wy/2 (coherence time > 1000s for N > 2000 electrons).
Fig. 3.1b shows that Ay « N+, by detuning w, from resonance with the LCR
circuit to change -, (as illustrated earlier in Fig. 2.16) and by varying the electron
number between N = 60 and N = 18,000 (Fig. 3.1c). Logarithmic scales are used
- in Fig. 3.1c to show the linear dependence over many ofders of magnitude.
These observations suggest that the parametric drive is exciting an insta-
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bility in the collective motion of the N electron oscillators. The full equations of
motions are described in Sec. 3.4. To examine some features of the motions, we
use a dimensionless CM coordinate Z = ¥ z;/(Nd) where z;/d is the axial position
of the ith electron scaled by a suitable trap dimension. In the limit of vanishing
internal energy, the collective motions approach those of a rigid model. A rigid
axial motion of N electrons near the trap center has the same differential equation
as that for a single particle on axis except with N times larger damping,

Z+(Nv)Z + @[ 1+ heos(wat) |2

_2C, w7 3Cs
+ 1+C, * Z+1+C

wiZ® = (3.1)
where % is the pump strength and w, is the pump frequency. The nonlinear (an-
harmonic) terms, with strengths C, and C, arise from unavoidable or deliberate
distortions of the pure electrostatic quadrupole potential [10]. Hence, confined
in a pure electrostatic quadrupole, undamped rigid motion would satisfy Math-
leu’s equation (which is regained from Eq. (3.1) by setting v, = C; = Cs = 0).
Mathieu’s equation should be a good approximation for small oscillations near the
center of actual traps where the restoring force is essentially linear.

It is well-known that the bound solution Z = 0 to Mathieu’s equation is
unstable in some regiouns of the space (h.wy) formed from the pump strength and
frequency [1,63]. For small pump strength, 2 << 1, the regions of instability are
located near |

%o,

n .

Wi =

(3.2)

We focus only on the n = 1 region since higher order instability regions are very
narrow and much harder to excite [59). For pump frequency sufficiently close
to 2w,, any small oscillation grows exponentially without bound (dashed line in
Fig. 3.2). In actual Penning traps, however, the residual anharmonicities shift
the resonant frequency as the amplitude increases, arresting the rapid growth and
causing periodic variation in the amplitude (dotted line in Fig.3.2). With damping
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taken into account, the n = 1 region of the Mathieu instability is given by

1 - 1
—Ew,\/hz — h% < wq— 2, < -éwz\/hz - h%, (3.3)

which has a hyperbolic boundary (Fig. 3.3). This region is smaller for increased
damping since the pump must compete with energy dissipation (dashed hyperbola
in Fig. 3.3). Inside the hyperbolic region, any smalil symmetry-breaking fluctua-
tion in the CM location (Z # 0) increases exponentially but with reduced exponent
as the parametric drive overcomes the resistive damping. With the rapid growth
arrested by anharmonicities, the damped oscillator relaxes to a steady-state ampli-
tude (Fig.3.2, solid line). Nontrivial steady-state solutions to Eq. (3.1), therefore,

Z

Pump Freq., w d
2w

Pump Strength, h

Figure 3.3: Region of n = 1 Mathieu instability (shaded) . For h < 1, a hyperbola
divides the neighborhood (k,wy) into regions having different sets of stable steady
states. For negative C, or Cs, region I has 3 stable states; region II, 2 phase
bistable exited states; regions IIl and O, 1 quiescent state.
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are limit cycle oscillations [64,59] and

hr = 2N~, fw, (3.4)

is the drive strength k at which there is an abrupt threshold. The observed thresh-
old in Fig. 3.1 corresponds to this vertex of the hyperbolic boundary of the Mathieu
instability, which shifts outward with increasing N+v,. The measured proportion-
ality constant agrees with Eq. (3.4) within 40% uncertainty.

For an isolated electron (N = 1), Eq. (3.1) is an exact description of the
unavoidable rigid motion which has been observed [92]. The generalization of
Eq. (3.1) which describes the general, nonrigid motion of N electrons has anhar-
monic terms which depend upon the axial and radial coordinates of the individual
electrons (z; and p;}, rather than upon Z alone. For exampie (see Sec. 3.4), 23
becomes T; (2? — 32;p?/2)/N. Rigid motion of many electrons is typically pre-
vented by the large, stochastically changing coordinates (z;, p;) of the individual
electrons.

Below threshold (i.e. 2 < hr), Z = 0 is the only steady-state solution to
Eq.(3.1), and hence is absolutely stable. For the electron cloud, only internal
motions (relative to the CM) can therefore be excited by the parametric driving
force. Such excitations are occurring, perhaps because the resonant frequencies of
internal motions are broadly distributed by the Coulomb repulsion of the electrons,
or perhaps because resonant modes of the electron cloud are excited [23], but the
exact mechanism is still not understood. Energy coupled into the CM motion
by the anharmonic nonlinearities is observed in the form of incoherent transients
since such fluctuations (Chapter 5) are damped by the LCR circuit at a rate of
order N+,. The coherence time for the detected CM motion is less than 1 ms. This
regime is well described by a “bolometric model” which treats the electron cloud as
a gas which comes into thermal équilibrium via collisions between electrons [18,93].
However, no synchronized, coherent motion is anticipated or can be accounted for

in this model.
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Region in (h,ws) Space | Stable States

Region O (h < hr) |1 Quiescent 1
RegionI (k> ht) 1 Quiescent +

2 Excited (phase-bistable) 3
Region Il (h > hr) 2 Excited (phase-bistable) 2
Region III (h > hr) 1 Quiescent 1

Table 3.1: Multiplicity of stable steady states near n = 1 threshold of Mathieu
instability. Negative C, or Cs is assumed. For positive Cy or Cg, regions I and III
are interchanged.

3.2 Hysteresis and Lineshapes

In the new regime with k > hr, history-dependent behavior is observed, indi-
cating that the system has more than one stable, collective state above threshold.
A hyperbola, Eq.(3.3), divides the parameter space of the pump into 3 distinct
regions in the neighborhood of the n = 1 instability, according to the multiplicity
of stable states which exist above threshold. For simplicity, we discuss the case
for C4 < 0 and Cs < 0 but not both equal zero (Table 3.1 and Fig. 3.3). Below
threshold (region O), only the quiescent state (Z = 0) is stable. Region I (below
the lower branch of the hyperbola in Fig. 3.3}has two degenerate excited states
which differ only in phase by 180°, in addition to the quiescent state. Region II
(inside the hyperbola in Fig. 3.3) has only the two phase-bistable states because
the quiescent state is a saddle-point. As in region O, the quiescent state is the
only stable state in Region III (above the upper branch of the the hyperbola in
Fig. 3.3). For Cy > 0 or Cs > 0, regions I and III are interchanged.

The “lineshape” of parametric resonance {frequency dependence of the CM
energy) varies with anharmonicity and the order in which the pump frequency is
swept through these three regions above threshold. Expected lineshapes for the
rigid model are shdwn in Fig. 3.4. Increasing the pump frequency in the order
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(I — II — III ), the CM energy jumps to a large value as the initial quiescent
state becomes unstable in region II. On the other hand, if the pump frequency
is decreasing in the order (III — II — I ), the system remains in an excited
state even though the pump frequency is in Region 1. Fluctuations would cause the
excited state to collapse to the quiescent state eventually. Different characteristic
dependencies of the steady-state amplitude upon the pump frequency is obtained
by tuning the trap potentials to make either the C; or the Cg term dominant. For
a very anharmonic trap (when C; term dominates), the CM energy in the excited
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CM Energy

. Z +
Response Freq., v /2
Figure 3.4: Calculated rigid model lineshapes, showing hysteresis of CM energy
versus pump frequency v; . CM energy is a linear function of pump frequency v

for Cy < 0 with Cs = 0 (a), and a parabolic function of v, for C;y = 0 with Cs < 0
(b).



state is a linear function of the the pump frequency (Fig. 3.4a). On the other
hand, for a well-tuned trap (when Cy ~ 0 and C¢ term dominates), the CM energy
for the rigid model is a parabolic function of the pump frequency (Fig. 3.4b).
Hysteresis is indeed observed (Fig. 3.5 ) with resonance “lineshapes” which agrees
qualitatively with the rigid model, even though the size of the signal is limited by
cavity cooling, an interesting and useful feature which is studied in Chapter 4.
Another type of hysteresis but with fixed pump frequency, is observed when the

| | |
C, =-0.024

— (a) -

Signal
i
l

Signal

v

Response Freq., v 2

Figure 3.5: Observed resonance lineshapes with hysteresis. Maximum CM energy
is limited by cavity-cooling but lineshapes (a) for large C, and (b) for negligible
Cy agree qualitatively with rigid model.
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pump strength is swept through Regions I and II (e.g., Fig. 3.3, dashed horizontal
line). In a rigid model without fluctuations, the system remains in the quiescent
state as the pump strength is increased into Region I. It abruptly jumps to an ex-
cited state as the pump strength increases across the boundary between Regions I
and II. If the pump strength is subsequently decreased into Region I, the excited
state remains stable until the pump goes below threshold hy. Fig.(3.6 a) shows
the hysteresis loops observed with synchronized electron oscillators, taken from 4
- consecutive sweep cycles (O — [ — II — 1 —>.0 ) of the pump strength.
Transitions between quiescent and excited states are random due to fluctuations
(Chapter 5). The observed distribution (Fig. 3.6 b) of downward transition points
(excited to quiescent) shows a narrow spread with small deviations from the thresh-
old ht in most cases. On the other hand, the observed distribution (Fig. 3.6 b) of
upward transition points (quiescent to excited) shows a broader spread with larger
deviations from hy, the boundary point between regions I and II. This seems to
suggest that the quiescent state is less stable against fluctuations than the excited
states.

The boundary in (h,ws) space wherein Z = 0 becomes unstable is observed by
obtaining a family of resonances at fixed pump strengths above threshold (Fig.
3.7a).  The electron oscillators start in the quiescent state in region I. As the
pump frequency is increased, the signal jumps abruptly to a large value as Z = 0
becomes unstable upon crossing into region 11, defining a lower corner frequency
v_(h) in Fig. 3.Ta. As the pump frequency is increased further, the large signal
falls abruptly upon crossing into region III, defining an upper corner frequency.
v4(h) in Fig. 3.7a. This is repeated for a sequence of fixed pump strengths (illus-
trated in Fig. 3.7b). The observed range of parametric resonance {v_(h), v, (k)]
increases with pump strength h. In agreement with Eq.(3.3) for a rigid model,
measured corner frequencies (Fig. 3.7c) lie on a hyperbola when plotted versus
pump strength k, with a vertex corresponding to a threshold Ay.



3.3 A Rigid Model

A rigid model neglects many interesting features in order to provide a simple
picture. Many important observations which are presented in subsequent chapters
can not be described in a rigid model. Nevertheless, it is a useful a.pfroxima.tion for
some features of the observed coherent motions. Main features of a rigid model
have been presented above for comparison with the observed coherent behavior

in parametrically-pumped electron osciliators. An exact analysis is difficult but
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Figure 3.6: (a) Observed hysteresis loops of CM energy versus pum_p strength in
4 consecutive cycles [0 — I — II — I — O ]. (b) Histograms of transition
points showing that the quiescent state is less stable against fluctuations.
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fortunately good approximations are available when the system is weakly damped.
This allows the steady state properties to be studied analytically and transient

‘responses to be simulated efficiently. The approximate equations of motion are
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Figure 3.7: Observed frequency range of instability (a) increases with A . In-
creasing wq at fixed k values as illustrated in (b) generates a family of parametric
resonances (a). Measured corner frequencies v,(k) and v_{A) fit well to a hyper-
bola (¢) when plotted versus k.
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presented in this section with a generalized treatment of the trap anharmonicity
and a possible interesting application to one electron (Sec. 3.3.4). The equation

of motion Eq. 3.1 is rewritten as

d? d
0=|— + Ny + (@:)2 (1 + hoos(20))} Z(8) + (w,)?G(2Z) , (3.5)
where h is the strength of the parametric drive and 2§ (= wq) is the drive frequency.
As before, the coordinate Z is made dimensionless by scaling to the trap size
d. To include all orders of deviations (deliberate and unavoidable) from a pure
electrostatic quadrupole, the anharmonicity function G(Z) is written as an infinite
power series
G(2)=042°+062° + 0327 +..., (3.6)
with dimensionless coeficients o, which are related to the expansion coefficients
Cs of the trapping potential by

n_Cn
21+Cy

3.7

In compensated Penning traps, Cy can be made negligibly small using potentials
on a set of compensation electrodes (as already discussed). Hence, the two leading
terms in the series are used in Eq. (3.1). Since the electron oscillators are weakly
damped (Nv; € w,), a method of multiple time scale [64] may be employed to
study Eq.(3.5) in the parameter range of experimental interest. To lowest order
in the small parameter h < 1, we seek solutions at half the frequency of the

parametric pump
Z(t) = A(t) cos[Q_t +¥(t)] + O(h) . (3.8)

In this approximation, the siowly varying amplitude A(t) and phase ¥(t) satisfy
a set of coupled first order differential equations

d 1 h .
EA = —EN‘TZ [1 - Esm@'l’)] A, (3.9)
%w = (&~ Q)+ %&,h cos(2¥) + J({o:}, 4), (3.10)

BQ



derived using a method of multiple time scale [64]. The trap anharmonicity enters
these approximate equations of motion through the function

T({e:}, 4)= 2= / cosqb G(Acosd) . (3.11)
For example, if G(Z) = 0,23 then
J(o4,A) = —0'4 —%Az (3.12)

We shall use this specific case to illustrate some of the calculations. For example,
calculation of growth and relaxation to steady state as shown in Fig. 3.2 is faster
using the approximate equations of motion, with results which agree with a direct

numerical integration of the exact equation to better than 0.3%.

3.3.1 ‘Steady State Amplitudes

The amplitude of oscillation A(t) will decay for A < hr because A~! 4 is nega-
- tive definite, from Eq.(3.9). Hence, below the threshold
hy=NX | | (3.13)

Wy

the only steady state solution (4 = ¥ = 0) is
Z()=0. (3.14)

For a drive strength above Az, there are two additional equilibrium. amplitudes

(As) = 30 {2(9 @e) 3 \/_h’] (3.15)

wy
It can be shown that only one choice of the sign gives stable steady-state solutions.
Assuming o4 < 0 the negative sign gives stable éolutions (Flg 3.4a). For a well-
tuned trap, higher order anharmonicity must be considered. If G(2) = 62" (to
approximate a well-tuned trap) then the non-trivial steady states have amplitude

(As) = [2(9 &) \/7 ] (3.16)

with the same sign selection- rule (Fig. 3.4b).

given by

.60



3.3.2 Phase Bistability

Resonantly-excited solutions are degenerate because the steady-state phase is
determined by the pump only up to +x. This is reflected by the invariance of
Eq.(3.9) and Eq.(3.10) under the transformation

U+ (3.17)

On the other hand, the phase of steady-state solutions ¥ is given by the condition
(4=0)
sin(2¥,} = hr/h. : (3.18)

A sin(¥)

PO T R W

0.0 0.5

A cos(¥)

Figure 3.8: Basins of attraction for the two phase states. Quiescent state at the
- center is a saddle-point.
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This is graphically illustrated in Fig. 3.8 which shows the basins of attraction
of the two phase states. The saddle-point at the origin is the quiescent state.
Phase bistability is manifested by pa.ra.metrically pumped electron oscillators in

interesting ways involving fluctuation phenomena (Chapter 5).

3.3.3 Instability of Z = 0 State

As already shown, the quiescent state Z(t) = 0 is unstable for some range of
system parameters. Without anharmonicity G(Z), the electrons would be ejected
from the trap. In actual traps, residual anharmonicity keeps the electrons confined
but is not important at the onset of iﬁstability which involves only small oscilla-
tions. The importance of the tuned circuit is discussed here in some detail. In the
absence of the tuned circuit, the rapid exponential growth (~ eX*) at the onset of
the instability is characterized by an exponent given by[59]

1 {71 2 2
K= (Ehw,) —4(0 - w;) (3.19)
provided that the pump frequency 2(} is sufficiently near to 2,
- —;—hw < 20— %, < %hw (3.20)

(region between two dotted lines which intersett at A = 0 in Fig. 3.3). However,

when the tuned circuit is used for detection, the resonance frequency
2_ 4% ‘
wy = 1+ Cy) (3.21)

given in terms of the trapping potential, is shifted slightly (w, — @©,) because the
axial CM motion of the electron oscillators is coupled to a tuned (LCr) circuit.
As mentioned earlier, this coupling also damps the CM energy at the rate Nv,. H
the coupling is not too strong, 4. and &, are well approximated by simple analytic
functions of the detuning between the tuned circuit and electron resonance fre-
quencies, as given in Eq. (2.46) and Eq. (2.47), respectively. Frequency shifts are
undesirable in high precision experiments (as discussed in Sec. 4.4). Fortunately,
they present a minor inconvenience to our studies because the shifted frequency
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and damping rate are determined from a forced resonance of the CM motion as
already illustrated in Fig. 2.12. The frequency and strength of the parametric
drive are then set using these measured values. In fact, control of the damping

rate, according to

—  Jeo
73""1+62’

by changing the detuning & has been very useful in demonstrating Mathieu insta-
bility. Damping stabilizes the quiescent state somewhat as amplification of fluctu-

(3.22)

ations competes with energy dissipation in the tuned circuit, reducing growth in
amplitude to elX~N%/2 (slower initial growth is shown in solid line in Fig. 3.2).
The region of parametric resonance (K — N+, /2 > 0) is therefore narrower with a
hyperbolic boundary given by Eq. (3.3). As already mentioned, variation of damp-
ing rate v, using the tuned circuit shows that observed threshold corresponds to
the vertex of a hyperbolic boundary.

3.3.4 Hysteresis

When system parameters are changing gradually, hysteresis can occur in non-
linear systems which have multiple stable states with instability under some con-
ditions. The stability of steady states in various ranges of pump strength and
frequency (labeled in Fig. 3.3 as O, I, II and III) is summarized in Table 3.1 (for
negative o¢). A sharp transition from one steady state to another occurs when
the system parameters are swept slowly into a region wherein the former state
becomes unstable. After the transition, if the system is restored to its original
conditions by sweeping the parameters through the same path in reverse, the sys-
tem may remain in the new state or make a transition to the former state under
very different conditions. For parametrically-pumped electron oscillators, hystere-
sis is observed when sweeping the pump frequency with pump strength fixed above
threshold (Fig. 3.5) or when sweeping the pump strength with pump frequency
fixed below 2w, (Fig. 3.6).

Hysteresis can also occur when the pump frequency and strength are fixed
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but the oscillator resonance frequency is changing. We illustrate with a possible
application for detecting the excitation of a relativistic, mono-electron cyclotron
oscillator [31]. The axial resonance frequency

‘p:, .
wl= =2 (14 Cy) (3.23)

is shifted down by an observable amount [31] when the cyclotron oscillator is
excited with a microwave drive. This is due to relativistic effects which effectively
increase the mass of the electron according to
L

m= f_=1 - (3.24)
where m, is the “rest mass,” and v is the velocity of the cyclotron oscillator. Some
experiments require knowing if the energy in the cyclotron motion has exceeded a
given level within/after a certain period. To detect the corresponding frequency
shift éw,, a parametrically-driven electron is prepared initially in the quiescent
state in region [ (see Fig. 3.4 and Table 3.1) with the pump frequency fixed at
2w_ — 26w,. As the microwave drive increases the energy in the cyclotron oscil-
lation, region II (wherein Z = 0 is unstable) in Fig. 3.4 shifts down toward the
drive frequency. When the driven cyclotron oscillator reaches the desired energjr
level, the quiescent state becomes unstable and the ensuing parametric resonance
genera.tes a signal. The signal would persist even if the cyclotron oscillation is sub-
sequently allowed to decay (shifting region IT up again). Amplifiers can be turned
off to minimize thermal fluctuations during crucial stages of the experiments, and
no resonant response to the parametric drive is incurred until the desired level
of cyclotron excitation is reached. Briefly, one parametrically-pumped electron
oscillator effectively has 1 bit of memory which can be used for detection “in the
dark.”

3.4 Full Equations of Motion

The rigid model is an accura.te'des.cription of one electron oscillating along the
symmetry axis of the trap. We have demonstrated here that it also provides a
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good approximation for many observed features of the coherent CM motions when
parametrically-pumped electron oscillators are radiatively cooled by a cold cavity.
This rigid model is an oversimplification, however, because it neglects internal and
transverse motions entirely, which have important, observable consequences (dis-
cussed in following chapters). Without transverse motions, radiative cooling of the
internal motions would not be possible. Further, even at 4K (undriven) the ther-
mal motions are more energetic than the average inter-particle Coulomb potential
and thus the electrons do not form rigid structures [61]. To understand other
interesting observed phenomena which are decidedly non-rigid, a2 more detailed
treatment is required.

Although a thorough analysis of coupled, parametrically-pumped electron os-
cillators is not yet available, this system is so well-characterized that the full equa-
tions of motions of N electrons coupled to 1 cavity mode can be written down.
The wide range of éxperimenta.l control over system pafameters allows some sim-
plifications to be made. The k** electron has 3 degrees of freedom ri= (s, ys, 22),
which are made dimensionless by scaling to the size of the trap, d. The coupled
oscillations parallel to the symmetry axis of the trap (or to the magnetic field)
satisfy

G+ LIN, &+ win + Ciw? (222 -3p)) 2
x 45
+  Cew? (3zf —1623p} + ?p"l‘) Zp

w?, E (e =) (3.25)

#n lral

Terms with coefficients €, and C; are due to deviations from an electric quadrupole
potential. To be precise,

Ci = ~ C (3.26)

Ci
1+ 0,
since C; & 0.13 for the cylindrical trap used in our study. The series on the right
hand side describes the inter-particle Coulomb repulsion. We assume that the
axial frequency w; is tuned into resonance with the detection (LCr) circuit. Thus,
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the dampin"g term, proportional to the center-of-mass velocity, is due to energy
dissipation in the resistor representing the detection circuit.

For the (transverse) motions in the xy-plane, we have

- . 1 . -
B —weih — swlo — 3Ciw] (- pl/4) o
15 - 3 1
-3 Co w2 (24 - Ezgpi + EP:) Tk
Fe v . (:B
+ "Z wa Apm(re) fz = Z et |3 s 3.27)

i#tk
-where ry = r;—r; and p2 = 2% + yi; and

- X 1 P
Ye + weTp — sz e — 3C Wl (2} —pi/4) ws

15 -~ 3,
-3 Ce w? (2} - Ezkpk + 8'0") Yk

+ \/g Was Ay(rk) f:y = ”s;EZk (yk sk|3 . (3.28)
Coupling terms due to anharmonicity and Coulomb interaction are similar to those
for the axial motions. Analogous to interaction with a tuned circuit, the cyclotron
oscillations are coupled to a standing wave mode of the cavity. For simplicity, we
have assumed the electrons are interacting with an m = 1 cavity mode near the

trap symmetry axis. Then the dimensionless field components ( f, f, ) are governed
by [8,9] :

() +me () o (3)
- Jj: wuz Am(re) ( yk) = 0, (3.29)

where \/r./2, = 8.56x10~7. The couplings A are related to those calculated and
tabulated for regular geometﬁ&s of interest [37). The typical values of frequencies
in these equations are provided in Table 3.2.

The standing wave configurations in a cylindrical cavity are described by
known analytic functions, allowing us to characterize the electron-cavity coupling
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Axial damping width v1:/(27) (max.) 5 Hz
Collision constant Wee [(27) 12 x 10° Hz
Axial frequency w.{(27) 63 x 10° Hz

Cyclotron frequency (swept) | w,/(27) | ~ 100 x 10° Hz

Table 3.2: Typical values of frequency parameters in the equations of motion.

~ by the simple functions Ap(rz). For the modes of greatest interest, near the trap
symmetry axis, the electron-cavity coupling is given by

. d
Arnp(Tr) = Aygp sin (‘I;; Zr + %) . _ (3.30)

The first of two important cases is for an antinode at the midplane, eg. TE;;s,
with

Ans(rs) = Ans 008(51“{ ) . (3.31)

2z, #*
For a small axial oscillation amplitude, the electron-cavity coupling is a simple
constant in this case. The other important case produces cavity mode resonances
of a different type (Chapter 4), namely, the case for a node at the midplane, eg.
TE1sz, with -

]

. d
A132(l‘k) = -—A132 sin (-E——zk) . (332)
For our apparatus, dfz, = 0.923. Since these examples are of experimental
interest, we provide the values of their parameters in Table 3.3.
The system is parametrically excited by modulating the axial spring constant
mw?, so that the above equations are modified by the substitution
w? — w21 + h cos(wat)] . | . (3.33)
The observed signal is obtained from the voltage induced across the effective de-
tection resistor R _
V= _%an '(-‘5) zZ (3.34)

%o
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0.31 0.56
Tuv/(27) || 144 x 10° Hz 3.8 x 108 Hz

wy/(2m) | 99.513x10° Hz | 97.525 x 10° Hz

T TBw | The |
Am n

Table 3.3: Parameters for two modes of experimental interest.

which is proportional to the CM oscillation

. 1 X

Z= N ;é;. (3.35)
A phase-sensitive detector monitors the phase of the cohereﬁt'response with respect
to the pump (Sec. 5.1). For CM energy measurements, this signal is amplified,
squared and filtered, giving an output proportional to {2 3.

3.5 Summary

Resonantly cooled by a cavity mode, parametrically-pumped electron oscil-
lators switch abruptly from disordered motions to long-term, coherent CM os-
cillations as the pump strength exceeds a sharp threshold. Qbserved collective
behavior exhibits Mathieu instability and shares many features characteristic of
the nonlinear dynamics in a rigid model. A hyperbolic region of instability in
the (h,wq) space of the pump is established. Phase degeneracy and hysteresis
due to multiplicity of stable states are also observed. Observed maximum CM
energy is limited by cavity cooling of internal motions. Nevertheless, dependences
of observed parametric resonance lineshapes on anharmonicity are in qualitative
agreement with the rigid model.

So far, radiative cooling has been maximized to reveal the collective behaviors
of parametrically-pumped electron oscillators. Notwithstanding good agreement
with many observed features of the collective motions, the rigid model suffers
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from serious over-simplifications. The electron oscillators do not form a rigid
structure even at 4K (undriven} because they are “weakly correlated” [67], with
the energy in thermal motions being comparable to or exceeding the inter-particle
Coulomb energy. Omission of the internal and transverse motions greatly re-
duces the usefuiness of the model in understanding other interesting, non-rigid
behaviors. Fortunately, a system of collisionally-coupled, parametrically-pumped
electron oscillators is so well-characterized that the full equations of motions can
be written down, although not as easily analyzed. We refer to the observed coher-
ent motions in this system as “synchronized motions,” to distinguish them from
the rigid motions expected of crystal structures. An interesting non-rigid feature,
- {or example, is the extreme sené.itivity of the CM energy in synchronized motion
to radiative cooling by cavity modes, which opens the way to new experiments
involving electron-cavity interaction, as we shall see.
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Chapter 4

Interaction with Cavity Standing
Waves

As mentioned in Chapter 1, the electromagnetic fieids form simple standing
wave patterns within a cylindrical cavity, which are ideal for radiative studies.
Splitting the metallic walls of a cylindrical cavity to form the electrodes of a Pen-
ning trap allows electrons to be confined in 2 region smaller than the characteristic
wavelength of a cavity standing wave. Radiative cooling of localized elecirons in a
resonant cavity mode, in fact, is crucial for demonstrating many of the collective
behaviors in parametrically-pumped electron oscillators, presented in Chapter .3.
The extreme sensitivity of synchronized motions to radiative cooling provides a
new technique for probing the standing wave modes of a Penning trap cavity, in
situ at 4 K without any microwave drive. We now discuss the interesting effects
which are observed, and important applications which are possible, when electrons

interact with well-characterized radiation fields.
4.1 Observing Microwave Cavity Modes Below
166 GHz

Despite great attention to making a cylindrical Penning trap cavity which is
a good approximation to an ideal cylindrical cavity, the small slits, holes and
uncontrolled imperfections unavoidably shift the radiation eigenfrequencies of the
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Figure4.1: (a) Cavity resonance observed by monitoring the axial CM energy while
slowly sweeping the magnetic field to vary w/, with pump frequency at wy = 2w,
and pump strength 2 = 1.3k7. (b) Parametric axial resonances for indicated
cyclotron frequencies.

trap cavity from those of an ideal cylindrical cavity. The hope is that the shifts are
small, so that measured eigenfrequencies can still be used to identify the modes.
Furthermore, small shifts would indicate that the standing wave fields in the trap
cavity are essentially the simple analytic forms discussed above.

A simplified diagram of the system with detection electronics is depicted in
Fig. 2.17. To insure that parametric resonance is sustained during mode detection,
the parametric pump is prepared in the region of {Mathieu’s) instability in (k,wy)

space, in which the quiescent state is unstable. This region is cross-hatched in
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Figure 4.2: Simplified diagram of the expenmenta.l apparatus for cavity mode
detection.
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Fig. 3.3. Fig. 4.1b shows the measured frequency response with the pump strength
held fixed at a value above the threshold. This family of superimposed resonances
is obtained by varying the detuning between the cavity mode frequency and the
electron cyclotron frequency. It clearly shows that the signal grows with increasing
radiative cooling and reaches a maximum when the cyclotron frequency is swept
into resonance with the cavity mode. Cavity modes are thus conveniently detected
by fixing the pump frequency at w; = 2w, and monitoring the axial CM energy,
while the cyclotron frequency is being swept, as illustrated in Fig. 4.1a. A sim-
plified overview of the full apparatus is shown in Fig. 4.2. The trap is sealed in
a high-vacuum envelope, which is cryopumped via thermal contact with a liquid
helium bath. The magnetic field is generated by a superconducting solenoid de-
signed for precise studies with nuclear magnetic resonance. Since the cyclotron
frequency is proportional to the magnetic field, we sweep the current in the super-
conducting solenoid up to 5.9 Tesla (slowly, because the solenoid inductance is 200
Henries) in order to tune the cyclotron oscillators into resonance with one cavity
mode after another. A measure of the current in the solencid and the signal from
the electron oscillators are digitized simultaneously and stored in a computer. (A
conversion from measured solenoid current to cyclotron frequency is obtained by
exciting an electron cyclotron resonance with a microwave source.) A 50 GHz wide
spectrum is shown in Fig. 4.3 (without any microwave drive). The full spectrum
of observed cavity modes between 0 to 166 GHz is presented in Fig. 4.14 and takes
about 10 hrs to obtain. The extraordinary sensitivity of the synchronized motion
of the electron oscillators to radiative cooling via energy transfer to the modes
of the trap cavity allows us to observe even weakly coupled cavity modes (e.g.,
those with nodes in the midplane), presumably because the electrons occupy a
volume extending slightly away from the center of the trap. Isolated resonances
have Lorentzian lineshapes, as illustrated by the data points and Lorentzian fits
for the two modes in Fig. 4.4. Thermal cycling of the trap apparatus up to 300 K
and back to 4.2 K changes the observed resonance frequencies by less than 0.1%.
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Figure 4.5: Motional splitting of singlet modes TEqy,,. The best fit (center dashed
line) is consistent with 2v, (solid line) within its uncertainty (dashed lines above
and below).

4.1.1 Motional Effects

The T Egnp, modes are unusual in that these azimuthally symmetric modes are
singlets, unlike m > 0 modes ﬁrhich are doubly degenerate. In the observed spec-
trum, however, T E¢,, resonances with even p appear near the frequencies expected
for an ideal cylinder in Eq. (2.1), but they appear as doublets. Modes with p even
have a node in the midplane of the trap and are thus decoupled from the cyclotron
motion of electrons located exactly at the center of the trap. The periodic axial
motion of the electrons, driven by the parametric pump, makes the electrons sam-

ple the standing wave field away from the node at the center of the trap. The
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microwave field experienced by the oscillating electrons is thus amplitude modu-
lated, which produces the observed sidebands. Plotting the frequency separations
for the doublets (Fig. 4.5) shows clearly that the splittings are twice the axial
oscillation frequency as would be expected. All even p modes, regardless of m
value, give similar motional splitting in the spectrum, as illustrated in Fig. 4.6a.
The motional effect is different (and typically smaller) for odd p modes since these
have a maximum of the standing wave field at the center of the trap. Nevertheless,
for sufficiently large oscillations and for large p, small sidebands are observed at
2v, to either side of the strong central peak as illustrated in Fig. 4.6b.

4.1.2 Comparison with Ideal Cavity

With motional sidebands understood, the measured frequencies correspond well
to those for a perfect cylindrical cavity, offering the possibility of identifying res-
onant modes of a trap cavity for the first time. The azimuthally-symmetric TE
modes with m = 0 have high Q values and are not shifted much by the slits
because induced surface currents flow parallel to the slits, allowing the effective
trap dimensions to be determined in situ at 4 K to within 6 um, as shown in
Fig. 4.7. A best fit of Eq. (2.1) to 12 measured eigenfrequencies for such modes
yields a rms frequency deviation of 0.08% and dimensions po = 0.4559(6) cm and
zp = 0.3838(6) cm, in good agreement with our expectations based upon machin-
ing tolerances and expected thermal contraction. Taking the observed width at
half maximum divided by the resonant frequency to be Q~2, the mean Q is 20,000
with an rms spread of 6500. o

For other field symmetries of experimental interest, Fig. 4.8 shows percent-
age deviations of measured and calculated resonant frequencies. There is good
agreement. The most important modes [9,10,37], those with p odd and m = 1,
have nonvanishing transverse electric fields at the cavity center and hence couple
-directly to the small cyclotron orbit of an electron. The strong coupling results in
the largest observed resonance signals (i.e. largest peak area in Fig. 4.3) for the 29
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of these modes which we observe. Frequency deviations are typically 1%, which
is larger than for the T'Eg,, modes above as expected. Nonetheless, the shifts are
still typically 5 times smaller than the average niode spacing, though mode overlap
gets more likely as the mode density increases at higher frequencies. The mean Q
is 1300, with a spread of 1100 and a highest Q of 3700.

Signal

Signal |

21/z 2v |
R R N SN

144.3 144.4 144.5 144.6

Cyclotron freq. (GHz)

|

Figure 4.6: (a) Motional doublet for a mode with p even has separation of 2v,. (b)
Motional sidebands for a mode with odd p are separated from the strong central
peak by 2v,.
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4.1.3 Strong. Coupling

Isolated modes fit well to Lorentzian lineshapes, as has been illustrated. Fig. 4.9
illustrates the lineshape modification which occurs when an electron cloud and a
cavity mode are strongly coupled. A Lorentzian lineshape {Fig. 4.9a) is observed
with small number of electrons. For weak coupling, the decay rate of one electron
cydotron oscillator coupled to the Mth cavity mode is, as we shall see later, given

s L
| TEOnp _
;__:Q | RESONANCES ]
O I .
-~ o
g S 7
ﬁ ! ]
o ! )
& - ]
§ i 1
§ 2 Best-fit Dimensions : -
P = 0.4559(6) cm )
z =0.3838(6)cm |
o L 3 M 1 [ M 3 y L [ ] »

0 50 100 150
Calculated freq. (GHz)

Figure 4.7: Fit of measured TE,,, mode eigenfrequencies to those calculated for
an ideal cylinder , in situ at 4K, determines effective dimensions of the trap cavity
to within 6 um.
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Mode | Eigenfrequency (GHz) [ ya/Qmy. |
TEm 27435 0.8295
TMin 44.608 0.0542
TE\n 59.124 0.1709
TE, 61.667 0.0732
TMi13 70.993 0.0480
TMyn 75.986 0.0068
TE, s 80.905 0.0668
TEn 91.461 0.0724
TMam 93.936 0.0213
TEqns 99.513 0.0174
TMs 105.547 0.0184
TE 33 106.842 0.0455
TM;3 108.265 0.0017
TE 112.454 0.0249
TMyas 121.538 0.0085
TM;as 122.165 0.0159
TE 4 124.077 0.0395
TE\ss 132.346 0.0239
TE 43 135.813 0.0302
TE: 138.033 0.0065
TMq 140.824 0.0006
TMunz 142.444 0.0080
TM 3 144.470 0.0099
TE,2; 147.635 0.0110
TMia 151.267 0.0037
TMyg7 155.159 0.0094
TE 156.670 0.0197
TE5 156.803 0.0248
TE; a7 163.296 0.0128
TE; s 166.245 0.0208

Table 4.1: Calculated properties of m = 1, p odd modes below 170 GHz for an
ideal cavity which has the best-fit dimensions of the trap cavity (p,/z, = 1.186).
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where vy is the maximum damping rate which occurs when the detuning § (be-

tween the cyclotron and cavity mode resonance frequencies) is zero. The electron-
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Figure 4.8: Comparison of observed and calculated eigenfrequencies for series of
cavity modes of particular experimental interest.
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Figure 4.9: The Lorentzian lineshape (a) is modified to the strongly coupled line-
shapes in (b) and (c) as the number of electrons N is increased to increase the
electron-cavity coupling.
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cavity interaction is weak if the energy coupled into a .ca.vit}.r standing wave is
dissipated in the cavity walls in a time shorter than is required for the cyclotron
oscillator to re-absorb the energy. A useful parameter for comparing the coupling
time between the CM cyclotron motion of N electrons and a cavity mode, on the
one hand, to the decay rate of the standing wave itself due to losses in the cavity
walls, on the other hand, is defined by
Niym

. Tar ’

where the numerator gives the rate of energy transfer from the CM cyclotron

(4.2)

motion to the Mth cavity mode, and is proportional to N? because this rate
depends on the square of the charge of the oscillator. The denominator L'y gives
the decay rate of energy in the cavity mode due to losses in the cavity walls. The
weak coupling approximation which provides Eq. (4.1) is good for n < 1. Since
the decay rate of one electron in free space is given by Eq. (1.3) and the quality
factor Qu of the cavity mode is given by T'ar = war/Qas, We can rewrite n defined
in Eq. (4.2) as |

S e’ T
—3[%% N2Q3 (), (4.3)

in terms of known quantities (from calculations and measurements), with r, being
the classical electron radius. The factor in square brackets is calculable, depending
only on the geometry of the cavity, and is tabulated in Table 4.1.

We can make this coupling parameter 5 rather large by either increasing N
or selecting a cavity mode with very high quality factor Qp. The weak coupling
approximation breaks down when N or Qu is so large that the coupling time
between an electron cloud and a cavity mode becomes shorter than the decay time
for the energy in the cavity mode itself. Under this condition, the CM cyclotron
oscillator and the cavity mode can form normal modes. For T Ey;5, we observe
that vy = 99.84GHz and Qu = 690 in the weak coupling limit, and therefore

7 =6.51 x 1078 N2, (4.4)
With 700 electrons, n = 0.03 and a Lorentzian lineshape is observed, consistent
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with Eq. {4.1). Broadening of the lineshape is observed (Fig. 4.9b, especially at
its base) when N = 2 x 10%, which corresponds to 5 = 25. Evidence of normal-
mode spiitting is obtained (Fig. 4.9c) when the number of electrons is increased
to N = 10°, corresponding to = 650. Normal-mode splitting has been observed
recently in other systems with atoms coupled to a cavity mode as an atomic beam

passes through a high-finesse optical cavity {71,97].

4.2 New Generation of g-2 measurements

As discussed in Sec. 1.2, the observation of inhibited spontaneous emission
[32] and subsequent calculation of related shifts of the cyclotron frequency (See
review in Ref. {37]) provided a serious obstacle to measurement of the magnetic
moment of the electron and positron. Cavity shifts presently limit the precision
of the measured magnetic moments of the electron and positron [88,89). Inhibited
spontaneous emission in the cyclotron motion has been observed in these exper-
iments, with cyclotron decay time longer than in free space. The corresponding
frequency shift which must be present (illustrated in Fig. 1.1b), however, has not
been determined because the microwave properties of the hyperbolic trap are vir-
tuaily unknown experimentally and are difficult to deal with even in principle.
Consequently, latest measurements of the magnetic moment for the electron and

positron

a(e™) = 0.001 159 652 188 4 (14) (40) (4.5)
a(et) = 0.001 159 652 187 9 (14) (44) (4.6)

are reported with the largest uncertainty (40) due to ca.vity.shifts [88,89]. This
uncertainty, called the “most probable” cavity shift in the cyclotron frequency [88],
was crudely estimated using our calculations for a cylindrical cavity model which
is not a very satisfying approximation to a hyperbolic trap cavity.
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QED calculations of the electron’s anomalous magnetic moment have been
pushed to nearly thé same precision [53]. As mentioned earlier, however, QED
relates measured a values to measured values of the fine structure constant o. For
comparison to the measured a values, the QED calculation and the measured fine

structure constant together give an anomalous magnetic moment
a = 0.001 159 652 140 0 (53) (41) (271). _ (4.7)

. The largest uncertainty (271) comes from uncertainty in the fine structure constant
as measured using the quantum Hall effect. The uncertainties of (53) and (41) come
from numerical calculations of the expansion coefficients C3 and C, (not related
to A;), respectively.

More precise tests of QED require improved precision for the measured fine
structure constant first (this is expected), then improved measurements of a and
an improved QED calculation. It was pointed out to us by B.N. Taylor that

2 2B.m(Na)m, h
~ ¢ my, m.m(Na)

a (4.8)

The Rydberg constant R, is now known to within an uncertainty of ~ 2 x 10-1°.
Thus, an improved value of a can be obtained from precision measurements of the
proton-electron mass ratio m,/m, and the sodium-proton mass ratio m(Na)/m,
in Penning traps, in combination with a proposed determination of h/m(Na)
(Planck’s constant over mass of a sodium atom) using atomic interferometry{51).
The latest adjustment of fundamental constants is based in part on a somewhat
more precise determination of a obtained by combining the QED calculation (as-
suming the exact validity of QED) with the measurement of a to obtain

o YQED) = 137. 035 992 22 (94). (49

The uncertainty in this QED determination of the fine structure constant is 7x10~?
if the shift estimate turns out to be accurate.
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4.2.1 Magnetic Moments Without Cavity Shifts

Controlling the interaction of an electron cyclotron oscillator with the cavity-
modified vacuum will be crucial for higher precision tests of QED. Better ¢ mea-
surements in trap cavities of unknown microwave properties appear difficult and
unlikely. For example, using lossy materials as electrodes would make a hyper-
bolic trap cavity approximate the free-space vacuum (and thus avoid shifts due to
unknown standing-wave fields). However, the cyclotron damping linewidth would
also be as large as in free space, making precise frequency measurements more
difficult. To relate the uncertainty Aw. in measuring the cyclotron frequency to
the resuliing uncertainty Aq in the measured anomalous magnetic moment a, we
note that

(4.10)

can be regarded as a definition of a, where w, is the electron’s spin precession

frequency. Since a = 1072 is small,

fa 18w
¢ aw

(4.11)

For B = 5.9 Tesla, without line splitting, the cyclotron frequency could therefore
(in principle) be measured to 8x 10~'2, from substitution of Egs. (1.2) and (1.3) into
Eq.(4.10). Setting Aw, equal to the free space line width yields Aa/a = 8 x 10~°.
The experimental error currently quoted [88,89] is already much smaller than this
free space linewidth.

The cylindrical cavity, with identified p odd, m = 1 modes, is a greatly
improved environment for experiments with a centered, one-electron cyclotron
oscillator. To illustrate, a 10 GHz span of experimental interest is displayed in
Fig. 4.10. Of the modes in this span, only TMi3; and T Eyy5 couple to the cyclotron
motion of one electron at the center of the trap. T E;,4, and TE;3, do not couple to
one centered electron but are suited for sideband cooling of the axial motion. Both
the damping rate v for an electron’s cyclotron motion (for small enough damping
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Figure 4.10: Observed cavity modes in a 10 GHz spectrum (a). Calculated fre-
quency shifts (b) and damping rates (c) for one electron at the cavity center. The
dashed line in (b) accounts for the two nearest modes that couple, Mz and

TEy;5. The solid line also includes the effect of nearby coupled modes not in this
span.
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[32]), and the cavity shift of its frequency Av, could be measured as a function of
v, with one trapped electron, but this would take a very long time. However, to
a good approximation, coupling to the Mth of these cavity modes (with resonant
frequency va) yields the explicit forms [37]

QM

v = AM"‘—l n (Q_M5M)2 (4.12)
_1 (@u)?éy 1
2rAv = 2AM~———1 T Owron ) 2‘7QM6M. (4.13)

The constants Ay are precisely known (equivalent to those tabulated [37] as elabo-
rated in Sec. 4.4) because the field configurations of these modes are known. Both
7 and Av are functions of the “detuning” 8y = 2(v — var)/var (which is accurately
controlled and measured) and the quality factor for the mode @um. These explicit
forms, with vy and Qas from the measurements described earlier (summing over
nearby modes as necessary and including manageable renormalization corrections
neglected here [37]) can be used to compute the frequency shift (Fig. 4.10b) and
damping rate (Fig. 4.10c) for a centered electron. The hope is to compare with
several specific measurements with one electron and then to deduce the cyclotron
frequency (i.e. the magnetic field) at which the electron’s cyclotron frequency is
not shifted by the cavity (arrow in Fig. 4.10b ). The damping width is 50 times
narrower than in free space at this unshifted cyclotron frequency. The likelihood
for thereby improving the measurement accuracy is very high.

4.2.2 Rapid Control of Electron-Cavity Coupling

The simple standing wave pattern of m = 1 modes can be used to change
the cyclotron damping rate rapidly without changing the magnetic field (which
would take months to restabilize sufficiently for high precision experiments). This
is possible because the éoupling between the cyclotron oscillator and a cavity
mode vanishes at a node of the standing wave. An electron can be moved up
and down by by adding an anti-symmetric electric potential V, across the endcaps
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(Fig. 4.11a). Fig. 4.11b represents the magnitude of a component of the transverse
electric field of a T'Ey 3 mode along the z-axis. If an electron is displaced from the
center of the trap (where its coupling with the cavity mode is strongest) along the
z-axis by a quarter wavelength to the nearest node, then its interaction with the

standing-wave is switched off.

Electronic control of the electron-cavity coupling is demonstrated in Fig. 4.12.
The peak in Fig. 4.12a is due to coupling of T'Eq;7 to an electron cloud near the
trap center. T Eg,r has 7 anti-nodes between the endcaps, with A /4 = 550 um. For
Fig. 4.12b, the electron cloud is displaced by 510 um from the trap center along its
axis. Proximity to the node causes the resonant peak in Fig. 4.12a to.d.isappea.r.
Instead, a pair of peaks separated by 2w, appear in the spectrum because the
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Figure 4.11: (a) Antisymmetric potential across endcaps displaces electrons along
the z-axis. (b) Representation of transverse electric field component near the z-axis
for a p=3 mode.
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Figure 4.12: (a) Observed resonance for T'Egz; (A/4 = 550um) with a centered
electron cloud. (b) Motional doublet observed when the electrons are displaced
from the center by Az = 510pm.

electrons are oscillating at frequency w, through the node plane at z =~ A/4 .

4.2.3 Sideband Cooling of Axial Motion

The axial motion of a trapped electron is dissipated as Joule heating in a resistor
connected between appropriate electrodes, cooling the axial motion into thermal
equilibrium with the resistor. Even at 4 K, thermal axial motions are highly
undesirable in efforts to study the relativistic, quantum structure of the cyclotron
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oscillator because the thermal energy is coupled into the cyclotron motion via
several mechanisms. _

To bring the axial motion to a much lower temperature, the electron would
be decoupled from the resistor and a sideband cooling technique [94,10] would
be employed. Modes with even p and m = 1 (eg. in Fig. 4.10), when driven
at v — v,, produce the proper 6sciﬂatory spatial gradients required to transfer
the axial energy into the cyclotron motion. The cyclotron excitation, in turn,
~dissipates the transferred thermal energy into the cavity via modes with odd p
and m = 1. It should be possible to cool the undamped axial motion to an

extremely low temperature limit [10]

T, = (v,/v))T.. (4.14)

With the frequencies used here, this would be an unprecedented {and extremely
useful) axial temperature of 2 mK for T, = 4.2K. Because the field intensity
builds up within the high Q cavity, much less drive power should be required
than was estimated for propagating plane-waves [10]. These same modes have a
transverse magnetic field at the cavity center and could thus be used to directly flip
an electron spin (when driven at w,). Off-resonance cyclotron excitations by the
strong spin flip drive a.re suppressed because these modes do not couple directly
{o the cyclotron motion.

4.3 Calibrating the Monitored Currents

The cyclotron frequency is swept by ramping the current in a superconducting
solenoid which provides the nizignetic field, as already described. The current [
supplied to the superconducting magnet by a regulated power supply is monitored,
digitized and stored in a computer at a rate of ~ 3 data points per second. The
frequency of the cyclotron oscillator at any time is, using Eq. (2.10),

e e |4
Ve = '":Bz(t) = '"n";g (I - ffo) ) (4.15)
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where e/m is the charge-to-mass ratio of an electron. The constant 7, takes into
account the current drawn by the protection resistor shunting the superconducting
solenoid. By sweeping the current from 0 to 40 Amperes, the cyclotron oscillation
frequency is varied between 0 and 167 GHz. This maximum frequency corresponds
to the maximum field for the superconducting solenoid. The conversion from mon-
itored current to the cyclotron frequency is measured accurately by using a high
precision microwave source to drive the cyclotron oscillator. For the superconduct-

ing solenoid used to obtain Fig. 4.3, the driven resonant frequency v, at a known

current I gives
YIE = 4.1854(2)GHz/A . (4.16)

The uncertainty is due to the statistical error in current measurement. This is
in .good agreement with the theoretical value calculated from the windings of the
solenoid, within the tolerance of the solenoid and the calibration error of the
metering resistor. _

To measure the offset constant 7,, we choose a high Q cavity mode. The
axial CM energy of a synchronized electron cloud is maximum when the cyclotron
oscillation is in resonance with the cavity mode, shown in Fig. 4.13(a). The current
corresponding to the (';a.vity mode resonance, Iy, is measured for various sweep
rates. The sweep rate V/L is measured from the time-stamped, digitized record of
current readings (see, e.g., Fig. 2.6). The linear variation of the resonant current,
Iy, with the sweep rate V/L is shown in Fig. 4.13(b). The slope directly gives

To = 101(1)s , (4.17)

which characterizes the shunt resistor across the superconducting solenoid men-

tioned earlier.
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Figure 4.13: (a) Cavity mode resonance for field calibration. (b} Measurement of
offset constant 7, '

4.4 Electron-Cavity Interactions

The dynamics of one cyclotron oscillator localized in the midplane (near the
center) of a cylindrical, microwave cavity is governed by [8,9]

mv — (efc)B x v =eET | (4.18)

where v = p is the velocity in the midplane. The transverse electric field ET, in
the dipole approximation, is due to radiation standing-wave modes with m = 1

(i.e., TE1np and TM,,), generated as the accelerating electron radiates into the
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cavity. Thus Eq. (4.18) indicates that the cavity standing waves act back upon
the cyclotron oscillator.. The calculations are classical since it has been shown that
within a high level of accuracy, the exact apparatus of quantum electrodynamics
 yields the classical results [4].

The essentiall features of this interaction are also contained in a simpler elec-
tromechanical model (Fig. 2.13) appropriate when one cavity mode is considered
[3]. In this 'model, the selected M* cavity mode is represented by a series LCr
tuned circuit. Such a tank circuit is resonant at angular frequency wy = (LC)~1/2
with damping width T'y; = r/L. The electron oscillator is represented as a charge e
and mass m on a spring with spring constant m(w’)?. The electron oscillation 2(t)
excites a current ()(t) in the tuned circuit. The oscillating current in the tuned
circuif, in turn, produces an RF electric field which acts back on the electron. The
interaction potential for these two coupled oscillators is given by

Ving = — [2;}_ 2(t) Q(t), (4.19)

where the dimensionless coupling & = 1 for a capacitor with infinite parallel plates
{separated by 2z,). Using familiar Lagrangian equations, we find that, analogous
to Eq. (4.18),

d? 72 _ Kq
m[gt-g + (wc)]z(t) = —[2200] Q). (4.20)
The excitation of the tuned circuit is described by
d? d
L[E + Tug + (wu)’] Q@) = _[2::10 2(2). (4.21)

We can neglect Johnson noise (which represents the 4 K radiation of the cavity in
thermal contact with the liquid helium bath).

In the weak-coupling regime (wherein the cavity field decays due to wall losses
in a time shorter than required for the electron to re-absorb the radiation), the
tuned circuit effectively damps the electron oscillation z(¢) at rate 4 and shifts
its resonant frequency to &!. Since the cavity modes typically have high quality
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factors (@ ~ 10° or higher), the damping and frequency shift take the simple forms

1
T = wim (4.22)

- 1 é
Gemwe = SMWIiw - (423)

In terms of the effective resistance R = L/(rC), the maximum damping rate v
is given by

= = (4.24)

nq] R
The resonant frequencies of the tuned circuit and electron motion are wys and
we, respectively, when the interaction is turned off. The unperturbed resonance

frequency of the two oscillators are related by a detuning § defined by
W, = wa + %rms. (4.25)

If the electron oscillator and the LCr circuit are tuned to the same unperturbed
resonance frequency (i.e. § = 0) there is no frequency shift, but the damping rate
is maximum. When é # 0, the damping rate is reduced but the resonant frequency
of the electron oscillator is shifted. The maximum frequency shifts ++ypr/4 occur
near resonance, at detunings § = +1. The characteristic shapes for v and Aw are
shown in Fig. 1.1 and are clearly evident in more detailed calculations.

Since ¢ ~ R ~ Qu, the maximum damping and maximum frequency shift
are larger when the quality factor Qa = was/Tar is larger. To display the Q
dependence explicitly we write

™ Ay :

2 2Qu (L;) (4.26)
thereby defining the coupling strength Aps [98]. This definition also allows the use
of a simple form for the electron’s frequency shift and damping rate

A w(Ow)?
Aw '3 = Tt Ty —u (4.27)

which can be generalized to include interactions with more than one cavity mode
by summing the right hand side over the mode index M.
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For Eq. (4.27) and its generalization to be quantitatively useful, the coupling
constants A}y = AZ; have been calculated for regular cavities of interest [37]. In
particular, for the cylindrical cavity, the mode index M is identified here with the
two quantum numbers n = 0,1,2,... and | = 1,2,3,.... When the magnetic field
is along the symmetry axis of the cavity, these two indices identify the subset of
cavity modes which couplé to a cjrclotron oscillator located at the center of the
cavity. Two types of modes couple to the cyclotron motion and for both it is

convenient to use k, = (n + 1/2)x/z,. For TE (transverse electric) modes

2 rec? 2 of
And 2opl & —1 Ty(ar? (4.28)
wi, = (k2 + £'t-f—) e (4.29)
n,l - i p2 M

where o; (defined by J{(a) = 0) is the I** zero of the derivative of the first-order
- Bessel function. For TM (transverse magnetic) modes which couple to electron

cyclotron motion

\2 rec? 2kic2 1

= 2otk Wy To(B) (430)
2
wﬁJ = (k;‘: + %) & (4.31)

where 8 (given by J;(£) = 0) is the I** zero of the first order Bessel function. The
quantum numbers n and ! which we use to label the cavity modes which couple to
the electron are simply related to common conventions for Iabeling all the modes
of a cylmdncal cavity. For example, in the textbook by Jackson [49] the origin of
the coordinate system is translated to the center of the bottom endcap , and the
TE and TM modes identified above are labeled as TE, ;3,41 and the TM; 12,41,
respectively. Couplings for other cavity geometries of interest are found in an
earlier work [37). |
Unfortunately, the simple theory is afflicted with problems arising from self-
field interaction. To see this, we note that the standing wave field is actually

composed of two contributions
E' =E,.; + E, (4.32)
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the self-field E,.; radiated directly by the oscillator (as if into free space) and the
reflected field E’ which is reflected from the cavity walls. The back reaction of a
self-field upon the accelerating charge which is radiating, is well known to lead to
difficulties and divergences in classical electricity and magnetism [69] (inherited
by QED in addition to divergences of its own). -In our particular situation, the
real part of the mode sum

Aw-ilzw—w —iX =¥ al (4.33)
2 2 sz-l-iwry—wi,’

- diverges when the sum includes all the cavity modes. For a correctly renormalized
calculation, the seli-field term is replaced by a radiation damping term for radiation
into free space (with damping rate -,) and only the transverse reflected field E’

acts back upon the cyclotron oscillator, so that Eq.4.18) is rewritten as
V—we X V4 (7./2)v = (e/m)E". (4.34)
Only in special cases is it possible to separate the reflecied field and the self-field
which together make up the standing wave. The high degree of symmetry for a
spherical cavity [11,20] makes the removal of the self-field relatively simple because
the free-space radiation from the oscillator at the center contains only. outgoing
spherical waves, easily distinguished from the reflected waves. A cylindrical cavity
[8,9] has less symmetry, but the separation can still be accomplished by using
image charges to satisfy the cavity boundary conditions. The reflected field is
thus clearly distinguished as the field of the images. For a hyperbolic cavity
(which corresponds to the trap within which the electron’s magnetic moment was
measured) a separation of self and reflected fields is completely intractable. Finite
mode sums as done in the simple model are the only possibility. Comparisons of a
modified mode sum and a complete calculation for the cylindrical cavity are used
to estimate the optimal number of terms to be included in the finite mode sum,
even though the mode density is significantly ﬁigher ina hyperbolic cavity;
The usefulness of the simple theory is limited especially when the electron
cyclotron oscillator is not near to resonance with a high Q cavity mode. A de-
tailed discussion of how the divergences arise and can be partially circumvented
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" in this model has been presented [12,37]. In general, the contribution from any
off-resonant {M*) mode to the frequency shift Aw of the electron oscillator, going
as 3(Am)?/(we — war), independent of Qp is overstated slightly due to self-field
in the standing wave. The overstated contributions add up as the contributions
from many modes are included. Optimal use of the simple, mode sum model
thus requires a careful choice of the number of cavity modes included in the sum.
Beyond a certain number of terms, the real part of the mode sum will start to
diverge. Eventually, the mode sum over a.n infinite number of such small contri-
butions diverges. It is difficult to establish the optimum number of terms or the
accuracy of the truncated mode sum except by comparison to a calculation which
avoids the divergences entirely [12}. A modified mode sum formula was obtained
[12] which converges for the case of a cylindrical cavity and can be used to obtain

- the unshifted cyclotron frequency to 1 part in 10°.
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4.5 Full Spectrum Below 166 G.Hz._
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Observed cavity modes below 166 GHz.
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4.6 Summary

The observation that spontaneous emission from the cyclotron motion of an
electron in a Penning trap cavity [32] is inhibited and subsequent calculations of the
corresponding frequency shifts [8,9,11,12] signalled that the most accurate tests of
quantum electrodynamics were seriously interrupted by modifications to the QED
vacuum. Experiments with synchronized electron oscillators in a new cylindrical
trap cavity [78,79] show how to éhange the cavity-modified vacuum from a serious
interruption into an advantage. A new technique for probing electron-cavity inter-
action employs the sensitivity of the coherent motions of parametrically-pumped
osciliators to radiative coo]ing; allowing the frequencies and quality factors for ra-
diation modes of a trap cavity to be cleanly observed and measured for the first
time. Frequencies of more than 100 observed modes below 166 GHz correspond to
those of an ideal cavity to typically 1% or better. This makes it possible to identify
observed standing wave fields using familiar classifications [49] (e.g. TEy;5). The
interaction with standing waves is so well controlled that motional sidebands and
splittings are observed due to the axial oscillation of electrons in the electric field
gradient of the cavity mode. Modification of resonance lineshape (broadening and
splitting) is also observed for strong electron-cavity coupling.

Among identified cé.vity standing waves are some which couple to an electron’s
cyclotron motion at the trap center. Others should allow rapid change of cyclotron
damping, sideband cooling of an electron to very low (mK) temperatures and
- directly driven spin flips. The cavity-modified vacuum is an advantage insofar as
measured linewidths are narrowed when the electron cyclotron oscillator radiates
less than in free space. This is arranged by tuning the magnetic field so that
the electron cyclotron frequency is not resonant with the resonant frequency of a
cavity mode which couples to the electron. Simple theory yields damping rates
(eg. Fig. 1.1a) and frequency shifts (eg. Fig. 1.1b} which can be experimentally
confirmed and used to avoid attendant frequency shifts, making possible a new

generation of measurements of the electron magnetic moment.
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Chapter 5

Fluctuations and Related
"Phenomena

In Chapter 3, the effects of stochastic, internal motions are minimized because
the parametrically-pumped electron oscillators are resonantly cooled by a standing
wave mode of the cavity. Important observed features of coherent motions could
be understood using an ordinary differential equation for rigid axial motion of N
electrons, a limit which is approached by cooling the internal motions to their zero-
point energy. In Chapter 4, however, we observed that the parametric resonance
was modified as the electron cyclotron motion was detuned from resonance with
a cavity mode. The extraordinary sensitivity of non-rigid, synchronized motions
to radiative cooling proved to be a very-useful tool for probing standing wave
modes in a cavity. A rigid model can not expla.in the Lorentzian lineshapes of
observed cavity mode resonances or even why the parametric axial resonance is at
 all sensitive to cyclotron damping. Even when cavity cooling of internal motions
is maximized, there are interesting non-rigid behaviors in synchronized motions of
electron oscillators. We now explore the ways that parametrically-pumped elec-
tron oscillators are only partially synchronized above threshold, with observable

fluctuations in both amplitude and phése due to internal motions.

Near threshold (& = hs, wg = 2w,), the character of the quiescent state
changes rather dramatically with small change in the pump strength. Fluctuations
in the CM motion grow as the pump strength increase toward the threshold, as
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shown on magnified scale in Fig. 5.1a, but the coherence time remains short. To
observe fluctuations in the signal directly, a storage scope captures the IF signal,
externally triggered by a precision frequency synthesizer at the same frequency.
Fluctuations persist above the threshold in the synchronized CM motion, with

s
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Figure 5.1: Sampled IF signal (5 MHz) illustrates (a) incoherent response for
h < hr and (b) long-term coherence for i > hr. Dotted lines in (b) show maximum
deviations from mean coherent motion.

116



observable deviations (dotted lines in Fig. 5.1b) from a mean coherent oscillation

(solid line in Fig. 5.1b) and interesting consequences for this phase bistable system.

5.1 Transitions between Phase Bistable States

Since the system (Fig. 2.17) is invariant under a time translation of one pump

period 17!, any coherent response at half the pump frequency must be phase

o

~
&
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)
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o
S
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Figure 5.2: Random transitions between phase-bistable states (a)-(b) . Disordered
motions (c) result if cyclotron cooling is weak. Residence time 7, illustrated in

(a), on average becomes shorter (b) with increasing detuning between cyclotron
and cavity mode frequencies.
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bistable, with equal likelihood of having either of two steady-state phases which
differ by 180°. Fluctuations cause random transitions between these phase states,
reminiscent of a two-level system coupled to a heat bath or brownian motion of a
particle in a double-well potential. We observe abrupt transitions between the two
phases, as illustrated in Fig. 52a & b (similar to those attributed to collisions in
a much poorer vacuum in an early experiment with only one electron [92]). The
time between two consecutive transitions, or the residence time in one phase state,
is denoted by 7 (Fig. 5.2a). Thousands of flips observed over many hours show
the flips to be random with typical distribution of the residence times 7 (times
between flips) shown in Fig. 5.3a for N = 750 electrons. The distribution fits well
to an exponential form (Fig. 5.3b) and is consistent with a two-level model with
constant transition probability, except for the shortest times. The first 50-second
time bin receives 30 percent of counts from flips occurring within 5 seconds apart.
This “over-abundance” of short residence times may be a clue to the mechanism
activating the phase-flipping transitions, which is not understood yet.

In more detail, a phase sensitive detector is employed to distinguish between
- the phase-bistable states. As illustrated in Fig. 2.17, the voltage induced by the
synchronized motion across the resistor in the simplified diagram is mixed with a
local oscillator at v4/2 and the phase of the local oscillator ¢ is adjusted so that
the filtered output (near DC) is proportional to

A cos(Ax) . (5.1)

Fluctuations in amplitude A and phase x of the coherent response (Fig. 5.1) can
be observed with a fast storage oscilloscope (after the signal is mixed down to a
conveniently lowér frequency). The phase fluctuation relative to one phase state
Xss 18 denoted by

Ax=x(t) — Xso - (5.2)

A transition of the synchronized motion from one phase state to the other (x,s —
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Xss + 7) is observed as a change in sign of the detected signal
A cos(Ax+7)=—A cos(Ax) . (5.3)

This signal is related to the projection of the CM “state vector” onto the x-axis
in Fig. 3.8 (adjustment of the phase of the local oscillator corresponds to rotating
the coordinate system so that the x-axis passes through the steady-states when
Ax =0).

To examine the abrupt transitions from one phase state to the other in
great detail, a digital storage oscilloscope is armed to capture the signal when a
phase jump occurs. Magnified time resolution on a digital oscilloscope reveals an
interesting diversity of phase jump “trajectories” in the synchronized CM motion.
Several samples are shown in Fig. 5.4 for N = 700 electrons. We observed that
in many cases a transition is initiated with a collapse of the CM motion. This is
illustrated in Fig. 5.4a. The CM motion is then re-excited to the other phase-state
after a being in the “quiescent” state for a “dead time.” This dead time can be
as long as 100 ms but tends to decrease with increasing pump strength. In some
cases, a transition is preceded by a period of observable increased fluctuations
(Fig. 5.4 b). Completion of a phase jump may take many attempts in rapid
succession (Fig. 5.4c-e). Fig. 5.4f shows a rare event in which the CM motion
appears to be oscillating in the “basin” (Fig. 3.8) of one phase-state, switching
over to (and then returning from) the other basin with unabated oscillation. (Fig.
5.4a-f were sampled under the same control parameters.) The duration of a phase
jump 7; (defined in Fig. 5.4a), is observed to be roughly in the range 10-100 ms
with distributions that depend upon pump strength, anharmonicity and number
of electrons (Fig.5.5 ).

The mean residence time 7 in a phase state is observed to vary greatly
with control parameters. It increases rapidly with the number of electrons since
the fluctuating motions of a larger number of electrons average to a smaller sized
fluctuation of their CM motion (Fig. 5.6a). For N > 2500, no transition is

observed over hours when “-"c' is resonant with a cavity mode (such as TE;;5). Mean

120



A cos(Ay)

_—— e

Time (100 ms/div.)

Figure 5.4: Examples of phase jump “trajeciories” observed with 600 electrons
parametrically driven at & = 1.4h7 (Cs ~ —6 x 10~* and N, /w, = 1.2 x 107%).
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residence time is also observed to be longer for larger C, (Fig.5.6 b), presumably
because a more anharmonic trap reduces internal energy. The internal energy may
be lower since the amplitudes of de-synchronized oscillations would be smaller and
the cooling via the LCR circuit is more efficient with larger anharmonicity. Phase
switching rate increases rapidly with increasing internal energy. Consistent with
this interpretation, an increase in the pump power or a stochastic modulation
of the spring constant w} (by applying a broadband noise potential to the ring)
diminishes the mean residence time. The internal energy is conveniently controlled
via the electron-cavity interactions. Fig. 5.6d shows the rapid decrease in mean
residence time 7 for a cloud of N = 400 electrons as the frequency w, is detuned
from resonance with the TE,5 cavity mode in Fig. 4.10. Transitions occur least
frequently very near to resonance with a cavity mode (Fig. 5.2a) where the internal
motion is most strongly cooled. The switching rate 7~? increases (Fig.5.2b) when a
slight detuning of w!, from the mode resonance allows the internal energy torise. As
the decreasing residence times 7 become comparable with the phase jump times 75,
the CM motion can be expected to become “turbulent.” Indeed, observed signals of
the two phase-states are weaker and punctuated by random periods of incoherence.
Further off resonance I(cross-hatched region in Fig. 5.6d), the internal energy
increases sufficiently so that the random, desynchronized motions of the electrons
keep a detectable coherent CM motion from developing (Fig. 5.2¢) because of
the nonlinear couplings. Although a large anharmonicity can be introduced to
increase cooling by the tuned circuit (presumably causing the dependence in Fig.
5.6b), we find that, in this “turbulent” region, long term coherent oscillation ‘can
not be restored by making the trap more anharmonic (increasing |C,y|).
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5.2 Partial Synchronization

The simplicity of the rigid model provides some understanding of the collective
behavior in parametrically-pumped electron oscillators. But the model is inade-
quate in other important aspects. Parametrically-pumped electron oscillators are
only partially synchronized. We now discuss observations of both the coherent and
stochastic components of the CM motion, examining the frequency distribution of
observed signal with a spectrum analyzer. The electron oscillators are pumped by
a frequency synthesizer with very high spectral purity, suitable for high precision
radio-frequency spectroscopy. We study changes in the spectrum brought about
by varying a system parameter, such as the magnetic field (Fig. 5.8) to control

3 T T T T T T T T U T ¥ ¥
N = 600
C,=-6x10"

Ny /w =1.2(1)x10°

CM Energy

I T S W A N N N BN ST S TN AN R R

hxlO6

Figure 5.7: CM Energy versus pump strength for various detunings between cy-
clotron frequency and TEy;; eigenfrequency. Saturation level is clearly limited by
cyclotron cooling of internal motions.
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radiative cooling of internal motions. The Fourier spectrum of the response above
threshold consists of a broad “pedestal” due to fluctuations and a sharp peé.k
which is orders of magnitude stronger due to the coherent motion. To have good
signal for the the fluctuation spectrum, observed spectra are averaged over 100
samples. The highest three points in Fig. 5.8 (log-linear piot) shows the coher-
ent component at v4/2 decreasing as the internal energy is increased by detuning
the w, from a cavity mode. Ignoring the coherent component, we observe that
the spectrum of the fluctuations broadens with increasing detuning from a cavity
mode {or internal energy).

The threshold of instability Az is observed to be independent of internal energy,
as \llustrated in Fig. 5.7 (obtained by sweeping the pump strength for identical
set of detunings used in Fig. 5.8), except for a small fluctuation at the 1% level.
The energy in the coherent CM motion increases as the cyclotron frequency is
tuned closer to the cavity eigenfrequency (for T'Eys5). It is noteworthy that Fig.
5.7 shows less noise in the measured mean squared amplitude for larger detunings
from the cavity mode. It appears that the frequency spectrum broadens but
amplitude noise is reduced when the cyclotron frequency is detuned from cavity
mode resonance. A more detailed study of the amplitude and phase fiuctuation
as a function of cavity cooling would be interesting,

More evidence points to the limitations of the rigid model even when the ra-
diative cooling of internal motions is maximized. With the electrons resonantly
cooled by the mode TElls, the Fourier spectrum is observed to change dramati-
cally with increasing pump strength, as shown in Fig. 5.9 (Each spectrum is an
average of 100 samples.). Only the broad, fluctuation spectrum is present below
threshold (Fig. 5.9a). Observed width is of order N, /2% but becomes narrower
as the pump strength approaches the threshold. When the pump strength exceeds
hr, a sharp peak (much nari'ower than the detection bandwidth of 5 Hz in Fig.
5.9a and 25 Hz in Fig. 5.9b) emerges from a larger pedestal. The pump strength
is increased first in increments of +1 dB in Fig. 5.9 a, and then in increments
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Figure 5.8: Fourier spectra of responses for various detunings from a cavity mode.
- Coherent response (peak) diminishes as cyclotron frequency is detuned from cavity
mode eigenfrequency, but fluctuation spectrum broadens. Other system parame-
ters are given in preceding figure.

of +2dB in Fig. 5.9 b. The fluctuation spectrum broadens as the pump strength
increases and is skewed for high pump strengths (Fig. 5.9 b).

An important non-rigid feature with maximized cavity cooling is shown when
the variation of signal size is plotted for a wide range of pump strengths. Fig. 5.10
plots the power in the peak (square) and the integrated power in the fluctuation
- spectrum (circle) versus pump strength for the data set shown in Fig. 5.9 . The
integrated power of the fluctuation spectrum is the sum of contributions from each
frequency bin with the white-noise background subtracted and the peak removed

127



by omitting the central bin. Above threshold, the coherent component grows with
pump strength but saturates at k = 1.6hr and slowly decreases for 1.6y < k <
6hr. This is an important disagreement with the rigid model, which predicts the
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Figure 5.9: Fourier spectra for various pump strengths. A sharp peak emerges as
pump strength exceeds threshold (a), with only broadband spectrum appearing
below threshold. Fluctuation spectrum continues to broaden with increasing pump
strength (b), becoming skewed for very strong pumping.
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Figure 5.10: Comparison of power in the peak (square) with the integrated power
in the fluctuation spectrum (circle) for the data set shown in preceding figure.

CM energy to be a monotonically increasing function of the drive strength (Sec.
3.3.1). For example, if the leading anharmonicity ), is dominant, then the squared
amplitude of the steady-state rigid motion goes as

A« \Jh2—h (5.4)

when drive frequency is wy = 2&,. On the other hand, Fig. 5.7 shows that
observed energy in coherent CM motion is-limited by cooling via radiation into
the cavity, not by anharmonicity as would be the case for rigid motion. In spite of

dlsa,greement the observed lineshapes (Fig. 3. 5) agree quahta.tlvely with the
rigid model (Fig. 3.4). Taking a linear lineshape like in Fig. 3.5a as an example,
the lineshape is well preserved but the slope is observed to decrease when radiative
cooling is reduced. The CM energy decreases also if the cyclotron oscillators are
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normalized microwave drive power (dots). A simple form (solid) fits well to it.

heated up with a microwave drive, as illustrated in Fig, 5.11.

The mechanism causing the observed response to be so sensitive to both cy-
clotron cooling and anharmonicity is not understood. It appears that individual
electron oscillators are excited to large amplitudes that are limited by anharmonie-
ity, and that the observed coherent response is generated by their synchronized
component which is controlled by a thermal process involving energy exchange
between the axial and cyclotron motions. It is this sensitivity of partially synchro-
nized motion to cooling of the internal motions (Fig. 5.7a) which has been very
useful for probing the electron-cavity interactions (Fig. 4.1) so important for other
radiative studies. We also find that the root-mean-squared (rms) saturation signal
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scales linearly with the number of electrons (Fig. 5.12 a). The rms signal below
threshold appears consistent with a linear dependence on the number of electrons,

but the slope is about 50 times smaller (Fig. 5.12 b).

In contrast to the saturation and decline in power of the peak, we observe
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Figure 5.12: Scaling of rms induced current with number of electrons (a) above
threshold and (b) below threshald.
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that the power in the fluctuation spectrum increases monotonically for 2 < 6hy
(Fig. 5.10) . The rate of growth in fluctuation power decreases with purﬁp
strength. There are a few step-like structures where the fluctuation spectrum
changes very little with incremental rise in pump strength, but more data is needed
to confirm this and to improve the resolution. The powers in the peak and pedestal
are converging for 2 < 6hr. It is not known if this convergence should continue

for even higher pump strengths. Here again, the rigid model provides no clue.

5.3 Internal Motions: Slow Relaxations

A parametric drive excites not only the collective, CM motion of N electron
oscillators but also internal degrees of freedom. Even for small systems (< 100
electrons), the full dynamics is difficult to analyze. In the past, a “bolometric”
model [18,93] was developed for the disordered, thermal motions of trapped elec-
trons or ions (summarized in Appendix B) and a simplified set of rate equations
was thoroughly tested in experiments with electrons at T ~ 80K [93]. In those
early experiments, pulsed excitation showed that internal degrees of freedom come
into thermal equilibrium so fast that they essentially form a single reservoir, with
equilibration time shorter than other relaxation times. Since our apparatus is sub-
merged in LHe, simplifying assumptions used in earlier studies may not apply at
the lower temperatures. A few pulsed excitation experiments were carried out in
our apparatus. For example, Fig. 5.13a shows the response when electrons ini-
tially at 4K are heated with a parametric drive below threshold in periodic 10-ms
pulses. A storage oscilloscope captures the response from each pulse and gives an
output averaged over 256 pulses to improve signal-to-noise. Fig. 5.13a shows the
smooth relaxation which is characteristic of the response in a bolometric model
[93] and, as expected, relaxation time is observed to be shorter when anharmonic-
ity is increased (|Cy| is made larger). This indicates that energy is transferred
between internal reservoir and CM motion via the non-linear couplings. However,

when the pump strength is above threshold, new features are observed. Fig. 5.13b
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shows the substantially larger response of the partially coherent response to a sin-
gle 250-ms pump pulse above threshold. This response has a rapid initial growth
overshooting the steady state, characteristic of parametric resonance discussed in
Chapter 3. Rapid growth stops abruptly and is followed by a much slower relax-
ation to a mean steady level with fluctuations. “Ring down” to the steady level
(expected in rigid model, Fig. 3.2) is not observed, presumably because they are
“washed out” by internal fluctuations. The slow relaxation to steady level is about
30 times longer than the typical rise time of the initial rapid growth, or observed
relaxation times below threshold. Preliminary results from available data show
that this new time constant is not very sensitive to changes in anharmonicity and
pump strength. A more systematic study would extend over the full range of con-
trol parameters, including dependences on number of electrons and on detuning

of cyclotron frequency from cavity mode resonance, etc.

To see that Fig. 5.13b is a difficulty for a bolometric model, we now give
a simplified set of rate equations describing energy transfer between axial CM
motion and internal reservoir. Another experimental evidence of its limitations
~ follows. Below threshold, the bolometric model provides

Csz_ = -'gzo(Tz - To) + giz(T'i - Tz) + ﬂ'z (5.5)
CT; = —gulT:—T.)+9.:(T. —T) + H; (5.6)

where, for simplicity, the tuned circuit and cavity are assumed to be at the same
temperature T,. The axial CM oscillator has temperature T, with heat capacity
C,. A reservoir formed from all internal oscillations has temperature T, with heat
capacity C;. Damping of the CM motion due to a tuned circuit is characterized by
conductivity g,,. Internal motions decay to T, at a rate g;,/C;. Energy transfer
between CM motion and the internal reservoir is characterized by conductivity
9iz = gz For sufficiently high temperatures, the thermal conductivities g;; and
heat capacities C; are approximately independent of temperature. A set of linear,
first-order differential equations, such as Eq. (5.5) and Eq {(5.6), cannot generate
a response like in Fig. 5.13b. |
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Although this set of equations has been shown to be valid for temperatures
above or near 80K for weak pumping of trapped electrons, [93] a more general
system of equations would be necessary for electrons cooled to near LHe temper-
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Figure 5.13: Characteristic responses to pulsed parametric pumping (a) below
threshold and (b) above threshold. Averaging over 256 pulses improves the S/N
below threshold (a), but only a single pulse is used above threshold (b). Slow
relaxation (b) follows initial rapid growth, above threshold.
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ature if the temperatures of the axial internal motions T} and transverse internal
motions T do not equilibrate faster than other relaxation rates. Theoretical anal-
ysis of binary collisions in a strongly magnetized electron gas indicates a strong
temperature dependence in this equilibration rate at very low temperatures, drop-
ping rapidly as T -— 0. [68] In our study, pulsed cyclotron excitations show some
evidence for this. In Fig. 5.14, the energy in the axial CM motion of N = 1600
electrons is monitored with a storage scope as a square wave actives a microwave
drive to excite the cyclotron motions for 10 s, and then deactivates the drive for the
next 10 s. The output is averaged over many drive cycles. (Parametric drive is dis-
connected.) If the eﬁuilibration rate is significantly smaller at lower temperature,

then the rise time in the energy of the axial CM motion when cyclotron heating

- . N =1600 1

Signal

'
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Time (s)

Figure 5.14: Pulsed cyclotron excitation. Slow growth and fast decay indicates
temperature dependence of equilibration process.
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is turned on would be much longer than the decay time when heating is turned
off. Observed relaxation is clearly non-exponential with the rise time significantly
longer than the decay time, indicating a slower relaxation at low temperatures.
As shown in Fig. 5.14, nearly 2 seconds after the microwave drive was applied,
observed axial CM energy increased by less than 10%, but faster growth followed.
In contrast, axial CM energy has dropped by over 80% within 2 seconds after
the drive was turned off. More detailed experimental study near 4K (at which
90% of cyclotron oscillators are in the ground state) may reveal other interesting
features due to temperature dependent collisional processes and may establish a

generalized set of rate equations for low temperatures.

5.4 Summary

A rigid model, in spite of its usefulness, does not provide a complete picture.
A variety of interesting observations involve fluctuations due to internal motions,
which are entirely omitted in a rigid model. Random transitions occur between
the phase bistable states of partially synchronized CM motion. Except for very
short times, observed residence times fit well to an exponential distribution (con-
sistent with a two-level model with constant transition probability). Prompted by
the “over-abundance” of rapid phase flips, observations on magnified time scales
show interesting phase jump “trajectories,” including a rare event showing syn-
chronized CM motion oscillating in the basins of attraction for the two phase
states. Measurements of mean time between flips are made for a wide range of
conditions.

Partial synchronization is also examined in the Fourier transform of the ob-
served response using a spectrum analyzer. A typical spectrum has a very sharp,
narrow peak corresponding to synchronized motion, and a broadband, random
distribution corresponding to fluctuations. As radiative cooling via coupling to a
cavity standing wave is reduced, the sharp peak in the spectrum is reduced but
the fluctuation “pedestal” is broadened. Even with radiative cooling maximized
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(by tuning cyclotron motion into resonance with TEyys), the observed spectrum
changes dramatically with pump strength. Power in the peak is observed to sat-
urate as pump strength is increased above threshold and then decrease slowly for
h > 1.6hy, contradicting the monotonically increasing dependence expected of
rigid motion. Only broadband, fluctuation spectrum is observed below threshold.
The fluctuation pedestal broadens as the pump strength is increased above thresh-
old, becoming skewed at high pump strengths. Integrated power in the pedestal
grows monotonically with pump strength below 6h7, and may be converging to
the same limit as the peak power.

Pulsed excitations give more evidence of limitations of a “bolometric” model
developed-for disordered, thermal motions below threshold. As expected, relax-
ation below threshold is observed to depend on anharmonicity, indicating energy
exchange between center-of-mass and internal motions. Above threshold, however,
response to pulsed excitation is characterized by a rapid growth which is abruptly
stopped and followed by slow relaxation to a lower, mean coherent oscillation with
fluctuations. Furthermore, for our apparatus at ~ 4K, pulsed cyclotron excitation
(with parametric drive switched off) indicates strong temperature dependence in
equilibration process for internal motions, requiring a more complicated, general-
ized model at low temperatures.

These interesting observations in parametrically-pumped electron oscillators
demonstrate the fine control over a wide range of system parameters which is
available for precise, quantitative studies of fluctuation phenomena. A more de-
tailed theoretical treatment of this system, hopefully, will give a better under-
standing of the observations and measurements presented, which may lead to new

experiments.
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Chapter 6

Conclusion

A new cylindrical Penning trap has been demonstrated to be a good approxi-
mation to an ideal microwave cavity. Anywhere from 1 to more than 105 electron
oscillators can be isolated near the center of the trap cavity, localized in the simple
standing wave patterns of the cavity modes. A single electron has been observed
with good signal-to-noise ratio, demonstrating that precise measurements with one
electron, such as measurements of the eleciron magnetic moment and of inhibited
spontaneous ernission, etc., can be performed in a cylindrical Penning trap, with
the added advantages of a well-characterized microwave cavity.

Resonant cooling of electron oscillators by a cavity standing wave has made
possible this first study of cooperative phenomena in parametrically-pumped elec-
tron oscillators. Phase bistable CM oscillations with long-term coherence emerge
from weak, disordered fluctuations as the pump strength is increased through a
sharp threshold, producing extraordinarily large coherent signals. Detailed exper-
imental studies of the (h,ws) space of the parametric pump establish a hyperbolic
region of instability, in which the quiescent state becomes unstable, with a thresh-
old hr which is proportional to the number of electrons and to the damping rate
by the tuned circuit per electron. Analysis of a rigid model corroborates that this
observed instability corresponds to the lowest order (n = 1) Mathieu instability in
the presence of damping. Phase bistability and hysteresis are also observed and
well approximated by an ordinary differential equation for rigid motions. Hys-
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teresis in one parametrically-pumped electron oscillator may make it possible to
detect relativistic cyclotron excitation [31] without perturbing the excitation dur-
ing crucial stages.

A rigid model, however, is an oversimplification since internal motions and
electron-cavity interaction are also important. Observed energy in the coherent
CM motion is limited by cavity cooling of internal motions. For example, the slope
of a linear lineshape (obtained when |Cy| is large) increases as the internal motions
are cooled. This extreme sensitivity to cavity cooling in partially synchronized
motion provides a new technique for probing the radiation field modes of a Penning
trap cavity, in sity at 4K, without a microwave drive. Measured eigenfrequencies
agree well with those of an ideal cylindrical cavity. Interaction with a cavity
standing wave is so weil characterized that motional sidebands and splittings are
observed in cavity mode resonances. |

Furthermore, interesting fluctuation phenomena are observed in great detail.
The center-of-mass of partially synchronized, parametric electron oscillators makes
random transitions between degenerate phase states which differ by 180°, at a rate
which increa.ses.with increasing internal energy. Detailed observations of phase
jumps show a variety of “trajectories.” A phase jump is often initiated by a collapse
of one CM phase state to the “quiescent” state, followed by re-excitation to the
other phase state. In some cases, increased fluctuation is observed as precursor to
a phase jump. In a rare event, oscillations in the basins of attraction of the two
phase states have also been seen.

Although some insight has been gained, many interesting questions remain to
be explored. Are there other collective states which are excited by the parametric
pump? Why does observed coberent CM motion above threshold saturate? Is
there a simple explanation for the convergence of power in the peak and fluctua-
tion pedestal of the response spectrum? Above threshold, how are the amplitude
and phase fluctuations related, and how do they vary with system parameters? As
shown in this work, simple notions of synchronization, a rigid model, and electron-
cavity interaction have been useful but are inadequate for further investigation.
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Unfortunately, a better treatment is not available. The underlying simplicity sug-
gested by our observations of Lorentzian lineshapes of cavity mode resonances, an
exponential distribution of residence times, etc. will hopefully prompt a detailed
theoretical analysis of parametrically-pumped electron oscillators. Below thresh-
old, perhaps a simple, generalized set of rate equations can be obtained for the
energy transfer processes within the cryogenic micro-plasma [68,67).

As an initial application, partially synchronized electrons are used to identify
the radiation modes of a trap cavity for the first time. A thousand-fold decrease
in an electmn;s axial temperature now seems feasible, as does a new generation of
electron magnetic moment measurements which avoid previous limitations from
damping linewidth and cavity shifts of measured frequencies. Extraordinary con-
trol over a wide range of parameters in this well-characterized system provides an
ideal environment for such precision measurements, and for new experiments in
nonlinear dynamics with few electrons, cooperative behavior in increasingly larger
systems, radiative effects due to strong coupling of many electrons localized within

a fraction of a wavelength of a cavity standing wave, and fluctuation phenomena.
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Appendix A

Self-shielding Superconductmg
Solenoids

For high precision experiments, fluctuations in the ambient magnetic field must
be shielded out or otherwise compensated to obtain a region with a strong mag-
netic field which is stable in time. Flux conservation in superconducting circuits
makes it is possible to design superconducting solenoid systems which produce
large magnetic fields and also react to shield the high-field region from ambient
fluctuations [33]. This may be realized in many specific solenoid geometries and
circuit configurations; the choices depend upon the desired field properties for
particular applications. Shielding the fluctuations in the ambient field is crucial
for achieving the highest precision measurements. However, even for less precise
experiments, good shielding makes it possible to make measurements much nearer
to sources of fluctuating magnetic fields.

We have demonstrated that an extra superconducting coil added to a standard,
6 Tesla solenocid results in a self-shielding solenoid system which utilizes flux con-
servation to passively shield an interior volume from changes in the ambient field,
such as those from solar activities and from neighboring MBTA (cambridge) sub-
ways, particle accelerators, or elevators [38]. Such self-shielding solenoids couid be
very useful for mass spectroscopy of trapped particles, nuclear magnetic resonance
experiments and magnetic resonance imaging. As an example, an antiproton ICR

measurement with a fractional accuracy of 4 X 10~® was recently done in a 6 T
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superconducting solenoid located near a large particle accelerator {36]. Without
the shielding, the magnetic fluctuations in this environment would have limited
the measurement accuracy to 1 ppm.

In this section, we discuss the general shielding principles and important con-
siderations in the design and tests of self-shielding superconducting magnets. In
the first trial, the large shielding factor of 156 for fluctuations of the uniform
ambient magnetic field has been attained without compromising the spatial ho-
- mogeneity of the field produced by the basic solenoid. Passive shielding using flux
conservation applies in principle to external field fluctuations which are arbitrarily
fast. High-field solenoids, however, are typically wound on copper or aluminum
cylinders which readily support eddy currents, especially when cold. External field

fluctuations more rapid than 1 Hz typically are aiready severely screened by the
cylinder.

A.1 Ambient Fluctuations in the Magnetic Field

For precision mass spectroscopy, we are particularly concerned about spatiaily
uniform fluctuations in the ambient field, the sources of which are frequently be-
yond the experimenter’s control. For example, to compare the masses of a proton
and antiproton to a desired precision of 1 part in 10° in a 6 Tesla magnet field re-
quires a time stability better than 6 nT per hour. Unfortunately, depending upon
location, variations of 10 nT (100 4G) to 100 nT (1 mG) are observed, and larger
variations are possible during magnetic storms which are related to solar activity
[75]. These fluctuations Limit the time stability which can be realized in a high field
region, even though the high .ﬁeld solenoid system itself produces a more stable
field. Fig.A.1 shows the typical situation in our laboratory as measured with a
fluxgate magnétomet.er. During a window of a few hours at night ( Fig.A..Ia), when
the MBTA (Cambridge) subway is not running, the fluctuations are of order 1 nT
(100 4G) with occasional steps of order 60 nT (600 4G). By day (Fig.A.1b), much
larger fluctuations up to 300 nT (3 mG) are typical. Simultaneous measurements
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of the fluctuating ambient field, with probes separated by several meters, showed
that the fluctuating ambient field is typically spatially uniform.

Many techniques are available for shielding out such fluctuations in the presence
of small magnetic fields, but it is much more difficult to shield them out of a region
of high magnetic field. One reason is that highly permeabie materials like iron and
“mu metal” are severely saturated and hence useless for shielding within the high-
field region. Another is that shields made of type I superconducting materials like
lead and niobium cannot be used because the large field is above the eritical field
for type I superconductors. Finally, a type II superconductor has been used to
screen external fluctuations from a very small high-field region [24] , but there was
trouble with flux jumps associated with the shield.

Ia typical NMR and ICR experiments, the superconducting solenoids do not
and need not shield the components of the fluctuating, ambient field which are
perpendicular to the stréng field B,. A fluctuating transverse field B, provides
only a quadratic correction to the magnitude of the strong field:

B\?
B=B,l1+ (F) (A1)

Even an extremely large transverse field B; = 6xT {60 mG) thus results in an ex-
tremely small fractional change in the field, §B/B < 10~'4. Ouly the z-components
of the magnetic field contributions are relevant if we choose the z-axis to coincide

with the axis of symmetry of the solenocid system.

A.2 Single Superconducting Solenoid Circuit

We now present an alternative approach, whereby the geometry of the su-
perconducting solenoids that produce the large magnetic field is chosen so that
external fluctuations are canceled at the location of the experiment by extra cuz-
- rents induced in the solenoids. As is well known, magnetic flux through a closed
superconducting circuit is conserved. We discuss how to configure coupled su-
perconducting circuits so that this flux conservation insures that external field
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Figure A.1: Typical fluctuations in the magnetic field in our laboratory as mea-
sured using a fluxgate magnetometer and a detection bandwidth of 0.01 Hz. The
quiet window during the night occurs when the MBTA (Cambridge) subway is
shut down.
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fluctuations are screened from a selected region of interest. For simplicity, the
focus here is on superconducting circuits composed of solenoids which are axially
symmetric about a 2 axis. The z component of the external field B, is reduced by
a shielding factor S to B, /S and the objective is to make S as large as possible.
A self-shielding solenocid system (a system for which § is large) can be con-
structed using a wide variety of circuit configurations. Therefore, self-shielding
systems can be designed to preserve a variety of other properties. For example, a
high degree of spatial homogeneity is often also required in the high-field region
in order that very narrow resonance linewidths can be obtained. Time stability
is then required to allow measurement of the narrow lines, several hours being
required for some mass spectroscopy experiments of interest. We thus choose our
examples of self-shielding solenoid systems to suggest ways that these can be de-
signed with minimal distortions of the field homogeneity. Real solenoid systems
are more complicated than our examples, but may be analyzed in the same way.
To illustrate the basic shielding scheme, consider a single, axially symmetric
solenoid :. The solenoid shown in Fig.A.2 is made of superconducting wire and its
ends are connected to make a closed circuit. The poteatial difference around the
shorted solenoid is zero. By Faraday’s law, an externally applied field B, induces
~a current [; in the solenoid which in turn produces a magnetic field B; sufficient

to keep the flux through the solenoid from changing, ie.
[ [B. + BijdA = 0. (A2)

We take the conserved value of the flux to be 0 so that we can focus on fluctuations
from some steady state. The subscript on the integral indicates integration over
the area of the solenoid. The induced current persists since the resistance around
the superconducting circuit is zero.

In what follows, we shall use cylindrical coordinates p and 2, so that B; = |
Bi(p, z), for example. The net field at the center of the solenoid B.(0,0)+ B;(0,0)
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Figure A.2: Simple, single-layer solenoid.

can be written in terms of the shielding factor S as B.(0,0)/S so that
B;(0,0)
-1 14 2800 )
S 1 B.(0,0) . (A.3)

In light of the flux conservation criterion Eq.(A.2), this can be written
o _y_ _ JiB.dA/B.(0,0)
S =1 B, 44/ B0,0) (a4

To aid intuitive interpretation, we note that S-! is linear in the ratio of two

averaged fields
(A.5)

=&

St=1-

defined by
f; B.dA (A.6)

be = B.(0,0)[,dA
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= _ LiBip,z)dA

* 7 B;(0,0) f,dA’ (A.7)

Here f;dA is the total area involved in the flux integration for circuit i. Perfect
shielding requires a solenoid for which the normalized average values of the external
field and solenoid field are equal, b, = b;.

Without explicit calculation, one can immediately see that complete shielding
of spatially uniform fields is possible with a single superconducting solenoid circuit,
even if the solenoid has many layers of windings. For spatially uniform external
field B, we have b, = 1 and the shielding is given by

§1=1- (A.8)

Y =

For a short solenoid, the magnetic field near the windings is larger than the mag-
netic field near the center. The average value in the bore J; is thus greater than 1
so that §~1 is positive. For a long solenoid, the volume average of the magnetic
field produced by the solenoid within the bore is slightly less than the field at the
-~ center because of the fringing field at its ends. Thus, 3; increases to a value of 1
with increasing length. This corresponds to §~! increasing to a limit of 0. Since
S~' must cross zero between these two limits, complete shielding is obtained with
an appropriate choice of dimensions.

To facilitate explicit calculation, we eliminate the induced current from the
expression for the shielding factor using factors g; and L;; which depend only upon
the geometry of the solenoid circuit. The field at the center is proportional o the

current

Bi(0,0) = g; I, | (A.9)
as is the flux through the solenoid

j Bi(p,2)dA = Ly L. (A.10)
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The latter proportionality factor L;; is the self-inductance for solenoid i. Substi-
tuting these two expressions in Eq. (A.4) yields |
gidi
. Ly’
For a spatially uniform external field, A; is the total area [;dA used to calculate

§'=1- (A.11)

the flux through circuit i. More generally, A; is an effective area

B.dA
B.(0,0)’

~ which depends on the spatial distribution of B,.

4; = 3844 (A.12)

In Fig. A.3 we plot §7! as a function of the solenoid aspect ratio !/a for
a single layer, densely wound solenoid. The necessary techniques for calculating
inductances are well known [41] and efficient calculation techniques have been
discussed [39]. The qualitative features discussed above are readily apparent. The
self-shielding is complete (i.e. S~! = 0) at the aspect ratio [13]

l/a =088 (A.13)

for a densely wound solenoid in the limiting case of vanishing wire diameter.

In general, the shielding produced by a persistent superconducting solenoid is
far from complete. To illustrate, we use a solenoid represented in Fig. A.4, which
is not unlike many high-field solenoids which are commercially available. The large
solenoid is wound uniformly with n, turns and its dimensions and characteristics
are given in Table A.1. This solenoid would produce a field of 6 T at its center
for a reasonable current of approximately 40 A. By itself, we calculate that this
solenoid will screen external field fluctuations by a factor .of S = —2.9, which
is typical for commercial superconducting solenoid systems. Improving the self-
shielding requires more than a simple reshaping of the solencid. A self-shielding
solenoid of the same radial dimensions, for example, would be reduced in length
by more than a factor of 9. Such a squat solenoid would have properties very
different from the solenoid in Fig. A.4. More practical modifications involve two
or more coupled superconducting circuits, which wiil be discussed next..
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Dimensions Calculated parameters
a; =17.62 em L,=2323 H
a; =12.70 em Ay = 2219 m?
l, = 2540 em g1 =0.1469 T/A
ny = 64000 §=-295

Table A.1: Basic solenoid

A.3 Coupled Superconducting Circuits

Practical solenoid systems typically contain several circuits, one to produce the
large field and the others as shims to make the field near the center as homogenous

0.4

Self-shielding Solenoid 1

5'10'2 l/a = 0.88 .

0.0 _ \

0 2 4 6 8
Aspect Ratio: l/a

Figure A.3: Shielding of a densely would, single-layer solenoid as a function of its
aspect ratio, the ratio of its half length 1 to its radius a.
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as possible. We therefore generalize to a sysiem of N closed superconducting
circuits, each of which is axially symmetric. The subscript { now becomes an index
i = 1,..., N which labels the N circuits. A current I; in circuit : produces the field
Bi(p,z). The currents can be represented by a column vector I and a related
column vector g relates the field at the center to the currents with components
defined by

B(0,0)=g: L. (A14)

The areas of the circuits are represented by column vector A with components

A= [da (A15)
Z
-
/
i 2 X
@ —»
@ >

Figure A.4: Large solenoid to illustrate typical properties of high-field persistent
solenoids.
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which may be generalized for the case of non-uniform B, as was done in Eq.(A.12).
The familiar symmetric inductance matrix L has components given by

f Bj(p,2)dA = L; I;. ' (A.16)

A diagonal element L;; is the self-inductance associated with circuit : and off-
diagonal elements are the mutual inductances between circuits. The shielding

factor is
S1=1-g’LA, (A.17)

with the superscript T indicating transposition so that g7 is a row vector. For a
single circuit Eq. (A.17) reduces immediately to Eq. (A.11). Complete shielding

occurs when
g'L'A =1. (A.18)

This is the condition for a self-shielding solenoid system.

As an jllustration, consider a system of 2 superconducting circuits. One solenoid
circuit is characterized by Ly, 4 and g; and the other by L, 4, and g,. The mu-
tual inductance between the two circuits is M. One circuit could be a commercially
constructed NMR solenoid to produce a 6T magnetic field, for example, and the
other circuit could be a solenoid added to make a self-shielding system. From Eq.
(A.17), the shielding factor is

-1_q_[9141, 54 M ] _ M -1
57 =1 Ll + Lg L1L2\92A1+91A3) 1 Lng v (A.lg)

For M — 0, comparison with Eq. (A.11) shows that each coil contributes indepen-

dently to the shielding. In general, however, the mutual inductance significantly
modifies the shielding.

Computing S~ is rather involved and lengthy, even in this simple two-circuit
system. Many of the ﬁeeded quantities, however, can be measured. This may
be useful when modifications or additions to commercially constructed solencid
systems are contemplated, since their internal designs are often difficult to obtain.
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The self-inductance L, can be measured in conventional ways, most easily for
a large solenoid by measuring the increase of current with time for an applied
charging potential V;

dI,
Vo= Lt (A.20)

For two coupled superconducting circuits, the mutual inductance oan be measured
by introducing a current I in circuit 1. A current I, is induced in the second circuit

to conserve flux through circuit 2. Thus M may be determined from
MI1 + LgIz =0 (A.21)

when L; is already known. Circuit areas A; and A, can be determined by mea-
suring the shielding factor S for each coil individually. |

Finally, we note that this approach is related to a technique wherein two con-
centric, coplanar superconducting loops were used to make a tunable gradient in
a large magnetic field. [86] The two loops were connected in series such that the
current flowed in the same direction. The radii of the loops were chosen to mini-
mize the shift of the magnetic field at the center of the loops which occured when
the gradient was tuned. Accordingly, external field fluctuations were expected to
cancel by perhaps a factor of 10 at the center of the loops, albeit at the expense of
changing the field gradient. This configuration is not generally useful for shielding
because of the gradients introduced. Still, it could be analyzed by treating each
loop as a “solencid”, with the two loops connected in series to form a circuit. A
complete analysis would also include the mutual inductances between these loops

and the superconducting solenoid used to produce the large magnetic field being
stabilized.

A.4 Commercial Solenoid Circuits

In practical solenoid systems, the closed superconducting circuits are generally
composed of individual solencids connected in series. It is convenient to relate
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the column vectors g and A and the inductance matrix L for the circuits to the
analogous quantities for the solenocids §, A and L. We define the N x N matrix
@ such that the currents in the solenoids I are given by

T =17Q. (A.22)

For N circuits there are N solenoids with N 2> N since at least one solenoid is in
given circuit. In simple cases wherein solenoids are connected in series with their
currents flowing in the same rotational sense about the z axis, we have Q;, = 1
if circuit ¢ includes solenoid k and Q;; = 0 otherwise. Negative elements may be
used to represent currents flowing with opposite helicity with respect to the z axis.
The transformation rules are

g =08, (A.23)
A=0A, (A.24)

and
L=QLa’. (A.25)

We have found that it is convenient to set up the computation in terms of the
solenoid quantities, since each solenoid typically has a different geometry, and
then carry out the contractions as above using € to get the circuit parameters
needed to evaluate the screening.

Simple geometries and dimensions which seemed theoretically promising were
described in [33]. However, high-field NMR solenoids with state-of-the-art spatial
homogeneity are generally constructed commercially, with complicated geometries
which vary from manufacturer to manufacturer. We have analyzed in detail a
commercial NMR solenoid system (Nalorac 6.0/100/118) which involves 2 super-
conducting circuits with several solenoids making up each circuit. For the first
trial, Nalorac Cryogenics provided us with the (proprietary) internal dimensions
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of their standard, high-homogeneity solenoid made for NMR applications. This
system has a calculated shielding factor of

= —4.4540.10  (A.26)

which agrees with the measured value. Other calculated properties of this system
are given in Table A.2. (This comparison is discussed further towards the end of

. added coil
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— »-
I

|
main solenoid system

Figure A.5: Cross section of the windings of the high-field solenoid which produces
a vertical magnetic field. The innermost solenoid was added to make the solenoid
system cancel external fluctuations.
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the next section.) The uncertainty reflects some imprecision in our knowledge of
the location of the windings and inaccuracy in our inductance caiculation. Our
detailed calculations for finding a practical geometry which satisfies the shielding
condition in Eq.(A.18) indicated that a small, persistent, interior solenoid could
be added to make a solenoid system which cancels external fluctuations. No other
modification of the standard system was needed to preserve the high degree of
spatial homogeneity (6B/B < 1078 over a sphere 1 cm in diameter). A cross
section of the solenoid and the added interior coil (to scale) is shown in Fig.
A.5. The strong field produced within the solenoid is along the symmetry axis of
the solenoid. The large outer coil produces the large magnetic field and contains
shaped correction coils to obtain a high degree of spatial homogeneity. Without the
added interior solenoid, this cross section is typical of a high-field NMR solenocid.
The inductance matrix for this system is calculated to be

0.1310 0.2508  2.3434
L=} 0.2508 24161 16.1924 | H,
2.3434 16.1924 173.4107

where the smallest diagonal element is the inductance of the added interior solencid
and the remaining diagonal elements are the inductances of the two solenoids
forming the standard system. Table A.3 includes other calculated properties of
the first system designed and constructed to be self-shielding.

(A.27)

A.5 Measured Shielding

To measure the shielding, we insert an NMR probe with an acetone sample into
the high-field region. The sample is a sphere with a diameter of 1 cm. We apply
an external magnetic field to the solenoid using large square Helmholtz coils,which
are 2.81 m on a side and are separated by 1.53 m. These coils produce a magnetic
field which varies over the solenoid by less than 0.3 % .

By opening the circuit of the inner shielding coil, we measure a shielding which
is typical of a high-homogeneity, high-field NMR solenoid. Fig. A.6a shows the
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 Pometer | Vale | Umt

Al 135.88 m2
Ag 1662.01 m?
L 2.386 H
L, 177.5 H
M 1625 | H
a1 14.483 mT/A
9 134.910 mT/A
e/m)(g +g2)/2% | 4.182(3) GHz/A
—~4.45 +0.10 —

Table A.2: Calculated properties of a Nalorac superconductive magnet {(JOB43).

| Porameter || Value | Unit

A, 17.53 m?
Ay 136.72 m?
A, 1644.02 m?
L, : 2.416 H
Ly ' 173.4 H
M 16.19 H
L=Li+L,+2M 208 H H
9s 7.231 mT/A
%1 14.565 mT/A
g2 133.109 mT/A
(e/m)(gr +¢:)/2x || 4.134(3) | GHz/A

Table A.3: Calculated properties of a new Nalorac superconductive magnet de-

signed to be self-shielding (JOB51). Subscript s indicates the added interior
solenoid.
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field change within the central volume of the solenoid (from the measured shift
in NMR frequency) as a function of the external field applied with the Helizholtz
coils. The measured shielding factor is

S=-427%007 . (A.28)

This means that external field fluctuations are reduced by this factor, and we
expect that this number is rather typical of high-field solencids of reasonable ge-
ometry since it is rather insensitive to the details of the geometry. The negative
sign is also typical. It indicates that the solenoid overcompensates the external
fluctuation, so that the fluctuation experienced in the center region is actually
oppositely directed to the applied external field. The measured value compares
well with the calculated value § = —4.5 4+ 0.1 given above.

When the inner solenoid is allowed to go persistent, the shielding improves
dramatically, as indicated in Fig.A.6b. The measured shielding factor is

$=-156+6 . (A.29)

~ We interpret this as the shielding for a spatially uniform field, after increasing the

uncertainty from 3 (the measurement precision) to 6 to include effects of possible
inhomogeneities in our applied field. We observe the same linewidth in the NMR
.signal with the shielding coil as without, indicating that the spatial homogeneity
is not compromised over the 1 cm diameter of the spherical NMR probe.

A.6 Field Homogeneity of Shielded Region

It is extremely important that modifications to make a high-homogeneity solenoid
system self-shielding do not spoil the spatial homogeneity. Fortunately, the condi-
tion for a self-shielding system in Eq. (A.IS) allows for many possible self-shielding
configurations. The approach taken in Fig.A.5 has minimal effect on field homo-
geneity. The basic solenoid, optimized to provide the desired level of homogeneity,
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Figure A.6: Change in the magnetic field measured within the solenoid (deduced
from the change in NMR frequency of an acetone sample) as a function of the

external magnetic field applied over the solenoid, without (a) and with (b) the
added 1 inner solenoid.
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1s left unchanged. A separate additional solenoid is added which would carry no
current if the ambient field was stable. Since it only carries the very small cur-
rent required to cancel out the changes in the external field, it produces only a
sinall field gradient. Suppose, for example, that fluctuations of the ambient field
B. as large as 6 uT are encountered. This means that the added solenoid at
most must produce a field which is 107 of the 6 T field produced by the system
used for mass spectroscopy. The fractional homogeneity requirement on the center
solenoid is thus reduced by this factor. For the inner solenoid in Fig.A.5, the field
at a distance d from the center varies from the field at the center by (d/!)® which is
approximately 10~2 so that a homogeneity of 102 over a sphere 1 cm in diameter

would not be compromised by the addition of such a coil.

A.7 Shielding for Nonhomogeneous Fields

Spatial homogeneity of applied field is important in measuring shielding factors.
Larger than expected shielding factors were obtained by applying an external field
using a single loop around the solenocid, for example, or using Helmholtz coils
which are {00 small (Fig. A.7). An early measurement used a pair of square coils
(side length of 2m) to apply an external magnetié field to an unmodified, Nalorac
solenocid system. Although the coils were separated by 2 meters, we calculated
that the spatial inhomogeneity in the applied external field over the volume of the
solenoid system reduces the shielding from S = —4.45 in Eq. (A.26) to § = —4.10
which is what agrees with our measurements. To calculate the modified shielding
factors, the generalized definition of effective areas in Eq. (A.12) must be used,
taking B, to be the nonuniform field of the external coils.

Field fluctuations due to distant sources typically are spatially uniform. The
system which has been tested was specifically designed to shield out fluctuating
fields which are spatially uniform. There are cases, however, wherein the high-field
region can be shieided from nonhomogeneous ambient fluctuations. For example,
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a linear gradient in the applied field averages to zero over the solenoid, making no
contribution to b, and to the shielding factor. As another example, the highest
magnetic fields are produced using multi-strand superconducting wire. Solenoids
so constructed often are not completely persistent but have a field which decays in
time very slowly. If the spatial distribution of this decaying field is known near the
center, it may be taken as B. and used to calculate the effective area of a small,
single-strand superconducting coil located near the center. The dimensions of this

interior coil is then suitably chosen to compensate the drift in the field.

circﬁlar coils
of diameter : 62.9 cm
° separated by : 15.8 cm

S = -23.2(5)

°  Helmholtz coils
of diameter : 62.9 cm

S=-5.5(1)

(b)

Figure A.T: Examples of larger than expected shielding factors due to gradients
in the applied magnetic field.
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Nearby magnetic materials distort the fluctuating ambient (otherwise uniform)
field and significantly modify the shielding. For example, steel reinforcements in
concrete blocks located beside the solenoid at CERN distort the fluctuating field
from the nearby storage rings. For the CERN PS, we observe a shielding factor
of § = —100. The field from the closer LEAR magnets is shielded by a factor of
S = —50. These shielding factors are significantly lower than the shielding factor
of § = 156 observed for uniform magnetic fields, but are still large reductions
in the fluctuations of the magnetic field in the volume within the solenoid where
experiments are located.

161



Appendix B

Linear Coupled Oscillators with
Thermal Noise

Trapped electrons are coupled to a tuned circuit for detection and eventually
come into equilibrium with it. The trap electrodes and tuned circuit are in ther-
mal contact with a LHe bath. Thermal motions are observable even near 4 K. For
example, the precision of the measured magnetic moment of the electron using
a magnetic“bottle” [83] may ultimately be limited by the substantial linewidth
broadening caused by the thermal axial motion of an electron in the magnetic
field gradient, unless a variable bottle [86] can be used. The thermal motion of
an electron oscillator has been thoroughly analyzed [7,10]. In this section, we de-
scribe the Johnson noise in the tuned circuit and a square-law detection technique
[18,93] used in observing thermal agitations. Some interesting and useful features
arising from the interaction between the tuned circuit and trapped electrons are
discussed. A simplified explanation is provided for heat transfer in an electron/ion
cloud which are sufficiently gradual (quasi-static). Finally, the basic features of
a “bolometric” model [18,93] of disordered motions in trapped electrons/ions are
summarized.
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Figure B.1: Harmonic oscillators: (a) series LCr network, (b) damped, ideal
spring-mass system, (c) parallel LCR network .

B.1 Detection Circuit: Harmonic Oscillator

The simplest representation of the detection circuit is a series LCr network
(represented in Fig. B.la, where L is the inductance of the helical resonator, C

is the trap capacitance, and r represents radio frequency losses in the circuit).
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This network is exactly analogous to a damped, harmonic oscillator illustrated in
Fig. B.1b consisting of a mass attached to an ideal, massless spring surrounded
by a viscous medium. The observed signal is derived from the voltage across the
inductor Vi, = LI(t) where I(t) = Q(¢) is the current through the inductor. Since
thermal agitations produce (Vi(2)) = 0, only the mean squared value is measured.
( The symbol (...} denotes ensemble average.) The mean squared fluctuation in
a small frequency bandwidth Aw can be measured using a square-law detection
technique (Fig. 2.15). The theory of square-law detection is briefly discussed in
this section.

The voltage across the inductor is amplified, filtered and squared to produce
a signal proportional to mean noise power. The signal is obtained by the sum of
Fourier amplitudes in the bandpass [w — Aw/2,w + Aw/2]of the filter

sw=[ t: HF($)V() (B.1)

where the function F(¢) which restricts the observation bandwidth,Aw, is given

by [10] a2
F(t)=2 j Socosl(wr +w')t — 4] (B2)

The phase ¢ is ad_;usted by a phase-shﬂ:er Observed output of squarer is propor-
tional to

= [ [T awFeF@V@G) - (83

The correlation function for Vi(2) is related to the impedance Z(w) of the network
by [90]

Vi(Valt)) = 2kaTr [ 2Ly [priwg-i—w) o) . (Ba)
For a series LCr network (e.g., Fig. B.1a), the circuit impedance is given by
Z(w) =r 4+ iwL + 1/(iwC). | (B.5)

Hence, in the limit of narrow observation bandwidth Aw < r/L, we get the
familiar result for Johnson noise

(S =4 [ ) (B6)
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where the effective resistance R(w) is given by

(3Tm)"
(war —w)? + (3Tw)”

Rw) = [ 2] (B7)
The subscript 0 in (S5?) indicates that there are no trapped particles. Observed
noise power is maximum when the bandpass filter is centered at the resonance
frequency was of the tuned circuit. A “noise resonance” is obtained by sweeping
the bandpass center frequency, producing a Lorentzian lineshape with resonant
frequency wy = 1/\/L_Ca.nd a full width at half-maximum of I'ys = r/L. Observed
noise-driven resonance for our apparatus is shown in Fig, B.2a, when the trap is

empty.

A helical resonator has often been represented by a parallel LCR network
shown in Fig.(B.1c) in earlier works [93]. In practice, because the quality factor is
fairly high (Q > 600), the difference between these two representations is negligible
(of order 1/Q) provided the resistances r and R are related by

L
=7 - (B.8)
While the parallel LCR representation is very convenient when w? ~ 1/(LC), the
series LCr circuit more readily provides a detailed study in general, particularly

when the circuit is coupled to trapped particles.

B.2 Coupled oscillators

" An electron bound in the trap interacts with the tuned circuit. For a pure elec-
trostatic quadrupole potential, the axial motion of an electron is repreaented by a
spring oscillator. Fig. B.3 illustrates the coupling of the tuned circuit toa trapped
electron. In general, the electron may be surrounded by a fluid medium consisting
of background gas (e.g., in a poor vacuum) or consisting of simultaneously trapped

ions,
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The coupling between an electron and the tuned circuit is described by the

interaction potential
AP i &
Vi = | 221 2Q (B9)
where Z(t) is the displacement from the trap center along the symmetry axis and
Q(t) is the charge accumulated in the capacitor. The dimensionless geometric
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Figure B.2: Observed “noise resonance” of the tuned circuit obtained by sweeping
the center frequency of bandpass filter (a) when the trap is empty and (b) when
the trap has a small electron cloud with the same resonant frequency.
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Figure B.3: Simplified representation of a tuned circuit coupled to an charged
particle oscillating in a background gas.

factor % is equal to 1 for an infinite parallel plate capacitor. Thus, the Langevin

equations for the coupled oscillators are

L[£2+TM;+%] oW + |72 26) = v,

m [g; tragted 20+ [ o = Fo. @)

which appear similar to Eq. (2.39) and Eq.(2.40) except that the “Langevin forces”
on the right hand side (and hence Z(%) and Q(t) as well} are stochastic processes.
These random forces have Gaussian distributions with (F(t)) = (V(¢)}) = 0 and
are characterized by the correlation functions:

(VIOOF(t)) = 0o,

(FOF()) = 2kgTo(mye)é(t —t'),
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(VI)VE)) = 2ksT.(LTr)é(t — ¥). (B.11)

They are uncorrelated, “white” noise sourcés. In this section, we examine the
characteristic features of the observed signal when the system of coupled oscillators
is driven by white noise.

Consider first the case of an electron harmonically bound in an ultra-high
vacuum envelope held at temperature T. In this case, collisions with background
gas is completely negligible, so that 4., = 0. The output of the squarer given by
Eq.(B.6) must be modified to read

(w2 —w?)’
(@2 — w?) + ()
where the &, is the shifted resonant frequency of the electron oscillator and «,
is its damping rate due to coupling with the circuit , given by Eq.(2.49). The
damping and frequency shift caused by the tuned circuit are discussed in Sec. 4,
where they are shown to depend in a simple way on the detuning from the tuned
circuit.

Features due to this coupling are more easily observed with many electrons
since the center-of-mass (CM) motion is also coupled to the tuned circuit in the

{S¥) = {53) (B.12)

same way. The description given above remains valid for N electrons suspended
near the trap center, provided § —+ N¢ , m — Nm, and Z(t) becomes the CM
coordinate. Illustrative cases calculated from Eq.(B.12) are shown in Fig. B.4.

If the resonant frequencies of the spring oscillator and LCr circuit are tuned to
the same value w, = wy, a “dip” appears at the center of the signal. An example
of observed dip in the noise resonance of the tuned circuit due to trapped electrons
is shown in Fig. B.2b. For small number of electrons, N, < T'a, the signal in a
small frequency range about w. simplifies to read

_ Aw (To/2)?
(S%) = 4ksTR (27) [1- o IR (B.13)

Thus, the electrons produce an inverted Lorentzian with linewidth T, = I',(0) =
Nvz (i.e., N times wider than the maximum linewidth of one electron). The signal
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is “shorted out” at the resonant frequency as shown in Fig.(B.4b). For large N,

the signal maxima {S% )mas Occur at frequencies

=wy —\/ T, , (B.14)

which are separated by the geometric mean of the widths T, and Ty, as can be
easily shown by demanding the derivative of Eq.(B.12) with respect to w to be
equal to zero. Thus, I', = (w* —w™)?)/T'x can be used to determine N for large
systems.

In general, the observed signal is “shorted out” at the unperturbed resonant
frequency of the particle oscillator w, even when w, # was. This feature could be
useful for high precision mass spectroscopy which compares ions of nearly the same
mass (such as protons and antiprotons) without being limited by shifts caused by
the detection circuit. It should be noted that the sharp peak near the w. has its
maximum slightly farther away from the tuned circuit resonant frequency than &,
. In the narrowband limit, this maximum occurs at

r
Wmas = By + L2 [ /2 ] (B.15)
2 Wy — Was
The order in the frequencies is given by
wyM <w, <&, <wt for w,>wy ,
WO, <w, <wy for wy>w, , _ (B.16)

as illustrated in Fig. B.4c.

B.3 Electron Cooling of Trapped Antiprotons

Fig. B.3 provides a simple model for the process of cooling antiprotons cap-
tured in a Penning trap using simultaneously trapped electrons sharing the same
trapping volume. [35] Consider one electron trapped together with a hot cloud:
of anti-protons. If spontaneous emission is completély suppressed, then the elec-
tron couples only to the LCr circuit connected to the trap electrodes. Without
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the tuned circuit, the electron comes into equilibrium with the antiproton gas at
temperature T; and undergoes brownian motion. When the tuned circuit is con-
nected to the electrodes, the electron couples and transfers energy to the tuned
circuit which dissipates the energy in the resistor. This process gradually cools

the antiproton gas surrounding the electron.

SIGNAL

prae el

[l

SIGNAL

SIGNAL

63.4 63.6 63.8
FREQUENCY (MHz)

Figure B.4: Calculated noise power from tuned circuit coupled to (a) no electron,
(b) small electron cloud at w, = wyy, and (c) small electron cloud at w, > wys
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The rate of cooling is equal to the power dissipated in the resistor. If the

process is quasi-static, then we can write

CesTe = —(QP), (B.17)

where Cg is the heat capacity of the gas. Joule heating (right hand side) can
be calculated from the fluctuating current in the tuned circuit induced by the
Brownian motion of the electron oscillator (which is driven by the heat bath of
antiprotons). This has a simple form when v + 4. < Ty ¢

QP = (220 ko (B.18)
where <, is the decay rate of electron oscillation due to the tune& circuit. At
sufficiently high temperature, the heat capacity Cg is independent of temperature.
Hence, the temperature of the antiprotons gas drop exponentially with a damping

constant 7 given by

1 ks Yeol V= ) |
iy g L N L 2 B B.19
T Cg (‘rm: + %2 (B.19)

Typically,the damping rate v, of an electron by a tuned circuit is sufficiently
fast near resonance, and hence the cooling rate of the antiprotons is essentially
determined by the collision constant 7,4 and the heat capacity. That is, for
Tm 2 92 > “eal, the cooling rate is 77! = v.4(kp/Cg). H now we sweep the cy-
clotron frequency into resonance with a cavity mode, then a factor of 2 in cooling
rate is gained from synchrotron radiation provided energy transfer to the electron
cyclotron motion has the same time constant. On the other hand, unavoidable
anharmonicity in real Penning traps makes large axial motions very anharmonic.
This would cause the electron oscillator to be greatly detuned from the cold, LCr
circuit 5o that v, € 4.1, thus making the cooling process much less efficient. Since
the heat capacity is proportional to the number of gas particles, a large number
of electrons is necessary to get useful cooling rates.

This description of electron cooling of trapped antiprotons , although qualita-
tively useful, is oversimplified in some important aspects. For example, the equili-
bration time constant between electrons and anti-protons is a function of tempera-
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ture and density. Furthermore, the heat capacity of a cloud of harmonically-bound
antiprotons is different from that of a gas. Careful consideration of such issues is

given in Ref. [72].

B.4 Bolometric model

In addition to the coupling between CM motion and tuned circuit, an electron
cloud has many internal degrees of freedom which can be heated separately with
an RF or microwave drive. The electron cloud gyrates in the strong magnetic field
of the Penning trap and thus can radiate via cavity modes which couple to the
cyclotron motion, just as the axial CM motion is damped by the tuned circuit. A
full description of the dynamics is difficult. The problem is significantly simplified
if the disordered, internal motions of a given type (e.g., axial oscillations) form a
thermal reservoir characterized by a temperature. A “bolometric” model [18,93]
of trapped electrons/ions has been developed which essentially focuses on the
temperatures of such reservoirs. To illustrate the main features of the bolometric
model, we first consider a simple example, which can be generalized.

The simplified system is made up of only the axial motions of the electrons
(B — oo limit). For a pure electrostatic quadrupole potential, the axial CM motion
is completely decoupled from the thermal reservoir formed by the internal motions.
In practice, however, deviations from the pure electrostatic quadrupole couple the
CM motion to the internal reservoir. Fig. B.3 can be used for illustration if the
“gas” now represents the internal (axial) degrees of freedom of the electron cloud.
The tuned circuit is assumed to be held at a temperature T,, and an amount of
power H flowing through the container heats or cools this “gas”,

Under quasi-static conditions, energy conservation requires that
d . . . '
CGE—{TG = H + (M7 ){Z?) — (Q()*)r. (B.20)

where we have added two more terms to Eq.(B.17) . The term (m+.){Z?) accounts
for the heat dissipated in the gas by the axial oscillation Z(t), which is driven by
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the Johnson noise in the tuned circuit. Joule heating in the tuned circuit is given
by (Q?)r. The term H is due to heat exchange between the gas and the external
world. Mean squared terms on the right hand side can be calculated to give

d .
CGETG = g(T, - TG) + H. (B.21)

The thermal conductivity between the internal reservoir and the resistor r via the
brownian motions of the coupled oscillators is given by

dw |w|?
— 2 — —
g = 2k5YouTo( Carwnr) f - | = (B.22)
where
A = (wiy — w? = iTyw)(w? — w? ~ iyw) = Pyl T, . (B.23)

This integral has a simple limit if Tas 2> Yt +T'; , yielding g = kpYeotl's /(Yeot +T's)
with I'; being the damping rate of the CM motion due to the tuned circuit. This
is one of the simplest case of the bolometric model.

We summarize here the basic features of the bolometric model, represented
electro-mechanically in Fig.(B.5). Two internal reservairs are used to accouxt for
both axial and cyclotron motions. For parallel motions, a tuned circuit is coupled
to the axial CM motion , which in turn interacts with the gas representing the
internal axial motions of the electron cloud. For transverse motions, a cavity mode
(represented by an LCr circuit}) is coupled to the cyclotron CM motion, which in
turn interacts with another reservoir representing the cyclotron internal motions
. Heat exchange between the internal reservoirs occurs via electron-electron colli-
sions. External sources can raise the temperatures of these motions independently.

Assuming that equilibration time between the internal reservoirs is shorter than
other relaxation times, further simplification is obtained by combining all internal
motions into one reservoir at temperature 7;. The two temperatures of interest
are those of the axial CM motion T, and the temperature of the combined internal
reservoir T;. Energy conservation gives a system of first-order ordinary differential
equations [18,93]

d

Cg aTz = grz(ﬂ - Tz) + gu(:n - Tz) + Ez,

173



Transverse Parallel
Motions Motions
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Figure B.5: The bolometric model

d -
Cx T = 9mi(Tu—T)+9a(T: - T) + H;, (B.24)

where T, and T are the temperatures of the detection circuit and cavity, respec-
tively. (Typically, T, = Ty.) The terms H, and H; denote energy flowing into
the axial CM motion and internal reservoir, respectively. The heat capacities C,
and C; are those for harmonic oscillators (kg per oscillator). The thermal con-
ductivities g;; are determined experimentally. This set of rate equations has been
thoroughly investigated with trapped electrons cooled to ~ 80K, for which the
equilibration time between internal reservoirs is observed to be very fast. [93] The
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equilibration rate, however, can decrease dramatically at much lower temperatures
[68] and a more general set of rate equations may be necessary. Finally, the bolo-
metric model is useful only if the system is not driven so strongly that collective

behaviors emerge.
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